

MD5

Message Digest 5

Strengthened version of MD4

Significant differences from MD4 are

- o 4 rounds, 64 steps (MD4 has 3 rounds, 48 steps)
- Unique additive constant each step
- Round function less symmetric than MD4
- o Each step adds result of previous step
- Order that input words accessed varies more
- Shift amounts in each round are "optimized"

MD5 Algorithm

- □ For 32-bit words A,B,C, define $F(A,B,C) = (A \land B) \lor (\neg A \land C)$ $G(A,B,C) = (A \land C) \lor (B \land \neg C)$ $H(A,B,C) = A \oplus B \oplus C$ $I(A,B,C) = B \oplus (A \lor \neg C)$
- Where ∧, ∨, ¬, ⊕ are AND, OR, NOT, XOR, respectively
- □ Note that G "less symmetric" than in MD4

MD5 Algorithm

 $// M = (Y_0, Y_1, \ldots, Y_{N-1})$, message to hash, after padding // Each Y_i is a 32-bit word and N is a multiple of 16 MD5(M)// initialize (A, B, C, D) = IV(A, B, C, D) = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476)for i = 0 to N/16 - 1// Copy block i into X $X_i = Y_{16i+i}$, for j = 0 to 15 // Copy X to W $W_j = X_{\sigma(j)},\, { t for}\,\, j=0$ to 63// initialize Q $(Q_{-4}, Q_{-3}, Q_{-2}, Q_{-1}) = (A, D, C, B)$ // Rounds 0, 1, 2 and 3 RoundO(Q, W)Round1(Q, W)Round2(Q, W)Round3(Q, W)// Each addition is modulo 2^{32} $(A, B, C, D) = (Q_{60} + Q_{-4}, Q_{63} + Q_{-1}, Q_{62} + Q_{-2}, Q_{61} + Q_{-3})$ next ireturn A, B, C, Dend MD5

MD5 Algorithm

```
\begin{array}{l} \operatorname{Round0}(Q,W)\\ //\operatorname{steps} 0 \ \operatorname{through} \ 15\\ \operatorname{for} \ i=0 \ \operatorname{to} \ 15\\ Q_i=Q_{i-1}+((Q_{i-4}+F(Q_{i-1},Q_{i-2},Q_{i-3})+W_i+K_i) \lll s_i)\\ \operatorname{next} \ i\\ \operatorname{end} \ \operatorname{Round0} \end{array}
```

Round 0: Steps 0 thru 15, uses F function
Round 1: Steps 16 thru 31, uses G function
Round 2: Steps 32 thru 47, uses H function
Round 3: Steps 48 thru 63, uses I function

$$\Box \text{ Where } f_i(A, B, C) = \begin{cases} F(A, B, C) & \text{if } 0 \le i \le 15 \\ G(A, B, C) & \text{if } 16 \le i \le 31 \\ H(A, B, C) & \text{if } 32 \le i \le 47 \\ I(A, B, C) & \text{if } 48 \le i \le 63 \end{cases}$$

MD5

MD5 Notation

Let MD5_{i...j}(A,B,C,D,M) be steps i thru j

 "Initial value" (A,B,C,D) at i, message M

 Note that MD5_{0...63}(IV,M) ≠ h(M)

 Due to padding and final transformation

 Let f(IV,M) = (Q₆₀,Q₆₃,Q₆₂,Q₆₁) + IV

 Where "+" is addition mod 2³² per 32-bit word

 Then f is the MD5 compression function

MD5 Compression Function

Let M = (M₀, M₁), each M_i is 512 bits
Then h(M) = f(f(IV, M₀), M₁)

Assuming M includes padding

That is, f(IV, M₀) acts as "IV" for M₁

Can be extended to any number of M_i

Merkle-Damgard construction
 Used in MD4 and many hash functions

MD5 Attack: History

Dobbertin "almost" able to break MD5 using his MD4 attack (ca 1996)

• Showed that MD5 might be vulnerable

- In 2004, Wang published one MD5 collision
 No explanation of method was given
- Based on one collision, Wang's method was reverse engineered by Australian team

