
Boost Your Knowledge of AdaBoost

Mark Stamp*

Department of Computer Science
San Jose State University

December 15, 2019

1 Introduction

Boosting is a process whereby we can combine multiple (weak) classifiers into
one (much stronger) classifier [1]. Of course, many machine learning techniques
can be applied in a somewhat similar fashion. For example, a meta-scoring
approach can be implemented by using an SVM to construct a classifier based
on a variety of different scores [3]. But the beauty of boosting is that the
individual classifiers can be extremely weak—in fact, anything that is better
than a coin flip can be used. And provided that we have a sufficient number of
usable classifiers, boosting enables us to construct an arbitrarily strong classifier.
Classifiers don’t get much better than “arbitrarily strong.”

The best-known boosting algorithm is AdaBoost, which is a clever short-
hand for “adaptive boosting.” At each iteration of AdaBoost, we use a greedy
strategy, in the sense that we select the individual classifier—and its associ-
ated weight—that improves our overall classifier the most. It’s an adaptive
approach, since we build each intermediate classifier based on the classifier that
was determined at the previous step of the algorithm.

It is worth noting that AdaBoost is not a hill climb. Yes, we select the best
available classifier at each step, but there is no guarantee that this selection will
improve our overall classifier. We’ll see that it is generally advantageous not to
stop just because the classifier gets worse at some particular iteration.

*Email: mark.stamp@sjsu.edu. This tutorial was originally published online in 2017, with
a few minor corrections having been made since. This is an expanded (and slightly corrected)
version of Section 7.4.2 of my book, Introduction to Machine Learning with Applications in
Information Security [3], a section which is itself based on Rojas’ excellent paper, “AdaBoost
and the Super Bowl of Classifiers: A Tutorial Introduction to Adaptive Boosting” [1].

1



2 Football Analogy

To illustrate the AdaBoost process, let’s consider the problem of building the
best football team possible from a collection of average players.1 One reasonable
way to organize a team would be to select the best player at each position from
your collection of players. However, suppose that your best quarterback is
terrible, while your best receiver is also one of your best players at several other
positions. If you put your best receiver at receiver, he won’t catch any passes,
because your quarterback is terrible. So, it would seem to make more sense to
put your best receiver at some other position where he is also very good. In
other words, the best overall team might not have each player playing at his
best position.

The following adaptive strategy could be used to try to assemble the best
possible team from a collection of average players.

1. Select the best player and determine his role on the team.

2. Determine the biggest weakness remaining on the team.

3. From the remaining players, choose the one who can best improve on the
weakness identified in step 2.

4. Decide exactly what role the newly selected player will fill.

5. If the team is not yet complete, goto 2.

Note that this strategy does not assure us of obtaining the best possible
team—that might require an exhaustive search over all possible teams. But, this
adaptive approach is likely to produce a better team than the näıve approach of
simply selecting the best player at each position. And the weaker the individual
players, the better this algorithm is likely to perform, as compared to the näıve
strategy.

3 AdaBoost

AdaBoost is somewhat analogous to building your football team using the adap-
tive strategy outlined in the previous section. At each iteration, we’ll identify
the biggest weakness in the classifier that we have constructed so far. Then
we’ll determine which of the remaining available classifiers will help the most

1If you don’t know much about American football, don’t worry. All you need to know is
that it’s like rugby, except that a ball is used instead of a watermelon. Also, in football the
quarterback throws the ball to a receiver on his same team, who is supposed to catch it.

2



with respect to this weakness. Finally, we determine the best way to merge this
newly-selected classifier into our overall classifier.

Using this adaptive approach, we can combine a large number of weak classi-
fiers to obtain a result that is much stronger than any of the individual classifiers.
The AdaBoost algorithm that we describe below is efficient and relatively easy
to implement.

But before discussing AdaBoost in more detail, we note that in practice,
boosting may not achieve the seemingly too-good-to-be-true results that we
promised above. Unfortunately, boosting algorithms tend to be extremely sen-
sitive to noise. The reason for this sensitivity should become clear as we discuss
AdaBoost.

As mentioned above, AdaBoost is the most popular boosting technique and
it uses an iterative, greedy approach. In the remainder of this section, we
describe the AdaBoost algorithm in detail.

