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Abstract

Dominating sets in their many variations model a wealth of opti-
mization problems like facility location or distributed file sharing. For
instance, when a request can occur at any node in a graph and requires
a server at that node, a minimum dominating set represents a minimum
set of servers that serve an arbitrary single request by moving a server
along at most one edge. This paper studies domination problems for
two requests. For the problem of placing a minimum number of servers
such that two requests at different nodes can be served with two differ-
ent servers (called win-win), we present a logarithmic approximation,
and we prove that nothing better is possible. We show that the same is
true for Roman domination, the well studied problem variant that asks
for each vertex to either possess its own server or to have a neighbor
with two servers. Still the same is true if each idle server can move
along one edge while the first of both requests is being served. For
planar graphs, we propose a PTAS for Roman domination (and show
that nothing better exists), and we get a constant approximation for
win-win.

1 Introduction

In this paper, we study a generalization of the dominating set problem
[GJ79]. We are given a graph, and at every node of this graph a request
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can appear. We want to service such requests. To do so, we place servers
at nodes. The request at a node v is serviced, if there is a server on v, or if
a server in its neighborhood is moved to v. Clearly, if we want to be able
to service one request, then the multiset of server locations must contain a
dominating set of nodes.

However, there are applications in which we want to ensure that more
than one request can be serviced. In this paper, we study the case of two
requests. Imagine, e.g., that two requests occur simultaneously and a server
can satisfy only one at a time. We view our problem as a member of the large
family of dominating set problems, of which [HHS98] already cite more than
75 different variants. These may depend on conditions on the dominating
set DS (e.g. connectivity) or on the other nodes (e.g. a node is dominated
if there is a node in DS at distance at most k, or each vertex is dominated
at least k times, or exactly once, etc.). The study of such dominating set
problems is motivated by their applications to facility location (minimizing
the number of facilities, subject to every demand being close enough to some
facility), file sharing in distributed systems [NR95], game theory [dJ62], etc.

Interestingly, some very old questions have also triggered new research

on the topic [AF95, RR00, Ste99]:

RoMAN DoOMINATION : Where should the armies of the Roman
Empire be placed so that a smallest number of armies can protect
the whole Empire (see Figure 1)7?

Figure 1: The Roman Empire around 300 A.C.



The assumption is that an area can be protected either by one army
located inside the area, or by an army in a neighbor area that comes over
for the defense. In the latter case it is required that a second army remains in
the neighbor area, so that it can quickly confront a second attack. A reason
for the historical 1-2 requirement (one army here or two at a neighbor) is
that we want to be able to service two requests in one time unit (provided
that no two requests can come from the same point at the same time).

In this paper we deal with variants of the ROMAN DOMINATING SET
[Dre00, Ste99]. In particular, we consider the case in which there are two
requests we want to service and no two requests appear at the same node.
Moreover, a server that is used to service the first request cannot be used to
service another request. A solution to our problem for a given graph is a set
of servers at nodes; since all servers are identical, a multiset of nodes (where
the multiplicity of a node is the number of servers at that node) represents
a server placement.

Two factors we will consider are: (i) whether the two requests are known
before the first one must be serviced (OFFLINE), or the first one must be
serviced before the second one is known (ONLINE), and (ii) whether servers
must stay in place unless they service a request (STATIC), or we allow for
a rearrangement (DYNAMIC): as one server services the first request, all
other servers are allowed to move to a neighbor node. The goal of the
move is to guarantee that any second request can be handled, too, in the
ONLINE case (that is, the resulting server placement is a dominating set if
we ignore the first requesting node and its server). The ONLINE STATIC
WIN-WIN version has been discussed earlier [Och96] and called Win-Win
there. (Unlike in Roman Domination, in this case we only require to be
able to win against any two consecutive attacks.) Since our problems also
deal with two consecutive requests, we adopt the name terminology and we
denote the four problem variants as ONLINE STATIC WIN-WIN, ONLINE
DynaMic WIN-WIN, OFFLINE STATIC WIN-WIN, and OFFLINE DYNAMIC
WIN-WIN.