 Ironically, this reverse engineering work has been primary source to improve Wang's attack

MD5 Attack: Overview

- Determine two 1024-bit messages
 - o $M' = (M'_0, M'_1)$ and $M = (M_0, M_1)$
- So that MD5 hashes are the same
 - That is, a collision attack
- Attack is efficient
 - Many improvements to Wang's original approach
- Note that
 - Each M_i and M'_i is a 512-bit block
 - Each block is 16 words, 32 bits/word

MD5 Attack: Overview

Determine two 1024-bit messages

• $M' = (M'_0, M'_1)$ and $M = (M_0, M_1)$

So that MD5 hashes are the same

• That is, a collision attack

- A differential cryptanalysis attack
- Idea is to use first block to generate desired "IV" for 2nd block

• Can be viewed as a "chosen IV" attack

- Most differential attacks use XOR or modular subtraction for difference
- These are not sufficient for MD5
- Wang proposed
 - A "kind of precise differential"
 - More informative than XOR and modular subtraction combined

Consider bytes

y' = 00010101 and y = 00000101

z' = 00100101 and z = 00010101

Note that

 $y' - y = z' - z = 00010000 = 2^4$

- Then wrt modular subtraction, these pairs are indistinguishable
- □ In this case, XOR distinguishes the pairs $y' \oplus y = 00010000 \neq z' \oplus z = 00110000$

Modular subtraction and XOR is not enough information! • Let $y' = (y'_0, y'_1, \dots, y'_7)$ and $y = (y_0, y_1, \dots, y_7)$ Want to distinguish between, say, $y'_{3}=0, y_{3}=1 \text{ and } y'_{3}=1, y_{3}=0$ \Box Use a signed difference, ∇y • Denote $y'_i=1$, $y_i=0$ as "+" • Denote $y'_i=0$, $y_i=1$ as "-" • Denote $y'_i = y_i$ as "."

- Consider bytes
 - z' = 10100101 and z = 10010101
- □ Then ∇z is "...+-...."
- Note that both XOR and modular difference can be derived from \nablaz
- Also note same ∇ given by pairs
 x' = 10100101 and x = 10010101
 y' = 10100101 and y = 10010101

- Properties of Wang's signed differential
- More restrictive than XOR or modular difference
 - Provides greater "control" during attack
- But not too restrictive
 - o Many pairs satisfy a given ∇ value
- Ideal balance of control and freedom

Wang's Attack

- Next, we outline Wang's attack
 - On part theory and one part computation
 - Overall attack splits into 4 steps
- More details follow
- Then discuss reverse engineering of Wang's attack
- Finally, consider whether attack is a practical concern or not

Wang's Attack

- Somewhat ad hoc
- Consider input and output differences
- Input differences
 - Applies to messages M' and M
 - o Use modular difference
- Output differences
 - o Applies to intermediate values, Q'_i and Q_i
 - Use Wang's signed difference

Wang vs Dobbertin

Dobbertin's MD4 attack

- Input differentials specified
- Equation solving is main part of attack

Wang's MD5 attack

- More of a "pure" differential attack
- Specify input differences
- Tabulate output differences
- Force some output differences to hold
- Unforced differences satisfied probabilistically

Wang's Attack: Step 1

Specify input differential pattern Must "behave nicely" in later rounds These differentials are given below Modular difference used for inputs Only need to specify M Then M' is determined by differential

Wang's Attack: Step 2

Specify output differential pattern

- Must "behave nicely" in early rounds
- That is, easily satisfied in early rounds
- Restrictive signed difference used
- Most mysterious part of attack
- Wang used "intuitive" approach
- Only 1 such pattern known (Wang's)

Wang's Attack: Step 3 Derive set of sufficient conditions • Using differential patterns □ If these conditions are all met Differential patterns hold o Therefore, we obtain a collision

Wang's Attack: Step 4

Computational phase

Must find pair of 1024-bit messages that satisfy all conditions in step 3

• Messages: $M = (M_0, M_1)$ and $M' = (M'_0, M'_1)$

- Deterministically satisfy as many conditions as possible
- Any remaining conditions must be satisfied probabilistically

• Number of such conditions gis expected work

Wang's Attack: Step 4

- Computational phase:
 - a) Generate random 512-bit M_0
 - b) Use single-step modification to force some conditions in early steps to hold
 - c) Use multi-step modification to force some conditions in middle steps to hold
 - d) Check all remaining conditions—if all hold then have desired M_0 , else goto b)
 - e) Follow similar procedure to find M₁
 - f) Compute M'_0 and M'_1 (easy) and collision!