Suppose that we have a labeled training set of size 𝑛, denoted (𝑋𝑖, 𝑧𝑖),
for 𝑖 = 1, 2, . . . , 𝑛, where 𝑋𝑖 is the 𝑖th data point, with corresponding label
(i.e., classification) 𝑧𝑖. Since we are dealing with a binary classification prob-
lem, we’ll assume that each 𝑧𝑖 ∈ {−1,+1}. In addition, we assume that we
have 𝐿 (weak) classifiers, denoted 𝑐ℓ, for ℓ = 1, 2, . . . , 𝐿, where each 𝑐ℓ assigns
a label (either +1 or −1) to each 𝑋𝑖. An example of such training data is
illustrated in Table 1. Note that an entry of +1 in row 𝑖, column ℓ in Table 1
indicates that classifier 𝑐ℓ classifies data point 𝑋𝑖 as type +1, while a −1 indi-
cates that 𝑐ℓ classifies the data point as type −1. By comparing 𝑐ℓ(𝑋𝑖) to 𝑧𝑖,
for 𝑖 = 1, 2, . . . , 𝑛, we can easily determine the number of “hits” (i.e., correct
classifications) and the number of “misses” (i.e., incorrect classifications) for
classifier 𝑐ℓ. Note that for an 𝑐ℓ, the sum of the hits and misses is 𝑛.

Table 1: Classifiers

Data Label
Classifiers

𝑐1 𝑐2 · · · 𝑐𝐿
𝑋1 𝑧1 −1 +1 · · · +1
𝑋2 𝑧2 +1 −1 · · · −1
𝑋3 𝑧3 −1 −1 · · · +1
...

...
...

...
...

...
𝑋𝑛 𝑧𝑛 −1 +1 · · · −1

Our goal is to construct a classifier 𝐶(𝑋) as a weighted combination of the 𝑐ℓ.
Of course, we want 𝐶(𝑋) to be as strong as possible, that is, we want 𝐶(𝑋) to
correctly classify as many of the training vectors 𝑋𝑖 as possible.

3



The classifiers 𝑐ℓ can be weak, that is, the number of hits might be only
marginally greater than the number of misses. Also, note that if the number
of misses exceeds the number of hits for a given 𝑐ℓ, we simply reverse the sense
of the classifier (i.e., replace each +1 with −1, and vice versa, in column ℓ of
Table 1) to obtain a classifier with more hits than misses. However, a classifier
cannot be perfectly random, that is, we cannot use a classifier for which the
number of hits and misses are exactly equal. In other words, the only classifiers
that are not usable for boosting are those that are indistinguishable from flipping
a fair coin.

AdaBoost is an iterative algorithm whereby we generate a series of classifiers,
𝐶1, 𝐶2, . . . , 𝐶𝑀 , with the desired final classifier being 𝐶 = 𝐶𝑀 . Furthermore,
each classifier is of the form

𝐶𝑚(𝑋𝑖) = 𝛼1𝑘1(𝑋𝑖) + 𝛼2𝑘2(𝑋𝑖) + · · ·+ 𝛼𝑚𝑘𝑚(𝑋𝑖)

where each 𝑘𝑗 is a distinct classifier selected from the set {𝑐1, 𝑐2, . . . , 𝑐𝐿}, and
each 𝛼𝑗 is a non-negative weight. Further-furthermore, we’ll select the classifiers
and weights so that

𝐶𝑚(𝑋𝑖) = 𝐶𝑚−1(𝑋𝑖) + 𝛼𝑚𝑘𝑚(𝑋𝑖).

That is, at the 𝑚th iteration, we include another classifier 𝑘𝑚 from the set of
unused 𝑐ℓ and determine a new weight 𝛼𝑚. In terms of the football analogy
discussed above, we select one of the remaining players (corresponding to 𝑘𝑚),
and we determine his role (corresponding to 𝛼𝑚), without changing any of the
previously selected players or their roles. This is a greedy approach, since we
choose 𝑘𝑚 and 𝛼𝑚 to maximize the improvement at each step.2

In AdaBoost, we use an exponential loss function to determine the best
classifier at each step. A loss function is like a score, except that the smaller
the loss, the better, whereas larger scores are better. Specifically, the loss (or
error) function at step 𝑚 is defined as

𝐸𝑚 =
𝑛∑︁

𝑖=1

𝑒−𝑧𝑖

(︀
𝐶𝑚−1(𝑋𝑖)+𝛼𝑚𝑘𝑚(𝑋𝑖)