1.1 Our (and Previous) Results

In this paper we investigate the relationships between the above problems
(including RoMAN DOMINATION), as well as the complexity of computing
exact and approximate solutions. In particular, we consider the following
questions:

1. Given a multiset S, is S a feasible solution to (one of) the above
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Figure 2: Relationships between the problems: arrows represent ‘<’ and
they are numbered according to the corresponding theorem.

problem variants? Is there a combinatorial characterization for those

S?

2. Let VARA WIN-WIN and VARB WIN-WIN denote any two problem
variants. If S is a solution for VARB WIN-WIN, does this imply that
S is also a solution to VARA WIN-WIN?

3. A positive answer to the above question implies that opt, (G) < optg(G),
where opt, and optg denote the minimum size multiset solving the two
variants, resp. Is there a graph for which the inequality is strict?

Let VARA WIN-WIN=< VARB WIN-WIN denote the fact that Question 2
has a positive answer, and let VARA WIN-WIN< VARB WIN-WIN denote
the fact that Question 3 does too. It turns out that the problems we look at
form the partial order in Figure 2.! Noticeably, this relationship also holds
when we restrict ourselves to planar graphs.

As for Question 1, for two out of the four win-win problems we provide a
characterization of those multisets corresponding to each problem. For the
DynaMic WIN-WIN, we prove the NP-hardness of the rearrangement step
after the first request. This result seems to denote that such a characteri-
zation for this problem version does not exist, or at least is different from
those given for the other two problems (those can be checked in polynomial
time).

This leads us to complexity and (non-) approximability issues. Intu-
itively, the < relationship may have some consequences on the (non-) ap-
proximability of those problems. Indeed, the order in Figure 2, combined
with the fact that “doubling” a dominating set (the DOMINATING 2-SET
problem in Figure 2) yields a feasible solution for all of the problems, im-
plies an approximation preserving reduction (<ap, see [ACG199]) between

'Figure 2 contains a new problem (DOMINATING 2-SET) which we introduce to prove
some of our results.



‘ Problem Version ‘ General Graphs ‘ Planar Graphs

(24 21Inn)-APX, PTAS,
RoMAN DOMINATION not clogn-APX in P for r-outerplanar
(NP-hard [Dre00]) (NP-hard [Hed00])

(in P for trees & (r X n)-grids [Dre00])

ONLINE STA. WIN-WIN, | (2+ 2Inn)-APX,
ONLINE DYN. WIN-WIN, | not clogn-APX (24 ¢€)-APX, for any € > 0
OFFLINE STA. WIN-WIN

Table 1: Hardness and approximability: Our and previous results. (All NP-
hardness results are in strong sense, thus implying the non-existence of a
FPTAS. Previous results are displayed between brackets.)

all these problems. Let f(n)-APX denote the class of problems that admit
a polynomial-time f(n)-approximation algorithm [ACG*99]. In Table 1 we
summarize the complexity and (non-) approximability results of this work.
As for the results on planar graphs, our technical contribution is a
Polynomial-Time Approximation Scheme (PTAS) for RoMAN DOMINATION.
This result is based on an exact polynomial-time algorithm for r-outerplanar
graphs. The latter improves over the previous results in [Dre00]: in this work
only trees and r X n-grids (for any fized r) are shown to be exactly solvable.
Our result subsumes both of them (an r X n-grid is clearly an r-outerplanar

graph).

2 Online Static Win—Win

In the sequel, given a multiset S, uniq(S) denotes the set resulting by re-
moving multiplicities.

Definition 2.1 (online static) Given a graph G = (V, E), a server place-
ment for G is a multiset S of nodes. A server placement S is a win—win for
G, if for allv € V there is an u, € S with the properties:

1. v=1u, or (u,,v) € E,
2. for allv' € V' \ {v} there is an u, € S\ {u,} with

v' = uy or (uy,v') € E.