Wang's Attack: Work Factor

- \Box Work is dominated by finding M_0
- Work determined by number of probabilistic conditions
 - Work is on the order of 2ⁿ where n is number of such conditions
- Wang's original attack: n > 40
 Hours on a supercomputer
- **Best as of today**, about n = 32.25

o Less than 2 minutes on a PC

Wang's Differentials

- Input and output differentials
- Notation: "+" over n for 2ⁿ and "-" for -2ⁿ
 For example: ([±]₃₁ ⁺₂₃ ⁻₆) = ±2³¹ + 2²³ 2⁶
- **Consider 2-block message:** $h(M_0, M_1)$
- □ Notation: IV = (A, B, C, D)
- Denote "IV" for M_1 as IV_1 (and IV_1 for M_1)
 - Then $IV_1 = (Q_{60}, Q_{63}, Q_{62}, Q_{61}) + (A, B, C, D)$

o Where Q_i are outputs when hashing M_0

□ Let
$$h = h(M_0, M_1)$$
 and $h' = h(M'_0, M'_1)$

Wang's Input Differential

□ Required input differentials $\Delta M_0 = M'_0 - M_0 = (0,0,0,0,2^{31},0,0,0,0,0,0,0,2^{15},0,0,2^{31},0)$ $\Delta M_1 = M'_1 - M_1 = (0,0,0,0,2^{31},0,0,0,0,0,0,0,-2^{15},0,0,2^{31},0)$ o Note: M'_0 and M_0 differ only in words 4, 11 and 14

o Note: M'_1 and M_1 differ only in words 4, 11 and 14

• Same differences except in word 11

Also required that

 $\Delta IV_1 = IV'_1 - IV_1 = (2^{31}, 2^{25} + 2^{31}, 2^{25} + 2^{31}, 2^{25} + 2^{31})$

□ Goal is to obtain $\Delta h = h' - h = (0,0,0,0)$

Wang's Output Differential

□ Required output differentials □ Part of ∆M₀ differential table:

j	Output	W_{j}	ΔW_j	$\Delta Output$	∇Output
4	Q_4	X_4	2^{31}	6	
5	Q_5	X_5	0	${}^+_{31}{}^+_{23}{}^{6}$	+ +
6	Q_6	X_6	0	$\bar{27}\bar{23}\bar{6}\bar{0}$	+++++++++ ++-+++++
7	Q_7	X_7	0	$\overline{23}\ \overline{17}\ \overline{15}\ \overline{0}$	+
8	Q_8	X_8	0	$\vec{31} \ \vec{6} \ \vec{0}$	+++-

- Q_i are outputs for M₀
- ΔW_i are input (modular) differences
- $\triangle Output is output modular difference$
- ∇Output is output signed ("precise") difference

Derivation of Differentials?

- Where do differentials come from?
 - "Intuitive", "done by hand", etc.
- Input differences are fairly reasonable
- Output differences are more mysterious
- We briefly consider history of MD5 attacks
- Then reverse engineering of Wang's method
 - None of this is entirely satisfactory...

History of MD5 Attacks

Dobbertin tried his MD4 approach

- Modular differences and equation solving
- No true collision obtained, but did highlight potential weaknesses
- Chabaud and Joux
 - Use XOR differences
 - Approximate nonlinearity by XOR (like in linear cryptanalysis)
 - Had success against SHA-0

History of MD5 Attacks

Wang's attack

- Modular differences for inputs
- Signed differential for outputs
- Gives more control over outputs and actual step functions, not approximations
- Also, uses 2 blocks, so second block is essentially "chosen IV" attack
- Wang's magic lies in differential patterns
 How were these chosen?