)︀
where 𝑘𝑚 is to be chosen from among the unused classifiers 𝑐ℓ and 𝛼𝑚 > 0 is to
be determined. Equivalently, we can write the loss function as

𝐸𝑚 =
𝑛∑︁

𝑖=1

𝑤𝑖 𝑒
−𝑧𝑖𝛼𝑚𝑘𝑚(𝑋𝑖) (1)

2The maximum “improvement” at a given iteration might actually be an “unimprove-
ment,” that is, the number of correct classifications can decrease. It follows that AdaBoost
is not a hill climb algorithm.

4



where
𝑤𝑖 = 𝑒−𝑧𝑖𝐶𝑚−1(𝑋𝑖). (2)

Using equation (2), equation (1) can be rewritten as

𝐸𝑚 =
∑︁

𝑧𝑖=𝑘𝑚(𝑋𝑖)

𝑤𝑖 𝑒
−𝛼𝑚 +

∑︁
𝑧𝑖 ̸=𝑘𝑚(𝑋𝑖)

𝑤𝑖 𝑒
𝛼𝑚

which we write as
𝐸𝑚 = 𝑊1𝑒

−𝛼𝑚 +𝑊2 𝑒
𝛼𝑚 (3)

where
𝑊1 =

∑︁
𝑧𝑖=𝑘𝑚(𝑋𝑖)

𝑤𝑖 and 𝑊2 =
∑︁

𝑧𝑖 ̸=𝑘𝑚(𝑋𝑖)

𝑤𝑖. (4)

Then
𝑒𝛼𝑚𝐸𝑚 = 𝑊1 +𝑊2 𝑒

2𝛼𝑚

and it follows that

𝑒𝛼𝑚𝐸𝑚 = (𝑊1 +𝑊2) +𝑊2

(︀
𝑒2𝛼𝑚 − 1

)︀
.

Letting 𝑊 = 𝑊1 +𝑊2, we have

𝑒𝛼𝑚𝐸𝑚 = 𝑊 +𝑊2

(︀
𝑒2𝛼𝑚 − 1

)︀
.

From the definitions of 𝑊1 and 𝑊2, we see that any increase in 𝑊1 is offset by
precisely the same decrease in 𝑊2, and vice versa. Consequently, 𝑊 is fixed for
each iteration. Therefore, regardless of the value of 𝛼𝑚, we’ll want to choose 𝑘𝑚
so that 𝑊2 is minimized.

Once we have selected a 𝑘𝑚 that minimizes 𝑊2, we must determine the
corresponding coefficient 𝛼𝑚. Note that once 𝑘𝑚 is specified, both 𝑊1 and 𝑊2

are known. From equation (3), we see that

𝑑𝐸𝑚

𝑑𝛼𝑚

= −𝑊1𝑒
−𝛼𝑚 +𝑊2 𝑒

𝛼𝑚.

Setting this derivative equal to zero and solving for 𝛼𝑚, we find that the desired
minimum occurs when

𝛼𝑚 =
1

2
ln

(︂
1− 𝑟𝑚
𝑟𝑚

)︂
(5)

where

𝑟𝑚 =
𝑊2

𝑊1 +𝑊2

=
𝑊2

𝑊
.

5



AdaBoost is specified in detail here as Algorithm 3.1. In this algorithm, we
are assuming that for each classifier 𝑐ℓ, the number of hits is larger than the
number of misses. If this is not the case, we would preprocess the classifiers to
remove any that have an equal number of hits and misses, and we would reverse
the sense of any classifier that has more misses than hits.

Note that for the initial 𝑚 = 1 iteration, we define 𝐶𝑚−1 = 𝐶0 = 0, which
implies that the weights in equation (2) are given by 𝑤𝑖 = 1, for 𝑖 = 1, 2, . . . , 𝑛.
Consequently, when determining the initial classifier 𝐶1, we simply choose a
classifier 𝑐ℓ that minimizes the number of misses. At every iteration—including
the initial step—we compute 𝛼𝑚 using equation (5).