Lemma 2.2 (sandwich) Any graph G has the following properties:
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Figure 3: A win-win. Figure 4: Not a win—win.

1. For every dominating set DS, the server placement SP := DS+ DS
is a win—win for G, where & denotes the multi-union.

2. For every win—win WW, the set uniq(WW) is a dominating set of G.

3. For every minimum dominating set M DS and for every minimum

win-win MWW, |MDS| < |MWW| < 2|MDS| hold.

Proof. For Property 1, let vy, v, € V be a pair of nodes with vy # v. Since
DS is a dominating set, there are u,, , 4,, € DS, such that

V1 = Uy Or (V1,U, ) € E, and

Vg = Uy, OF (U2, Uy,) €EFE

hold. Due to the definition of SP, {u,, , %y, } C SP holds. This implies that
requests at vy, v can be serviced.

For Property 2, let v € V' be a node. There is a u, € WW with v = u,
or (v, u,) € E. Since u, € uniq(WW), uniq(WW) is a dominating set.

For Property 3, it suffices to consider the win—-win WW := M DSWM DS
and the dominating set DS := uniq(MWW). Clearly, |IMDS| < |DS| <
|MWW| < |WW|=2|MDS|. O

2.1 Characterization of win—win Multisets

The property of being a win—win does not depend only on a node and its
neighbors. Furthermore, it is not enough that for every pair of nodes there
are two different adjacent servers. This is illustrated by the example in
Figure 4. The server placement S = {vz,v3} is not a win-win. If the first
request is at vy, then there are two cases. Case 1, the request is serviced by
vy, then a second request at v; cannot be serviced. Case 2, the request is
serviced by wvs, then a second request at vy cannot be serviced.

This observation lead us to the following characterization of the server
placements that are win-win.

Definition 2.3 Given a graph G(V,E) and a multiset D for it, a vertex
v €V is weak if D dominates v only once. A vertex u € D 1is safe if every
v € N(u)t is not weak, where N(u)t = N(u) U {u}.



Lemma 2.4 A multiset D for G(V, E) is a win—win if and only if the fol-
lowing two properties hold:

at-most-1-weak Fvery u € D does not dominate more than one weak node;

at-least-1-safe Every non weak node v € V is dominated by at least one safe
node u € D.

Proof.

(=) By contradiction, assume that some u € D does not satisfy Property at-
most-1-weak. Then, there exist two weak nodes w; and w9 dominated only
by u. After a first request at wy, wq is no longer dominated (we must have
used u for the first request). This contradicts the hypothesis that D is a
win-win. Now suppose (again by contradiction) that a non weak node v is
not adjacent to any safe node (thus contradicting Property at-least-1-safe).
Let uq, ..., ux be the nodes of D adjacent to v, for some & > 2 (this follows
from the fact that v is not weak). By hypothesis, none of uy, ..., uy is safe.
So, there exist wy, ..., wy distinct weak nodes, with w; adjacent to u,, for
1 <1 < k. Now consider a first request at node v. For this request we must
use one among Uy, . .., Uk, let us say u;. Then, if the second request is at the
weak node w; we do not have any server to react. Again, this contradicts
the hypothesis.

(<) Let vy be the position of the first request. We have two cases: vy is
weak, or vy is not weak. In the first case, we must use the only node u € D
that is adjacent to vy; Property at-most-1-weak guarantees that every node
in N(u)* \ {vi} will still be dominated. So, any second request can be
handled. Otherwise, that is, vy is not weak, Property at-least-1-safe implies
that there exists a u € D which is safe; we use such a u for this request.
At this point all the nodes in N (u)*\ {v;} will still be dominated by some
u' € D. Also in this case any second request can be handled. |

2.2 Complexity

We are interested in the complexity of the ONLINE STATIC WIN-WIN prob-
lem. We discuss hardness and approximation of this problem. Both NP-
hardness and approximation hardness can be proved using the following
lemma.