Daum's Insight

- Wang's attack could be "expected" to work against MD-like hash with 3 rounds
 - Input differential forces last round conditions
 - Single-step modification forces 1st round
 - Multi-step modifications forces 2nd round
- But MD5 has 4 rounds!
- □ A special property of MD5 is exploited:
 - Output difference of 2³¹ "propagated from step to step with probability 1 in the 3rd round and with probability 1/2" in most of 4th round

Wang's Differentials

- No known method for automatically generating useful MD5 differentials
- Daum: build tree of difference patterns
 - o Include both input and output differences
 - Prune low probability paths from tree
 - Connect "inner collisions", etc.
- However, Wang's differentials are only useful ones known today

Reverse Engineering Wang's Attack

- Based on 1 published MD5 collision
- Computed intermediate values
- Examined modular, XOR, signed difference
- Uncovered many aspects of attack
- Resulted in computational improvements
- Overall, an impressive piece of work!

Conditions

For first round, define T_j = F(Q_{j-1},Q_{j-2},Q_{j-3}) + Q_{j-4} + K_j + W_j R_j = T_j <<< s_j Q_j = Q_{j-1} + R_j Initial values: (Q₋₄,Q₋₃,Q₋₂,Q₋₁)

This is equivalent to previous notation

Conditions

□ Let Δ be modular difference: $\Delta X = X' - X$

Then

$$\begin{split} \Delta \mathsf{T}_{j} &= \Delta \mathsf{F}_{j-1} + \Delta \mathsf{Q}_{j-4} + \Delta \mathsf{W}_{j} \\ \Delta \mathsf{R}_{j} &\approx (\Delta \mathsf{T}_{j}) < < \mathsf{s}_{j} \\ \Delta \mathsf{Q}_{j} &= \Delta \mathsf{Q}_{j-1} + \Delta \mathsf{R}_{j} \end{split}$$

□ Where $\Delta F_{j} = F(Q_{j}, Q_{j-1}, Q_{j-2}) - F(Q'_{j}, Q'_{j-1}, Q'_{j-2})$

 \Box The ΔR_i equation holds with high probability

Tabulated ΔQ_j , ΔF_j , ΔT_j , and ΔR_j for all j

Conditions

- Derive conditions on ΔT_j and ΔQ_j that ensure known differential path holds
- □ Conditions on ∆T_j not used in original attack
 o More efficient recent attacks do use these
- Goal is to deterministically (or with high prob) satisfy as many conditions as possible

• Reduces number of iterations needed

T Conditions

Recall $\Delta \mathsf{T}_{\mathsf{i}} = \Delta \mathsf{F}_{\mathsf{i}-1} + \Delta \mathsf{Q}_{\mathsf{i}-4} + \Delta \mathsf{W}_{\mathsf{i}}$ $\Delta R_i \approx (\Delta T_i) \ll s_i$ \Box Interaction of " Δ " and "<<<" is tricky □ Suppose $T' = 2^{20}$ and $T = 2^{19}$ and s = 10Then $(\Delta T) <<< s = (T' - T) <<< s = 2^{29}$ and $\Delta(T <<< s) = (T' <<< s) - (T <<< s) = 2^{29}$ \Box In this example, " Δ " and "<<<" commute

T Conditions

□ Spse T' = 2^{22} , T = 2^{21} + 2^{20} + 2^{19} , s = 10 Then $(\Delta T) <<< s = (T' - T) <<< s = 2^{29}$ but $(T' \le s) - (T \le s) = 2^{29} + 1$ \Box Here, " Δ " and "<<<" do not commute Negative numbers can be tricky

T Conditions

- □ If ΔT and s are specified, conditions on T are implied by $\Delta R = (\Delta T) \iff s$
- □ Can always force a "wrap around" in ∆R
 o Can be little bit tricky due to non-commuting
 □ Recall
 - $T_j = F(Q_{j-1}, Q_{j-2}, Q_{j-3}) + Q_{j-4} + K_j + W_j$
- \Box Given M, conditions on T_j can be checked
- Better yet, want to select M so that many of the required T conditions hold