Algorithm 3.1 AdaBoost

1: Given:
Labeled data (𝑋𝑖, 𝑧𝑖) for 𝑖 = 1, 2, . . . , 𝑛
Classifiers 𝑐ℓ(𝑋𝑖) for ℓ = 1, 2, . . . , 𝐿 and 𝑖 = 1, 2, . . . , 𝑛

2: Initialize:
𝐶0(𝑋𝑖) = 0 for 𝑖 = 1, 2, . . . , 𝑛
𝑢𝑗 = 0 for 𝑗 = 1, 2, . . . , 𝐿

3: for 𝑚 = 1, 2, . . . , 𝐿 do

4: 𝑤𝑖 = 𝑒−𝑧𝑖𝐶𝑚−1(𝑋𝑖) for 𝑖 = 1, 2, . . . , 𝑛
5: 𝑊 =

∑︀
𝑤𝑖

6: 𝑊2 = ∞
7: for 𝑗 = 1, 2, . . . , 𝐿 do
8: if 𝑢𝑗 = 0 then // classifier 𝑐𝑗 has not yet been used

9: 𝑌 =
∑︁

𝑧𝑖 ̸=𝑐𝑗(𝑋𝑖)

𝑤𝑖

10: if 𝑌 < 𝑊2 then
11: 𝑊2 = 𝑌
12: 𝑡 = 𝑗
13: end if
14: end if
15: end for
16: 𝑘𝑚 = 𝑐𝑡
17: 𝑢𝑡 = 1 // marks classifier 𝑐𝑡 as used

18: 𝑟𝑚 = 𝑊2/𝑊

19: 𝛼𝑚 =
1

2
ln

(︂
1− 𝑟𝑚
𝑟𝑚

)︂
20: 𝐶𝑚(𝑋𝑖) = 𝐶𝑚−1(𝑋𝑖) + 𝛼𝑚𝑘𝑚(𝑋𝑖)
21: end for

6



Again, in the football analogy, choosing 𝑘𝑚 from among the unused 𝑐ℓ cor-
responds to selecting the player—from among those not yet selected—who can
help the team the most. And determining 𝛼𝑚 corresponds (roughly) to putting
the selected player at the position that does the most good for the team.

As previously mentioned, errors in the training data can be an Achilles heel
for AdaBoost. This is fairly clear from the algorithm, as an error in one step
will tend to snowball in subsequent iterations. It is also interesting to note that
due to the exponential weighting function, outliers can have excessive influence
on the final classifier.

4 Examples

In this section, we consider examples that illustrate interesting and important
aspects of AdaBoost. We start with a small example that serves to illustrate
the workings of Algorithm 3.1. Then we consider a much bigger example that
illustrates the ability of AdaBoost to generate a strong classifier from a collection
of extremely weak classifiers. In this latter case, we also experiment with the
number of available weak classifiers. All of the data used in these examples is
available at [2].

4.1 A Small Example

Here, we consider a small example in some detail. Specifically, for this example,
we have a set of 𝑛 = 25 labeled data points and 𝐿 = 30 classifiers. The data
we used is given in Table 2.

For the first iteration of AdaBoost, as given in Algorithm 3.1, we select a
classifier 𝑐ℓ with the minimum number of misses (or, equivalently, the maximum
number of hits). For the data in Table 2, we could select any of the classifiers
with 17 hits. By following Algorithm 3.1, we choose 𝑐8 as our initial classifier.
We then have 𝑊2 = 8 and 𝑊 = 25, which gives us 𝑟1 = 8/25 = 0.32 and

𝛼1 =
1

2
ln

(︂
1− 0.32

0.32

)︂
= 0.376886.

Thus, our first constructed classifier is

𝐶1(𝑋𝑖) = 𝛼1𝑐8(𝑋𝑖) = 0.376886 𝑐8(𝑋𝑖).

At the next iteration, 𝑚 = 2 and we compute the weights as in line 4 of
Algorithm 3.1. Due to the particularly simple form of 𝐶1, we have

𝑤𝑖 =

{︂
𝑒0.376886 if 𝐶1(𝑋𝑖) is a hit
𝑒−0.376886 if 𝐶1(𝑋𝑖) is a miss.

