

CS 146: Data Structures and Algorithms

 2

B-Trees

o A B-tree is a tree data structure
suitable for disk drives.

n It may take up to 11 ms to access data on disk.
n Today's modern CPUs can execute billions of

instructions per second.
n Therefore, it's worth spending a few CPU cycles

to reduce the number of disk accesses.

o B-trees are often used to implement databases.

Memory/Storage Speed Comparisons

o Suppose your computer ran at human speeds.

n 1 CPU cycle: 1 second

o Then the time to retrieve one byte from:

n SRAM
o 5 seconds

n DRAM
o 2 minutes

n Flash
o 1 day

3

n Hard drive
o 2 months

n Tape
o 1,000 years

 4

B-Trees, cont’d

o A B-tree is an m-ary tree.

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 5

B-Trees, cont’d

o A B-tree of order 5 for a disk drive:

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 6

B-Tree Insertion of 57

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 7

B-Tree Insertion of 55

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 8

B-Tree Insertion of 40

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 9

B-Tree Deletion of 99

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 10

How to Eliminate a Summation

o How to solve ?

(a
)

(b
)

Subtract (a) –
(b).

∑
∞

=

=
0i

iAS

...1 5432

0

++++++== ∑
∞

=

AAAAAAS
i

i

...5432

1

+++++== ∑
∞

=

AAAAAAAS
i

i

1=− ASS

A
S

−
=

1
1

1)1(=− AS

 11

A Harmonic Number

o See page 5 of the textbook!

N
i e

N

i
log11

3

≈∑
+

=

 12

OK, But Can You Prove It?

o Intuitively, we know that an operation on a
binary search tree (search, insert, delete)
of N nodes should take O(log N) time.

o For a specific node at depth d,
each operation should take O(d) time.

o Therefore, we can prove that the average-case
running time of a BST operation is O(log N)
if we can prove that the average depth
over all the nodes of a BST is O(log N).

Remember that
logs
in computer
science
are base 2 by
default.

 13

Proof that the Average Depth is O(log N)

o Internal path length D(N) is the
sum of the depths of all the nodes
of a tree with N nodes.
n D(1) = 0

o A BST of N nodes has a left subtree containing i nodes
and a right subtree of N – i – 1 nodes for 0 ≤ i < N.

n So we have the recurrence relation

n We add the (N – 1) to account that each node in the two
subtrees is 1 deeper, and there are N – 1 such nodes.
The root of the tree is at depth 0.

)1()1()()(−+−−+= NiNDiDND

 14

Proof that the Average Depth is O(log N)

o We can assume that all subtree sizes in a BST
are equally likely. Then the average value of
both D(i) and D(N – i – 1) is each

n We make this substitution twice,
and our recurrence relation becomes:

{D(N) =
N = 1

N > 1

)1()1()()(−+−−+= NiNDiDND








 ∑
−

=

1

0
)(1 N

j
jD

N

)1()(2

0
1

0
−+







 ∑
−

=

NjD
N

N

j

 15

Proof that the Average Depth is O(log N)

o To solve:

Drop the insignificant -1 and multiply both sides
by N.

How can we eliminate the
summation?

)1()(2)(
1

0

−+







= ∑

−

=

NjD
N

ND
N

j

2
1

0

)(2)(NjDNND
N

j
+








= ∑

−

=

 16

Proof that the Average Depth is O(log N)

o To solve:

Drop the insignificant -1 and multiply both sides
by N.

Then subtract (a) - (b). Remember that (N-1)2 = N2
-2N + 1.
Drop the insignificant +1.

Rearrange
terms.

(a
)

(b
)

First replace N by
N-1.

)1()(2)(
1

0

−+







= ∑

−

=

NjD
N

ND
N

j

2
1

0

)(2)(NjDNND
N

j
+








= ∑

−

=

2
2

0

)1()(2)1()1(−+







=−− ∑

−

=

NjDNDN
N

j

NNDNDNNND 2)1(2)1()1()(+−=−−−

NNDNNND 2)1()1()(+−+=

 17

Proof that the Average Depth is O(log N)

Divide through by
N(N+1).

Telescop
e.

Add together.
Many
convenient
cancellations
of
terms will
occur.