T Conditions: Example

At step 5 of Wang's collision:

 $\Delta \mathsf{T}_5 = 2^{19} + 2^{11}, \, \Delta \mathsf{Q}_4 = -2^6, \, \Delta \mathsf{Q}_5 = \pm 2^{31} + 2^{23} - 2^6, \, \mathsf{s}_5 = 12$

 \square Since $Q_j = Q_{j-1} + R_j,$ it is easy to show that $\Delta R_5 = \Delta Q_5 - \Delta Q_4 = \pm 2^{31} + 2^{23}$

We also have

 $\Delta \mathsf{R}_5 \approx (\Delta \mathsf{T}_5) <<< \mathsf{s}_5$

 \square Implies conditions on any ΔT_5 that satisfies Wang's differentials!

T Conditions: Example

□ From the previous slide:

 $\Delta \mathsf{R}_5 = \pm 2^{31} + 2^{23} = (\Delta \mathsf{T}_5) <<< 12$

□ Of course, the known ΔT_5 works: $\Delta T_5 = 2^{19} + 2^{11}$

- □ But, for example, $\Delta T_5 = 2^{20} 2^{19} + 2^{11}$, does not work, since rotation would "wrap around"
- \square Implies there can be no 2²⁰ term in T₅

• Complex condition to restrict borrows also needed

Bottom line: Can derive a set of conditions on Ts that ensure Wang's differential path holds

Output Conditions

Easier to check Q conditions than T

 The Q are known as "outputs"
 Actually, intermediate values in algorithm

 Much easier to specify M so that Q conditions hold than T conditions
 In attacks, Q conditions mostly used

Output Conditions

 $F(A,B,C) = (A \land B) \lor (\neg A \land C)$

Bits of A choose between bits of B and C

At step 4 of Wang's collision:

$$\Delta Q_2 = \Delta Q_3 = 0$$
, $\Delta Q_4 = -2^6$, $\Delta F_4 = 2^{19} + 2^{11}$

 \Box From ∇Q_4 we have:

$$\langle Q_4 = 1 \rangle_9$$
 and $\langle Q_4 = 0 \rangle_{10...25}$

□ Note that $Q'_4 = Q_4$ at all other bits

MD5

- From ∇Q₄ we have: ⟨Q₄ = 1⟩₉ and ⟨Q₄ = 0⟩_{10...25}
 Note that Q'₄ = Q₄ at all other bits
 Bits 9,10,...,25 are "constant" bits of Q₄
 All others are "non-constant" bits of Q₄
- On constant bits, Q'₄ = Q₄ and on nonconstant bits, Q'₄ ≠ Q₄

 \square Consider constant bits of Q_4

- □ Since $F_4 = F(Q_4, Q_3, Q_2)$, from defn of F
 - o If $\langle Q_4=1\rangle_j$ then $\langle F_4=Q_3\rangle_j$ and $\langle {F'}_4=Q'_3\rangle_j$
 - o If $\langle Q_4=0\rangle_j$ then $\langle F_4=Q_2\rangle_j$ and $\langle {F'}_4=Q'_2\rangle_j$
- □ Then $\langle F_4 = F'_4 \rangle_i$ for each constant bit j

From table, constant bits of Q₄ are constant bits of F₄ so no conditions on Q₄

 \Box Consider non-constant bits of Q_4

□ Since $F_4 = F(Q_4, Q_3, Q_2)$, from defn of F

o If $\langle Q_4=1\rangle_j$ then $\langle F_4=Q_3\rangle_j$ and $\langle F'_4=Q'_2\rangle_j$

• If
$$\langle Q_4 = 0 \rangle_j$$
 then $\langle F_4 = Q_2 \rangle_j$ and $\langle F'_4 = Q'_3 \rangle_j$

□ Note that on bits 10,11,13,...,19,21,...,25 $F_4 = F'_4, Q'_4 = 1, Q_4 = 0 \Rightarrow F_4 = Q_2, F'_4 = Q'_3$