(6)

7



Table 2: Data for the example in Section 4.1

D
at
a

𝑧 𝑖
𝑐 1

𝑐 2
𝑐 3

𝑐 4
𝑐 5

𝑐 6
𝑐 7

𝑐 8
𝑐 9

𝑐 1
0
𝑐 1

1
𝑐 1

2
𝑐 1

3
𝑐 1

4
𝑐 1

5
𝑐 1

6
𝑐 1

7
𝑐 1

8
𝑐 1

9
𝑐 2

0
𝑐 2

1
𝑐 2

2
𝑐 2

3
𝑐 2

4
𝑐 2

5
𝑐 2

6
𝑐 2

7
𝑐 2

8
𝑐 2

9
𝑐 3

0

𝑋
1

−
1
+
1
−
1
−
1
+
1
+
1
+
1
−
1
−
1
−
1
+
1
+
1
−
1
−
1
−
1
−
1
+
1
+
1
+
1
+
1
+
1
−
1
−
1
−
1
−
1
−
1
+
1
+
1
+
1
−
1
+
1

𝑋
2

+
1
+
1
−
1
+
1
−
1
−
1
+
1
−
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
−
1
+
1
−
1
+
1
+
1
+
1
+
1
+
1
+
1
−
1
−
1
+
1
+
1
+
1
+
1
+
1

𝑋
3

−
1
+
1
+
1
+
1
+
1
+
1
−
1
+
1
−
1
+
1
+
1
+
1
−
1
−
1
+
1
−
1
+
1
+
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
+
1
−
1
−
1
−
1
−
1

𝑋
4

+
1
+
1
+
1
−
1
+
1
+
1
+
1
+
1
+
1
+
1
+
1
−
1
−
1
−
1
−
1
+
1
+
1
+
1
+
1
+
1
+
1
−
1
+
1
+
1
+
1
−
1
−
1
+
1
+
1
+
1
+
1

𝑋
5

−
1
−
1
+
1
+
1
+
1
−
1
+
1
−
1
+
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
+
1
−
1
+
1
+
1
−
1
−
1
+
1
−
1
−
1
+
1
−
1
−
1
−
1
+
1

𝑋
6

+
1
+
1
−
1
−
1
+
1
−
1
−
1
−
1
−
1
−
1
+
1
+
1
+
1
+
1
−
1
+
1
−
1
+
1
+
1
−
1
+
1
−
1
−
1
−
1
−
1
+
1
+
1
−
1
+
1
−
1
+
1

𝑋
7

−
1
+
1
−
1
+
1
+
1
−
1
−
1
−
1
+
1
+
1
−
1
+
1
−
1
−
1
−
1
+
1
−
1
−
1
−
1
+
1
−
1
+
1
+
1
−
1
−
1
+
1
−
1
−
1
−
1
−
1
+
1

𝑋
8

+
1
−
1
+
1
+
1
−
1
+
1
+
1
+
1
−
1
+
1
−
1
+
1
−
1
−
1
−
1
−
1
+
1
−
1
−
1
+
1
−
1
−
1
−
1
−
1
+
1
+
1
+
1
+
1
−
1
−
1
+
1

𝑋
9

−
1
−
1
+
1
−
1
+
1
−
1
+
1
+
1
−
1
+
1
+
1
−
1
+
1
−
1
−
1
+
1
−
1
−
1
+
1
+
1
−
1
−
1
−
1
−
1
+
1
−
1
−
1
−
1
−
1
+
1
+
1

𝑋
1
0

+
1
+
1
−
1
+
1
+
1
+
1
−
1
+
1
−
1
−
1
−
1
−
1
−
1
+
1
−
1
+
1
−
1
−
1
+
1
−
1
−
1
−
1
+
1
+
1
+
1
+
1
−
1
+
1
+
1
−
1
−
1

𝑋
1
1

−
1
+
1
−
1
−
1
−
1
+
1
−
1
−
1
−
1
+
1
−
1
+
1
−
1
−
1
−
1
+
1
−
1
−
1
−
1
+
1
+
1
−
1
+
1
+
1
+
1
+
1
−
1
+
1
+
1
−
1
−
1

𝑋
1
2

+
1
+
1
+
1
−
1
−
1
−
1
+
1
−
1
+
1
−
1
+
1
+
1
−
1
−
1
+
1
−
1
−
1
−
1
−
1
−
1
+
1
+
1
−
1
−
1
−
1
+
1
+
1
+
1
−
1
+
1
+
1

𝑋
1
3

−
1
−
1
+
1
+
1
−
1
−
1
−
1
+
1
+
1
+
1
−
1
−
1
+
1
+
1
+
1
+
1
−
1
−
1
+
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
+
1
+
1