Lemma 2.5 Any f(n)-approzimation algorithm A for MIN DOMINATING
SET implies a 2 f (n)-approzimation algorithm for MIN ONLINE STATIC WIN-
WIN. Conwversely, any g(n)-approzimation algorithm B for MIN ONLINE



Static WIN-WIN implies a 2g(n)-approzimation algorithm for MIN DowM-
INATING SET.

Proof. Applying A to any graph GG we can find a dominating set DS of size
|DS| < f(n)|MDS¢|. By Lemma 2.2 the server placement SP = DS DS
is a win—win for G of size |[SP| = 2|DS| < 2f(n)|MDS¢| < 2f(n)|MWWg|.

Conversely, applying B to any graph G we obtain a win—win SP of size
|ISP| < ¢g(n)|MWWg|. Then, according to Lemma 2.2 the set DS =
uniq(SP) is a dominating set of size |DS| < |SP| < ¢g(n)|MWWg| <
2g(n)|MDSg|. O

We know that MIN DOMINATING SET is not approximable within clogn
for some ¢ > 0 [RS97] (unless P=NP) and that it is approximable within
1+1nn [Joh74]. From these facts and the above lemma one can easily prove
the following.

Theorem 2.6 The MIN ONLINE STATIC WIN-WIN problem in general graphs
can be approzimated within 2+ 21nn, but (unless P=NP) cannot be approz-
imated within clogn for some ¢ > 0.

For MIN DOMINATING SET in planar graphs a Polynomial Time Approx-
imation Scheme (PTAS) is known [Bak94]. Therefore, Lemma 2.5 implies
an approximation algorithm for MIN ONLINE STATIC WIN-WIN in planar
graphs, called MIN PLANAR ONLINE STATIC WIN-WIN, with ratio 2 + € for
every € > 0.

Moreover, this approximation ratio is tight for the approach of “dou-
bling” a dominating set to construct the solution. We illustrate this by the
example in Figure 5. For this graph, the set M = {v1,...,vs} is a mini-
mum dominating set. Doubling it gives a solution WW with |WW| = 16.
On the other hand, the server placement MWW = {w, v, vy,...,vs} s a
minimum win—-win with |[MWW| = 9. In this case, the approximation ra-
tio is 16/9. If we increase the number of rays from 8 to k, then we get
|WW|/|MSP| = 2k/(k+1). This shows that there exist graphs for which
the simple doubling algorithm has approximation ratio greater than 2 — e,
for any € > 0.

3 Roman Domination

We come back to the original problem of the so called ROMAN DOMINATION.
On every node, we can place none, one, or two servers.
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Figure 5: Doubling a dominating set gives a win—win of cost roughly twice
the optimum.

Definition 3.1 (roman domination) Given a graph G = (V, E), aroman
for G is a server placement S such that every node v in 'V either belongs to

S or has a neighbor v in S whose multiplicity in S is at least 2. Formally,
YVoeViog S — Ju:(v,u) € EA{u,u} CS.

Clearly, every roman S is a win—win: If the first request is at a node
v € S, then v is serviced by its own server; if v ¢ S, then v is serviced by a
neighbor u with {u,u} € S. This implies that a minimum win—-win does not
have cardinality larger than a minimum roman. The next result shows that
the ‘<’ relationship between those two problems is actually strict:?

Strict Inclusion 3.2 ONLINE STATIC WIN-WIN< ROMAN DOMINATION:
For the graph in Figure 3, the server placement S’ = {vg, vo,v4,v4} is a
minimum roman. On the other hand, S = {vq, v3,v4} is a minimum win—
win: if the first request is at vy, then this request is serviced by wvs; if after
that the second request is at vs, then it is serviced by vy or by vy. &

It is known that MIN ROMAN DOMINATION is NP-hard for arbitrary
graphs [Dre00]. We strengthen this result and show that the problem is also
hard to approximate. As a by-product, we get a new proof for the NP-
hardness. In particular, Lemma 2.2 remains true if we replace the notion
of win-win by roman (see also [Dre00, Proposition 2.1]). Hence, we get the
following theorem:

Theorem 3.3 The MIN RoOMAN DOMINATION problem in general graphs
can be approrimated within 2 4+ 21nn, but (unless P = NP) cannot be ap-
prozimated within clogn for some ¢ > 0.