□ Since $Q_3 = Q'_3$ we have $\langle Q_3 = Q_2 \rangle_{10,11,13...19,21,...25}$

MD5

Still need to consider bits 9,12,20

See textbook

From step 4, we derive the following output conditions:

$$\begin{split} &\langle Q_4 = 0 \rangle_{10,,,25}, \, \langle Q_4 = 1 \rangle_9 \\ &\langle Q_3 = 1 \rangle_{12,20} \\ &\langle Q_2 = 0 \rangle_{12,20}, \, \langle Q_2 = Q_3 \rangle_{10,11,13...19,21,,,25} \end{split}$$

Conditions: Bottom Line

- By reverse engineering one collision...
 Able to deduce output conditions
 If all of these are satisfied, we will obtain a collision
- This analysis resulted in much more efficient implementations
- All base on one known collision!

Single-Step and Multi-Step Modifications

- Given conditions, how can we use them?
- That is, how can we make them hold?
- Two techniques are used:
- Single-step modifications
 - Easy way to force many output conditions
- Multi-step modifications
 - Complex way to force a few more conditions

Single-Step Modification

Select M₀ = (X₀, X₁,...,X₁₅) at random
 Note that W_i = X_i for i = 0,1,...,15
 Also, IV = (Q₋₄, Q₋₁, Q₋₂, Q₋₃)
 Compute outputs Q₀, Q₁,...,Q₁₅
 For each Q_i, modify corresponding W_i so that required output conditions hold

• This is easy—example on next slides

Single-Step Modification

 $\hfill\square$ Suppose Q_0 and Q_1 are done

 \Box Consider Q_2 where

 $Q_2 = Q_1 + (f_1 + Q_{-2} + W_2 + K_2) <<< s_2$

Recall that "<<<" is left rotation

• Recall $f_i = F(Q_i, Q_{i-1}, Q_{i-2})$ for i = 0, 1, ..., 15

Required conditions: $\langle Q_2 = 0 \rangle_{12,20,25}$

o This means bits 12, 20 and 25 of $\rm Q_2$ must be 0 (bits numbered left-to-right from 0 to 31)

o No restriction on any other bits of Q_2

We can modify W₂ so condition on Q₂ holds
MD5
53

Single-Step Modification

 \Box For Q₂ we want $\langle Q_2 = 0 \rangle_{12,20,25}$ • Compute $Q_2 = Q_1 + (f_1 + Q_2 + W_2 + K_2) <<< s_2$ • Denote bits of Q_2 as $(q_0,q_1,q_2,\ldots,q_{31})$ Let E_i be 32-bit word with bit i set to 1 • All other bits of E_i are 0 \Box Let D = $-q_{12}E_{12} - q_{20}E_{20} - q_{25}E_{25}$ \Box Let $Q_2 = Q_2 + D$ \Box Replace W₂ with $W_2 = ((Q_2 - Q_1) >>> S_2) - f_1 - Q_{2} - K_2$ \Box Then conditions on Q_2 all hold

Single-Step Mod: Summary

 \Box Modify words of message M_0

- Alternatively, select Q₀,Q₁,...,Q₁₅ so conditions satisfied, then compute corresponding M₀
- □ All output conditions steps 0 to 15 satisfied
- Suppose c conditions remain unsatisfied
 - Then after 2^c iterations, expect to find M₀ that satisfies all output conditions
- Most output conditions are in first 16 steps
 - Single-step mods provide a shortcut attack
 - o But we can do better...