𝑋
1
4

+
1
+
1
+
1
−
1
+
1
−
1
+
1
+
1
+
1
+
1
−
1
+
1
−
1
−
1
+
1
−
1
−
1
+
1
−
1
+
1
+
1
−
1
−
1
+
1
−
1
−
1
+
1
+
1
+
1
+
1
+
1

𝑋
1
5

−
1
−
1
+
1
−
1
−
1
−
1
+
1
+
1
+
1
−
1
−
1
+
1
−
1
−
1
−
1
+
1
+
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
+
1
−
1
−
1

𝑋
1
6

+
1
+
1
−
1
+
1
−
1
+
1
+
1
−
1
+
1
+
1
−
1
+
1
+
1
+
1
+
1
−
1
+
1
+
1
+
1
−
1
−
1
+
1
−
1
−
1
−
1
+
1
−
1
+
1
−
1
+
1
+
1

𝑋
1
7

−
1
+
1
−
1
−
1
−
1
−
1
−
1
+
1
−
1
+
1
−
1
+
1
+
1
−
1
−
1
−
1
+
1
−
1
+
1
−
1
+
1
−
1
−
1
+
1
−
1
+
1
−
1
+
1
−
1
−
1
−
1

𝑋
1
8

+
1
−
1
−
1
+
1
−
1
−
1
+
1
−
1
+
1
+
1
−
1
−
1
−
1
+
1
+
1
+
1
−
1
+
1
+
1
−
1
−
1
+
1
−
1
−
1
−
1
−
1
−
1
+
1
+
1
+
1
+
1

𝑋
1
9

−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
+
1
−
1
−
1
+
1
+
1
−
1
+
1
−
1
+
1
−
1
−
1
−
1
−
1
+
1
+
1
+
1
+
1
+
1
−
1
+
1
+
1

𝑋
2
0

+
1
−
1
+
1
−
1
+
1
−
1
+
1
+
1
+
1
+
1
−
1
−
1
+
1
+
1
+
1
−
1
−
1
−
1
−
1
+
1
+
1
−
1
+
1
−
1
−
1
−
1
−
1
−
1
+
1
+
1
+
1

𝑋
2
1

−
1
+
1
−
1
−
1
+
1
+
1
+
1
−
1
−
1
−
1
+
1
−
1
+
1
−
1
−
1
−
1
−
1
−
1
+
1
−
1
+
1
+
1
−
1
+
1
+
1
−
1
−
1
−
1
−
1
+
1
−
1

𝑋
2
2

+
1
−
1
+
1
−
1
+
1
+
1
−
1
−
1
+
1
+
1
+
1
−
1
−
1
+
1
−
1
+
1
−
1
+
1
−
1
+
1
−
1
−
1
−
1
+
1
+
1
+
1
−
1
−
1
−
1
+
1
−
1

𝑋
2
3

−
1
+
1
−
1
+
1
+
1
+
1
−
1
+
1
+
1
+
1
−
1
−
1
−
1
−
1
+
1
−
1
−
1
−
1
−
1
+
1
+
1
−
1
−
1
+
1
−
1
+
1
−
1
+
1
−
1
−
1
−
1

𝑋
2
4

+
1
+
1
−
1
+
1
+
1
+
1
−
1
+
1
+
1
+
1
+
1
+
1
−
1
−
1
−
1
−
1
+
1
+
1
+
1
+
1
−
1
+
1
+
1
+
1
+
1
−
1
−
1
−
1
+
1
+
1
+
1

𝑋
2
5

−
1
+
1
+
1
+
1
−
1
−
1
−
1
−
1
−
1
−
1
+
1
+
1
−
1
+
1
+
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
+
1
+
1
+
1
+
1

H
it
s

13
13

13
13

14
16

13
17

15
1
3

1
3

1
3

1
7

1
4

1
3

1
3

1
7

1
4

1
4

1
3

1
6

1
6

1
3

1
4

1
4

1
4

1
5

1
7

1
7

1
6

8



Recall that the sign of 𝐶𝑗(𝑋𝑖) determines the classification, so 𝐶1(𝑋𝑖) is a hit
whenever the sign of 𝐶1(𝑋𝑖) and the sign of 𝑧𝑖 agree.

