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B-Trees

o A B-tree is a tree data structure 
suitable for disk drives.

n It may take up to 11 ms to access data on disk.
n Today's modern CPUs can execute billions of 

instructions per second.
n Therefore, it's worth spending a few CPU cycles 

to reduce the number of disk accesses.

o B-trees are often used to implement databases.



 

Memory/Storage Speed Comparisons

o Suppose your computer ran at human speeds.

n 1 CPU cycle: 1 second

o Then the time to retrieve one byte from:

n SRAM
o 5 seconds

n DRAM
o 2 minutes

n Flash
o 1 day

3

n Hard drive
o 2 months

n Tape
o 1,000 years
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B-Trees, cont’d

o A B-tree is an m-ary tree.
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B-Trees, cont’d

o A B-tree of order 5 for a disk drive:
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B-Tree Insertion of 57
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B-Tree Insertion of 55
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B-Tree Insertion of 40
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B-Tree Deletion of 99
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How to Eliminate a Summation

o How to solve                ? 

(a
)

(b
)

Subtract (a) – 
(b).
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A Harmonic Number

o See page 5 of the textbook!
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OK, But Can You Prove It?

o Intuitively, we know that an operation on a 
binary search tree (search, insert, delete) 
of N nodes should take O(log N) time.

o For a specific node at depth d, 
each operation should take O(d) time.

o Therefore, we can prove that the average-case 
running time of a BST operation is O(log N) 
if we can prove that the average depth 
over all the nodes of a BST is O(log N). 

Remember that 
logs
in computer 
science
are base 2 by 
default.
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Proof that the Average Depth is O(log N)

o Internal path length D(N) is the 
sum of the depths of all the nodes 
of a tree with N nodes.
n D(1) = 0

o A BST of N nodes has a left subtree containing i nodes 
and a right subtree of N – i – 1 nodes for 0 ≤ i < N.

n So we have the recurrence relation

n We add the (N – 1) to account that each node in the two 
subtrees is 1 deeper, and there are N – 1 such nodes. 
The root of the tree is at depth 0.

)1()1()()( −+−−+= NiNDiDND
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Proof that the Average Depth is O(log N)

o We can assume that all subtree sizes in a BST 
are equally likely. Then the average value of 
both D(i) and D(N – i – 1) is each

n We make this substitution twice, 
and our recurrence relation becomes: 

{D(N) =
N = 1

N > 1
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Proof that the Average Depth is O(log N)

o To solve:

Drop the insignificant -1 and multiply both sides 
by N.

How can we eliminate the 
summation?
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Proof that the Average Depth is O(log N)

o To solve:

Drop the insignificant -1 and multiply both sides 
by N.

Then subtract (a) - (b). Remember that (N-1)2 = N2 
-2N + 1. 
Drop the insignificant +1.

Rearrange 
terms.

(a
)

(b
)

First replace N by 
N-1.
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Proof that the Average Depth is O(log N)

Divide through by 
N(N+1).

Telescop
e.

Add together.
Many 
convenient
cancellations 
of
terms will 
occur.

1
2)1(

1
)(

+
+−=

+ NN
ND

N
ND

NNDNNND 2)1()1()( +−+=

NN
ND

N
ND 2

1
)2()1( +

−
−=−

1
2

2
)3(

1
)2(

−
+

−
−=

−
−

NN
ND

N
ND

3
2

2
)1(

3
)2( += DD



 18

Proof that the Average Depth is O(log N)

But                        (a harmonic number, see p.5 of the 
textbook).

We started by 
solving:

And 
so
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Proof that the Average Depth is O(log N)

o Therefore, we’ve successfully proven that 
if D(N) is the sum of the depths of all N nodes in a BST, 
then the average depth of a node is O(log N).

o And therefore, a BST operation 
should take on average O(log N) time.
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The Priority Queue ADT

o A priority queue ADT is
n Similar to a queue, except that
n Items are removed from the queue in priority order.

o If lower-numbered items have higher priority, 
then the operations on a priority queue are:

n Insert: Enqueue an item.
n Delete minimum: Find and remove the 

minimum-valued (highest priority) item 
from the queue.
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Priority Queue Implementation

o Unsorted list
n Insert: Insert at the end of the list.
n Delete minimum: Scan the list to find the minimum.

o Sorted list
n Insert: Insert in the proper position to maintain order.
n Delete minimum: Delete from the head of the list.

o Binary tree
n Inserts and deletes take O(log N) time on average.

o Binary heap
n Inserts and deletes take O(log N) worst-case time.
n No links required!
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Binary Heap

o A binary heap (or just heap) is a binary tree 
that is complete.
n All levels of the tree are full except possibly for 

the bottom level which is filled from left to right:

Data Structures and Algorithms in Java, 3rd ed. 
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Binary Heap

o Conceptually, a heap is a binary tree.
o But we can implement it as an array.
o For any element in array position i:

n Left child is at position 2i
n Right child is at position 2i + 1
n Parent is at position 

Data Structures and Algorithms in Java, 3rd ed. 
by Mark Allen Weiss 
Pearson Education, Inc., 2012

 2/i
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Heap-Order Priority

o We want to find the minimum value 
(highest priority) value quickly.

o Make the minimum value always at the root.
n Apply this rule also to roots of subtrees.

o Weaker rule than for a binary search tree.
n Not necessary that values in the left subtree be less 

than the root value and values in the right subtree be 
greater than the root value.
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Heap-Order Priority
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Heap Insertion

o Create a hole in the next available position 
at the bottom of the (conceptual) binary tree.
n The tree must remain complete.
n The hole is at the end of the implementation array.

o While the heap order is violated:
n Slide the hole’s parent into the hole.
n “Bubble up” the hole towards the root.
n The new value percolates up to its correct position.

o Insert the new value into the correct position.
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Heap Insertion

Data Structures and Algorithms in Java, 3rd ed. 
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Heap Insertion

public void insert(AnyType x) 
{
    if (currentSize == array.length - 1) {
        enlargeArray(array.length*2 + 1);
    }
    // Percolate up.
    int hole = ++currentSize;
    for (array[0] = x; x.compareTo(array[hole/2]) < 0; hole 
/= 2) {
        array[hole] = array[hole/2];
    }
    array[hole] = x;
}
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Heap Deletion

o Delete the root node of the (conceptual) tree.
n A hole is created at the root.
n The tree must remain complete.
n Put the last node of the heap into the hole.

o While the heap order is violated:
n The hole percolates down.
n The last node moves into the hole 

at the correct position.
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Heap Deletion

Data Structures and Algorithms in Java, 3rd ed. 
by Mark Allen Weiss 
Pearson Education, Inc., 2012
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Heap Deletion

public AnyType deleteMin() throws Exception 
{
    if (isEmpty()) throw new Exception();
    AnyType minItem = findMin();
    array[1] = array[currentSize--];
    
    percolateDown(1);
    return minItem;
}

Store the last value
temporarily into the 
root.

It’s the root 
node.
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Heap Deletion
private void percolateDown(int hole) 
{
    int child;
    AnyType tmp = array[hole];
    for (; hole*2 <= currentSize; hole = child) {
        child = hole*2;
        if (   (child != currentSize)
            && (array[child + 1].compareTo(array[child])) 
< 0) {
            child++;
        }
        
        if (array[child].compareTo(tmp) < 0) {
            array[hole] = array[child];
        }
        else {
            break;
        }
    }
    array[hole] = tmp;
}

Percolate the root hole down.

Does the last value fit?
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Heap Animation

appletviewer Chap12/Heap/Heap.html 
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