2Since in all cases ‘<’ is trivial, in the sequel we will only show that ‘=" does not hold.



3.1 Planar Graphs

Often, our problem instances are not arbitrary graphs; planarity is quite
a natural condition (see Figure 1). It is therefore interesting to study the
problem complexity for planar graphs, since we know that minimum dom-
inating set can be approximated well for planar graphs. It turns out that
MIN RoMAN DOMINATION is NP-hard for planar graphs.?

Theorem 3.4 MIN ROMAN DOMINATION is strongly NP-hard even if the
nput graph G is planar.

Proof Sketch. We show the NP-hardness of MIN ROMAN DOMINATION by
reducing PLANAR VERTEX COVER [GJ79]. Indeed, in an adaptation of the
well known reduction from vertex cover to dominating set, we can make the
local transformation upon an edge in Figure 6. The resulting graph, with

G e4 wl,
U v U w2 v
O O
e e

Figure 6: Reduction from PLANAR VERTEX COVER to ROMAN DoOMINA-
TION.

|V| + 2| E| vertices and 5|E| edges is still planar, and it is straightforward
to show that a vertex cover with k£ nodes in the original graph exists if and
only if a roman with 2k nodes exists in the second. |

The results from the previous section show that the planar MIN RoOMAN
DOMINATION can be approximated within 2 + e. The next theorem shows
that we can find a better approximation. Its proof follows the ideas from
[Bak94, ABFNO00] which have become a well known standard method to get
PTASs for many problems on planar graphs. Those approximations schemes
look very similar; the only specific part is that the problem has to be solved
optimally on r—outerplanar graphs. We use dynamic programming and the

#In [Dre00, page 68], the NP-hardness of the planar graph case is also mentioned. At the
writing time the paper cited in [Dre00] is unpublished, so for the sake of completeness, we
include a reduction from vertex cover. This reduction is also used to prove the “tightness”
of our approximability results.

10



notion of bounded treewidth [ABFNO00] to show how this can be done for the
MIN RoMAN DOMINATION problem.

Theorem 3.5 (PTAS) MIN PLaANAR RoMAN DOMINATION has a Poly-
nomial Time Approzimation Scheme (PTAS), but (unless P = NP) it does
not have a Fully Polynomial Time Approzimation Scheme (FPTAS).

Proof. Let G be a r—outerplanar graph. This implies that G has a treewidth
I of at most 3r — 1 (JABFNO0], Theorem 9). A tree decomposition ({X;|i €
I}, T), with width at most 3r — 1 and with |I| = O(|V]) of G, can be found
in O(r|V]) time ([ABFNO0], Theorem 12).

Let ({X;|i € I},T) be a tree decomposition for the graph G = (V, E).
Let X; = {x(li), . .,:L‘ﬁf?} be a bag [ABFNO00] with n; := |X;|. A number
j €40,...,3% — 1} can be identified with a server placement Sj(l) in the
following way. We write j in ternary arithmetic, ie., j = 30, 37713,

(2)

where j, € {0,1,2}. Every node z,, € X; occurs with multiplicity j, in S;".

The algorithm we will describe visits the vertices of T' from the leaves

to the root. For every server placement Sj(l) of a bag X;, the algorithm

computes a server placement 3;1) for the bags in the subtree rooted at i as
a partial solution.

The dynamic programming algorithm proceeds in three steps.
Step 1: For every leaf X, for every 7 € {0,...,3" — 1}, we define ggt) =
s,
Step 2: After this initialization, we visit the vertices of our tree decompo-
sition from the leaves to the root. Suppose node ¢ has a child & in the tree
T. In the case that 7 has several children ky,..., %k, in the tree T, this step
has to be repeated for each child.