Next, following Algorithm 3.1 we use the weights 𝑤𝑖 that have been com-
puted according to equation (6) to determine that 𝑐13 gives us the smallest
(weighted) sum of misses, with 𝑊2 = 7.031442. We also compute the sum of the
weights to find 𝑊 = 23.323808, so that 𝑟2 = 7.031442/23.323808 = 0.301471.
It follows that

𝛼2 =
1

2
ln

(︂
1− 0.301471

0.301471

)︂
= 0.420152.

We construct classifier 𝐶2(𝑋𝑖) as given in line 20 of Algorithm 3.1, which for
this specific case gives us

𝐶2(𝑋𝑖) = 𝐶1(𝑋𝑖) + 𝛼2𝑐13(𝑋𝑖) = 0.376886 𝑐8(𝑋𝑖) + 0.420152 𝑐13(𝑋𝑖).

At the next iteration, we find that the minimum weighted sum of misses
is 𝑊2 = 6.677488, which occurs for classifier 𝑐6. The sum of the all of the
weights is 𝑊 = 21.406432, and hence 𝑟2 = 6.677488/21.406432 = 0.311938. We
therefore have

𝛼3 =
1

2
ln

(︂
1− 0.311938

0.311938

)︂
= 0.395536.

The classifier determined at this step of the algorithm is

𝐶3(𝑋𝑖) = 𝐶2(𝑋𝑖)+𝛼3𝑐6(𝑋𝑖) = 0.376886 𝑐8(𝑋𝑖)+0.420152 𝑐13(𝑋𝑖)+0.395536 𝑐6(𝑋𝑖).

We then continue with Algorithm 3.1 until all classifiers 𝑐ℓ have been used.
Of course, if all 𝑋𝑖 are classified correctly at some iteration, then there is no
need to continue beyond that point.

The classifiers 𝐶𝑚 discussed here are summarized in Table 3. We have
also included the first classifier that classifies all 𝑛 = 25 samples correctly,
namely, 𝐶21.

4.2 A Bigger Example

We now consider a case where all of the available classifiers are extremely weak.
In this example, we have 𝑛 = 100 labeled samples, that is, we have (𝑋𝑖, 𝑧𝑖),
for 𝑖 = 1, 2, . . . , 100. Furthermore, we have 𝐿 = 1000 classifiers 𝑐ℓ. Of these 1000
classifiers, there are 482 for which 𝑐ℓ(𝑋𝑖) = 𝑧𝑖 for exactly 51 of the 100 data
points 𝑋𝑖, while each of the remaining 518 classifiers satisfies 𝑐ℓ(𝑋𝑖) = 𝑧𝑖 for
exactly 52 of the 100 data points 𝑋𝑖. In other words, each of the classifiers 𝑐ℓ has
an accuracy of 51% or 52%, with approximately the same number of classifiers
having 51% accuracy as the number that have 52% accuracy.

9



Table 3: Classifiers 𝐶1, 𝐶2, 𝐶3, and 𝐶21, based on the data in Table 2

𝑧𝑖 𝐶1 𝐶2 𝐶3 · · · 𝐶21

−1 −0.376886 −0.797038 −0.401502 · · · −0.566786
+1 +0.376886 +0.797038 +1.192575 · · · +1.604748
−1 −0.376886 −0.797038 −1.192575 · · · −1.715969
+1 +0.376886 −0.043267 +0.352270 · · · +3.077440
−1 +0.376886 −0.043267 +0.352270 · · · −1.774858
+1 −0.376886 +0.043267 −0.352270 · · · +0.026848
−1 +0.376886 −0.043267 −0.438803 · · · −0.491584
+1 −0.376886 −0.797038 −0.401502 · · · +0.299065
−1 −0.376886 −0.797038 −0.401502 · · · −1.065321
+1 −0.376886 +0.043267 −0.352270 · · · +0.081761
−1 −0.376886 −0.797038 −1.192575 · · · −0.843112
+1 +0.376886 −0.043267 +0.352270 · · · +0.291551
−1 +0.376886 +0.797038 +0.401502 · · · −1.291802
+1 +0.376886 −0.043267 +0.352270 · · · +2.225882
−1 +0.376886 −0.043267 +0.352270 · · · −2.368660
+1 +0.376886 +0.797038 +1.192575 · · · +2.369160
−1 −0.376886 −0.797038 −1.192575 · · · −2.456064
+1 +0.376886 +0.797038 +1.192575 · · · +1.363484
−1 −0.376886 +0.043267 −0.352270 · · · −1.437239
+1 +0.376886 +0.797038 +1.192575 · · · +0.800087
−1 −0.376886 −0.797038 −0.401502 · · · −2.643773
+1 +0.376886 +0.797038 +0.401502 · · · +0.580473
−1 +0.376886 −0.043267 −0.438803 · · · −1.287581
+1 +0.376886 −0.043267 −0.438803 · · · +1.943163
−1 −0.376886 +0.043267 −0.352270 · · · −1.711700
Hits 17 17 18 · · · 25