1
2)1(

1
)(

+
+−=

+ NN
ND

N
ND

NNDNNND 2)1()1()(+−+=

NN
ND

N
ND 2

1
)2()1(+

−
−=−

1
2

2
)3(

1
)2(

−
+

−
−=

−
−

NN
ND

N
ND

3
2

2
)1(

3
)2(+= DD

 18

Proof that the Average Depth is O(log N)

But (a harmonic number, see p.5 of the
textbook).

We started by
solving:

And
so

∑
+

=

+=
+

1

3

12
2

)1(
1
)(N

i i
D

N
ND

N
i e

N

i
log11

3

≈∑
+

=

)(log
1
)(NO

N
ND =
+

)log()(NNOND =

)1()(2)(
1

0

−+







= ∑

−

=

NjD
N

ND
N

j

)(log)(NO
N
ND =

 19

Proof that the Average Depth is O(log N)

o Therefore, we’ve successfully proven that
if D(N) is the sum of the depths of all N nodes in a BST,
then the average depth of a node is O(log N).

o And therefore, a BST operation
should take on average O(log N) time.

)(log)(NO
N
ND =

Break

20

 21

The Priority Queue ADT

o A priority queue ADT is
n Similar to a queue, except that
n Items are removed from the queue in priority order.

o If lower-numbered items have higher priority,
then the operations on a priority queue are:

n Insert: Enqueue an item.
n Delete minimum: Find and remove the

minimum-valued (highest priority) item
from the queue.

 22

Priority Queue Implementation

o Unsorted list
n Insert: Insert at the end of the list.
n Delete minimum: Scan the list to find the minimum.

o Sorted list
n Insert: Insert in the proper position to maintain order.
n Delete minimum: Delete from the head of the list.

o Binary tree
n Inserts and deletes take O(log N) time on average.

o Binary heap
n Inserts and deletes take O(log N) worst-case time.
n No links required!

 23

Binary Heap

o A binary heap (or just heap) is a binary tree
that is complete.
n All levels of the tree are full except possibly for

the bottom level which is filled from left to right:

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 24

Binary Heap

o Conceptually, a heap is a binary tree.
o But we can implement it as an array.
o For any element in array position i:

n Left child is at position 2i
n Right child is at position 2i + 1
n Parent is at position

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 2/i

 25

Heap-Order Priority

o We want to find the minimum value
(highest priority) value quickly.

o Make the minimum value always at the root.
n Apply this rule also to roots of subtrees.

o Weaker rule than for a binary search tree.
n Not necessary that values in the left subtree be less

than the root value and values in the right subtree be
greater than the root value.

 26

Heap-Order Priority

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 27

Heap Insertion

o Create a hole in the next available position
at the bottom of the (conceptual) binary tree.
n The tree must remain complete.
n The hole is at the end of the implementation array.

o While the heap order is violated:
n Slide the hole’s parent into the hole.
n “Bubble up” the hole towards the root.
n The new value percolates up to its correct position.

o Insert the new value into the correct position.

 28

Heap Insertion

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 29

Heap Insertion

public void insert(AnyType x)
{
 if (currentSize == array.length - 1) {
 enlargeArray(array.length*2 + 1);
 }
 // Percolate up.
 int hole = ++currentSize;
 for (array[0] = x; x.compareTo(array[hole/2]) < 0; hole
/= 2) {
 array[hole] = array[hole/2];
 }
 array[hole] = x;
}

 30

Heap Deletion

o Delete the root node of the (conceptual) tree.
n A hole is created at the root.
n The tree must remain complete.
n Put the last node of the heap into the hole.

o While the heap order is violated:
n The hole percolates down.
n The last node moves into the hole

at the correct position.

 31

Heap Deletion

Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

 32

Heap Deletion

public AnyType deleteMin() throws Exception
{
 if (isEmpty()) throw new Exception();
 AnyType minItem = findMin();
 array[1] = array[currentSize--];

 percolateDown(1);
 return minItem;
}

Store the last value
temporarily into the
root.

It’s the root
node.

 33

Heap Deletion
private void percolateDown(int hole)
{
 int child;
 AnyType tmp = array[hole];
 for (; hole*2 <= currentSize; hole = child) {
 child = hole*2;
 if ((child != currentSize)
 && (array[child + 1].compareTo(array[child]))
< 0) {
 child++;
 }

 if (array[child].compareTo(tmp) < 0) {
 array[hole] = array[child];
 }
 else {
 break;
 }
 }
 array[hole] = tmp;
}

Percolate the root hole down.

Does the last value fit?

 34

Heap Animation

appletviewer Chap12/Heap/Heap.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