- Want to force some output conditions beyond step 15 to hold
- Tricky, since we must maintain all conditions satisfied in previous steps
 - And we already modified all input words
- Many multi-step mod techniques
 - We discuss the simplest

- □ Let $M_0 = (X_0, X_1, ..., X_{15})$ be M_0 after singlestep mods
- **u** Want $\langle Q_{16} = 0 \rangle_0$ to hold
- First, single-step modification:
 - $\begin{aligned} \mathsf{D} &= -\mathsf{q}_0\mathsf{E}_0 \text{ and } \mathsf{Q}_{16} = \mathsf{Q}_{16} + \mathsf{D} \text{ and} \\ \mathsf{W}_{16} &= ((\mathsf{Q}_{16} \mathsf{Q}_{15}) >> \mathsf{s}_{16}) \mathsf{f}_{15} \mathsf{Q}_{12} \mathsf{K}_{16} \end{aligned}$
- □ Note that $W_{16} = X_1$
- □ And X_1 used to compute Q_i for i=1,2,3,4,5

o Don't want to change any Q_i in rounds 0 thru 15 $_{\text{MD5}}$

Compute $W_{16} = ((Q_{16} - Q_{15}) >> S_{16}) - f_{15} - Q_{12} - K_{16}$ \Box Where $W_{16} = X_1$ \Box Problem with Q_i for i=1,2,3,4,5 o No conditions on Q_1 , so it's no problem \Box Let Z = Q₀ + (f₀ + Q₋₃ + X₁ + K₁) <<< s₁ \Box Then Z is new Q₁, which is OK Do "single-step mods" for i=2,3,4,5

- □ Have $Z = Q_0 + (f_0 + Q_{-3} + X_1 + K_1) < < s_1$
- Note that Z is new Q₁
- Do "single-step mods" for i=2,3,4,5 $X_2 = ((Q_2 - Z) >>> s_2) - f_1(Z,Q_0,Q_{-1}) - Q_{-2} - K_2$ $X_3 = ((Q_3 - Q_2) >>> s_3) - f_2(Q_2,Z,Q_0) - Q_{-1} - K_3$ $X_4 = ((Q_4 - Q_3) >>> s_4) - f_3(Q_3,Q_2,Z) - Q_0 - K_4$ $X_5 = ((Q_5 - Q_4) >>> s_5) - f_4(Q_4,Q_3,Q_2) - Z - K_5$

□ Then all conditions on Q_i, i=0,1,...,15, still hold

Multi-Step Mods: Summary

- Many different multi-step mods
- Ad hoc way to satisfy output conditions
 - Care needed to maintain prior conditions
- Some multi-step mods only hold probabilistically
- Multi-step mods have probably been taken about as far as possible

o Further improvements, incremental at best

Best implementation: 2 minutes/collision

Stevens' Implementation

- Best implementation of Wang's attack
- About 2 minutes per collision on PC
- Finding M₀ is most costly (shown here)
- Algorithm for M₁ is similar

// Find $M_0 = (X_0, X_1, \dots, X_{15})$, where "all M_0 conditions" refers to: all Table A-7 conditions, // 11 all IV conditions for M_1 (see Table A-8), both $(T_{21} = 0)_{14}$ and $(T_{33} = 0)_{16}$ 11 Find M_0 repeat Choose $Q_0, Q_2, Q_3, \ldots, Q_{15}$ satisfying conditions in Table A-6 Compute $X_0, X_6, X_7, ..., X_{15}$ repeat Choose Q_{16} satisfying conditions Compute X_1 using j = 16Compute Q_1 and X_2, X_3, X_4, X_5 Compute $Q_{17}, Q_{18}, Q_{19}, Q_{20}$ until $Q_{16}, Q_{17}, \ldots, Q_{20}$ satisfy conditions in Table A-6 for (Q_8, Q_9) consistent with X_{11} Compute $X_8, X_9, X_{10}, X_{12}, X_{13}$ Compute $Q_{21}, Q_{22}, \ldots, Q_{63}$ if all M_0 conditions are satisfied then return Mend if next (Q_8, Q_9) until all M_0 conditions are satisfied end Find M_0

Wang's attack is very restrictive

 Generates "meaningless" collisions
 Not feasible for meaningful collision

 Is attack a real-world threat?
 In some cases, meaningless collisions can cause problems

 We illustrate such a scenario

Consider 2 letters, "written" in postscript:

rec.ps

To Whom it May Concern:

Tom Austin and Ying Zhang have demonstrated decent programming ability. They should do OK in any programming position, provided that the work is not too complex, and that the position does not require any independent thought or initiative.