10



We experimented using all 1000 of the available classifiers 𝑐ℓ, and also con-
sidered the case where we only use the first 500 classifiers, and the case where we
use the first 250 of the 𝑐ℓ. More details on these classifier subsets are provided
in Table 4.

Table 4: Test data for Figure 1 (𝑛 = 100)

𝐿
Hits

51 52
1000 482 518
500 246 254
250 124 126

The results of our AdaBoost experiments on this data are summarized in
Figure 1. The red line is the case where all 1000 classifiers are available, the blue
line represents the case where 500 of the classifiers are used, and the green line
is for the case where only 250 of the classifiers are used. In each case, we have
graphed the classification accuracy of the classifiers 𝐶𝑚, for 𝑚 = 1, 2, . . . , 200,
which were constructed using AdaBoost, as given in Algorithm 3.1.

20 40 60 80 100 120 140 160 180 200
50

55

60

65

70

75

80

85

90

95

100

Iteration

C
or
re
ct

C
la
ss
ifi
ca
ti
on

s

𝐿 = 1000
𝐿 = 500
𝐿 = 250

Figure 1: Correct classifications vs iteration (𝑛 = 100)

From Figure 1, we see that with 𝐿 = 1000 classifiers—each of which is
just marginally better than flipping a coin—we can obtain ideal accuracy using

11



about 100 classifiers. On the other hand, with 𝐿 = 500 classifiers available,
we need about 140 iterations before we achieve ideal classification, and with
“only” 𝐿 = 250 weak classifiers, we never reach more than about 90% accuracy.

Why do we obtain better results in Figure 1 when more classifiers are avail-
able? In terms of the football analogy, the more players that we have to choose
from, the more likely it is that we’ll find a player that better addresses our
specific weaknesses at each iteration. The same principle holds true for the
classifiers used in AdaBoost.

Given the weakness of the individual classifiers, each of the cases in Figure 1
is impressive. Nevertheless, these results do illustrate that AdaBoost is likely
to require a large number of weak classifiers.

5 Exercises

1. Consider the example in Section 4.1.

a) Use AdaBoost, as specified in Algorithm 3.1, to construct the next
classifier, 𝐶4, and give its classification results in the same form as for
the classifiers in Table 3.

b) Determine the minimum iteration 𝑚 for which perfect classification is
achieved and verify the results in Table 3 for classifier 𝐶30.

2. For the 𝐿 = 250 case in Section 4.2, determine the classifier 𝐶250 and give
its classification accuracy. For this same case, determine all iterations 𝑚
for which an accuracy of 90% or greater is achieved.

References

[1] R. Rojas. AdaBoost and the Super Bowl of classifiers: A tutorial intro-
duction to adaptive boosting. http://www.inf.fu-berlin.de/inst/ag-

ki/adaboost4.pdf, 2009.

[2] M. Stamp. Data for examples in “Boost your knowledge of AdaBoost”.
https://www.cs.sjsu.edu/~stamp/ML/files/adaData.zip, 2017.

[3] M. Stamp. Introduction to Machine Learning with Applications in Informa-
tion Security. Chapman & Hall/CRC Press, 2017.

12

http://www.inf.fu-berlin.de/inst/ag-ki/adaboost4.pdf
http://www.inf.fu-berlin.de/inst/ag-ki/adaboost4.pdf
https://www.cs.sjsu.edu/~stamp/ML/files/adaData.zip

	1 Introduction
	2 Football Analogy
	3 AdaBoost
	4 Examples
	4.1 A Small Example
	4.2 A Bigger Example

	5 Exercises