1. Determine the intersection Y := X; N X.

2. For every server placement 5t

J
Sj(fc) of X}, such that the following properties hold:

of X;, we choose a server placement

() _ k)
(a) S, =S .

(b) F01j every v € X \Y with v ¢ Sj(fc), there is a u, with {u,, u,} C
gg«{c) and (v, u,) € E.

¢) The number S(«i) ) g(«{c) S(«i) is minimized.
J J Iy

11



Then, we define Sgi) = (Sj(i) W gglf)) \ Sj(i)w. For different ji,js €
(

niY i) _ gld)
{0,...,3™} with S} |Y_sz v

the same jj; = j} can be chosen.

Note that, from Property 3 of a tree decomposition, we know that
none of the nodes v € X \' Y will appear in a bag that has not been
visited up to this point. Otherwise, such a node would also appear in

X;.

Step 3: Let Xp be the root of T', let n := | Xg|. Choosea j € {0,...,3"—1},
such that

1. ggR) is a roman for GG, and
2. |§§R)| is minimum.

The algorithm described above runs in time polynomial in the size of
G and in 3%". Due to construction, for every vertex ¢ € T and for every

jeA{0,..., 3" —1}, ggi) is a smallest server placement such that property 2

(b) of step 2 is fulfilled. This implies that E;R) is 2 minimum roman for G.

Finally, the strong NP-hardness proof of Theorem 3.4 implies that Ro-
MAN DOMINATION is not in FPTAS (see [GJ79] for the definition of strong
NP-hardness and its implications). O

4 Online Dynamic Win—Win

In this section, we assume that after the first request, there is enough time
to move the servers from one node to a neighbor before the second request
occurs. This leads to the following definition.

Definition 4.1 (online dynamic) Given a graph G = (V, E) and a server
placement S. A function* r : S — V is called rearrangement for G, S, if for
every server v € S

r(v)=wv or (v,r(v)) € E

holds. We say that S is a dynamic win—win for G, if for every u € V there
is a rearrangement r, with the properties:

o There is v € S with ry(v) = u, i.e., the first request at u can be
serviced.

“Note that different servers at a node can take different values.

12



o For all v € V \ {u}, there is a v/ € S\ {v} with r,(v') = u or
(ru(v'),u’) € E.

Strict Inclusion 4.2 ONLINE DyNaAMIC WIN-WIN< ONLINE STATIC WIN-

WIN:
Consider the cycle of length 4, (v1,...,v4,v1). By one hand, the server
placement S = {vy,v3} is a dynamic win—win. For instance, if the first

request is at v, then this request is serviced by vy and vs moves to vy. On
the other hand, there is no server placement S’ which is a win—win with
|S’| = 2. To see this, we consider two cases. Case 1, S’ = S. A first request
at v9 must be serviced by v; or vz, let us say v;. Then a second request
occurring at vy cannot be serviced. Case 2, S" = {v1, v4}. Consider a request
at vy. If we use the server at vy, then vy is no longer dominated. Similarly,
using the server at vy leaves v3 undominated. &

Again, the methods from Section 2 can be used to show the complexity
of MIN ONLINE DyNaMIC WIN-WIN.

Theorem 4.3 The MIN ONLINE DyNaMIic WIN-WIN problem is NP-hard.
It can be approzimated within 2 + 21nn, but (unless P = NP) cannot be
approzimated within clogn for some ¢ > 0.

We know that finding a minimum dominating set is hard to do. But what
happens if we are given a server placement, and are asked if the arrangement
is ‘close to’ a dominating set — that is, if each server is allowed to move at
most 1 step, can a dominating set be obtained?

Definition 4.4 Let r be a rearrangement for (G, S); r is called dominating
rearrangement for (G, S), if the server placement {r(v)|v € S} contains a
dominating set for G.