However, I think they like to steal office supplies, so I would keep a close eye on them. Also, their basic hygiene is somewhat lacking so I would recommend that you have them telecommute.

Sincerely,

Alice

Suppose the file rec.ps signed by Alice

 That is, S = [h(rec.ps)]_{Alice}

 If h(auth.ps) = h(rec.ps), signature broken

auth.ps

To Bank of America:

Tom Austin and Ying Zhang are authorized access to all of my account information and may make withdrawals or deposits.

63

Sincerely,

Alice

- Amazingly, h(auth.ps) = h(rec.ps)
- And Wang's attack was used
- How is this possible?
- Postscript has conditional statement: (X)(Y)eq{T₀}{T₁}ifelse
- $\Box If X == Y then T_0 is processed; else$
 - T_1 is processed

- **Destscript statement:** $(X)(Y)eq\{T_0\}\{T_1\}$ ifelse
- How to take advantage of this?
- Add spaces, so that postscript file begins with exactly one 512-bit block

o Call this block W

Last byte of W is "(" in (X)

Let Z = MD5_{0...63}(IV,W) so that Z is output of compression function applied to W

- $\Box \text{ Let } Z = \text{MD5}_{0...63}(\text{IV}, \text{W})$
- Use Wang's attack as follows
- Find collision:
 - 1024-bit M and M' with M \neq M' and h(M) = h(M')

• Where IV is Z instead of standard IV

- Wang's attack easily modified to work for any non-standard IV
- Now what?

Consider ...(X)(Y)eq{ T_0 } T_1 }ifelse • Note that "...(" is W • Let T_0 = postscript for "rec" letter • Let T_1 = postscript for "auth" letter • Let $L = ...(M)(M)eq\{T_0\}\{T_1\}$ ifelse • Let $L' = \dots(M')(M)eq\{T_0\}\{T_1\}$ ifelse \Box Then h(L) = h(L') since o h(W,M) = h(W,M')• h(A) = h(B) implies h(A,C) = h(B,C) for any C \Box File L displays T₀ and file L' displays T₁

File L = rec.ps
First block: W
X block: M
Y block: M
Display "rec"

%!PS-Adobe-1.0 %%BoundingBox: 0 0 612 792 /Times-Roman findfont 20 scalefont setfont 25 450 moveto (To Whom it May Concern:) show 25 400 moveto (Tom Austin and Ying Zhang have demonstrated... (Sincerely,) show 25 150 moveto (Alice) show }{/Times-Roman findfont 20 scalefont setfont 25 450 moveto (To Bank of America:) show 25 400 moveto (Tom Austin and Ying Zhang are authorized access... (Sincerely,) show 25 250 moveto (Alice) show }ifelse showpage

File L' = auth.ps
First block: W
X block: M'
Y block: M
Display "auth"

%!PS-Adobe-1.0 %%BoundingBox: 0 0 612 792 /Times-Roman findfont 20 scalefont setfont 25 450 moveto (To Whom it May Concern:) show 25 400 moveto (Tom Austin and Ying Zhang have demonstrated... (Sincerely,) show 25 150 moveto (Alice) show H/Times-Roman findfont 20 scalefont setfont 25 450 moveto (To Bank of America:) show 25 400 moveto (Tom Austin and Ying Zhang are authorized access ... (Sincerely,) show 25 250 moveto (Alice) show }ifelse showpage

- Bottom Line: A meaningless collision is a potential security problem
- Of course, anyone who looks at the file would see that something is wrong
- But, purpose of integrity check is to automatically detect problems
 - How to automatically detect such problems?
- This is a serious attack!

• May also be possible for Word, PDF, etc.

Wang's Attack: Bottom Line

- Extremely clever and technical
- Computational aspects are well-understood
- Theoretical aspects not well-understood
 - Complex, difficult to analyze
 - Not well-explained by inventors
 - Must rely on reverse engineering
- No "meaningful" collisions are possible
- But attack is a practical concern!
- □ MD5 is broken