Given a graph G and a server placement S, the DOMINATING REAR-
RANGEMENT problem asks whether there is a dominating rearrangement for

(G, S).

Theorem 4.5 DOMINATING REARRANGEMENT is NP-complete. This re-
mains true, even if the input graph is planar.

Proof. It is obvious that this problem is in NP. We use a reduction from
SAT [GJ79] to show the NP-hardness.
Let F be a Boolean formula, given as a set U of variables and a collection

C of clauses over U. We define a graph Gr = G = (V, E) as follows (see

13
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Figure 7: Reduction from SAT, F = (uq V ug) A (41 V 42).

Figure 7). For every variable u € U, there is a storage node s, € V and two
variable nodes v,, v, € V. Each such triple of nodes is connected by edges,
i.e., (Su,Vu)s (Su, Uu)y (Vu, V) € E.

For every clause ¢ € C, there is a clause node v. € V. A clause node
v. is connected to a variable node v, (v, resp.), iff u € ¢ (u € ¢, resp.).
On every storage node, a server is placed, i.e., the server placement has the
form S := {s, }uev-

For every dominating rearrangement r and for every variable u € U,
either r(s,) = v, or r(sy,) = v, hold. It is obvious, that this corresponds
to a variable assignment. The given formula F is satisfiable, iff there is a
dominating rearrangement for (G, S).

To prove the NP-completeness for planar graphs, we define the subgraph
G’ C G by deleting the storage nodes and the adjacent edges. G’ is planar,
iff G is planar. It has been shown in [Lic82, Lemma 1] that SAT is NP-
complete, even if the input is restricted to formulae F with the property
that G’ and G are planar. O

Theorem 4.6 Given a graph G and a server placement S. The problem to
decide whether S is a dynamic win—win for G is NP-complete.

Proof. We extend the definition of the graph G in the proof of Theorem 4.5.
We add a dummy node vqg € V, and we add edges from wvg to every clause
node and from vy to every variable node. The new server placement becomes
S = {sutuer W {va}.

If the first request is at vy, then this request has to be serviced by vy,
since no clause node and no variable node is in S. A second request can be
serviced, iff there is a dominating rearrangement. We have seen that this is
a NP-complete problem. O

14
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Figure 8: Proof of Non-Inclusion 5.3

5 Offline Static/Dynamic Win—Win

In this section, we consider the situation in which both requests occur at the
same time (equivalently, as the first request must be serviced, it is already
known where the second one will be).

Definition 5.1 (offline static) Let G = (V, E) be a graph. A server place-
ment S is an offline win—win if for every pair of nodes vi,vy € V, v1 # vq,
there is a pair {uy, , Uy, } C S with

® vy = Uy or (vi,u,) € E, and
® Uy = Uy, OF (Vg,Uy,) € E.

Non-Inclusion 5.2 ONLINE DYNAMIC WIN-WIN£ OFFLINE STATIC WIN-
WIN:

For the graph in Figure 4 the set {vy, v3} is an offline win-win. For the same

graph, no dynamic win—win can have size 2. Indeed, consider a first request

at v3. No matter what server we use to service this request, the remaining

one cannot cover the nodes {vy,vs,v4}, where a second request can occur.

Non-Inclusion 5.3 OFFLINE STATIC WIN-WIN4A ONLINE DYNAMIC WIN-
WIN:

It is easy to verify that {u,v;,vy} is a dynamic win—-win for the graph in
Figure 8. On the other hand, there is no offline win—win multiset of size less
than 4: each of the subtrees rooted at v; or vy must contain at least two
servers. &

Again, MIN OFFLINE STATIC WIN-WIN is an NP-hard problem, illus-
trated by the techniques of Section 2. Moreover, we can give the following
characterization of the offline win—win multisets:
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Lemma 5.4 A server placement S is an offline win—win, iff for every pair
of two different nodes there is one server in the neighborhood of one node
and a different server in the neighborhood of the other node.

We conclude this section with OFFLINE DyNAMIC WIN-WIN. Here we
combine the fact that servers can be rearranged before serving the second
request (DyNaMmIc) with the fact that the second request is known by the
time we have to serve the first one (OFFLINE). Therefore, we have the
following definition for the corresponding server placement:

Definition 5.5 (offline dynamic) Let G = (V, E) be a graph. A server
placement S, is an offline dynamic win—-win for G, if for every pair of nodes
vy, vy €V, with vy # vy, there is a pair of distinct nodes uy, , Uy, € V such
that v; is at distance at most 1 from w,,;, for 1 =1,2.

Strict Inclusion 5.6 OFFLINE DyNnamic WIN-WIN< ONLINE DyNaMIC
WIN-WIN:

Consider the cycle of length 5, (v1,va,...,vs,v1). It is easy to verify that
the set S = {v1,vs} is an offline dynamic win—win (S is a dominating set
and both servers are at distance at most 2 from any other non-server node).
To prove that no multiset of size 2 can be a dynamic win—win we use the
following argument. After the first request has been serviced, the set of
nodes to be considered as possible positions for the second request induce a
path of length 4; therefore, no matter where we place the remaining server,
there is no way to dominate all such nodes. &

6 Conclusion

Clearly, these are just a few of a myriad of dominating set problems. We
have looked at them individually, but have also tried to explore the connec-
tions between them. First of all, every ONLINE version is more “difficult”
(i.e. requires more servers) than the corresponding OFFLINE one (i.e. ).
Similarly, every STATIC problem is more “difficult” than the corresponding
DynaMic one. Additionally, our results show that the ONLINE and the Dv-
NAMIC features are somehow orthogonal: ONLINE DyNAMIC WIN-WIN and
the OFFLINE STATIC WIN-WIN are simply not comparable.

More interestingly, we can consider more requests, or even an unbounded
sequence of requests, a WIN™ scenario. In this case, a server can be reused
after the first time step. This problem raises interesting questions, in that
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the online problem looks similar to a typical online server question, but

instead deals much more directly with the connectivity of dominating solu-

tions. Another interesting difference is that instead of minimizing work, it

attempts to minimize resources needed for quality of service guarantees. We

will explore this relationship in a future paper.
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A Treewidth

We recall the definition of treewidth from [ABFNO0O].

Definition A.1 Let G = (V, E) be a graph. A tree decomposition of G is a
pair ({X;, |t € I}, T), where each X; is a subset of V', called a bag, and T is
a rooted tree with the elements of I as nodes. The following three properties

should hold:
2. for every edge {u,v} € E, there is an ¢ € I such that {u,v} C X;;

3. for all 1,5,k € I, if j lies on the path between v and k in T, then
X;NXg C X]‘.
The width of ({X;,|i € I}, T) equals maz{|X;||i € I} — 1. The treewidth of
G is the minimum k such that G has a tree decomposition of width k.

The treewidth of a graph is always bigger than 0, except for the case
that £ = (). On the other hand, the size of a bag is bounded by the number
of nodes in the graph. Therefore, the treewidth of a graph is less than the
number of nodes.

Example: Consider the graph G in Figure 9. We define the bags X; :=
{v1,v3} and X3 := {vy,v3} and a tree T with 1 as the root and 2 as a child.
The pair ({X1, X3}, T) is a tree decomposition. Since the size of both bags

U3

"

0 U2

Figure 9: Graph G with treewidth 1.

is 2, G has a treewidth of 1.

G is a tree. It is easy to show that every tree has treewidth 1. The
situation changes, if we add the edge {vy,v2} to G, i.e., we deal with the
complete graph K3. There is no tree 7", such that ({Xy, X, {v1,v2}},T")
is a tree decomposition of K3 (Contradiction to property 3). Therefore, the
treewidth of K3 is 2. This result can be extended, the treewidth of the
complete graph K1 is n.
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