
VHDL
CS 247 - Pg.

• The Design Entity

Represents hardware at any level of abstraction

The primary hardware abstraction used to model a digital device in a system

A component of the system, i.e. a 'part' (e.g. logic gate, chip, PC board, etc.)

Consists of two sections:

1) Entity Declaration

2) Architectural Body

• Entity Declaration

Defines a new component name and its input/output connections

Only describes a "black box" with ports

No information provided as to it's internal composition or it's function

Just like a socket spec. that constrains the type of chip that can be put into it

Defines the external view (i.e. the interface) of a hardware component:

A component's connections and means of communication to the outside world

e.g.) The number and names of the pins for an IC

Interface-list provides the means to connect the entity to other entities

Declares:

Name of the ports

Direction of data flow (i.e. in, out, or inout)

IN: Value of input port can only be read within the entity

OUT: Value of output port can only be updated within the entity

INOUT: A bidirectional port which can be read and updated

Type of data that flows through each of the ports

General form is:

ENTITY identifier IS

PORT interface-list ;

END identifier ;

Example:

ENTITY and2 IS

PORT (in1, in2 : IN BIT ; out1 : OUT BIT);

END and2;

It is valid to have a top-level self-contained entity with no inputs or outputs

A testbench which contains a unit under test and a test generator is self-contained

Example:

ENTITY testbench IS

END;
• VHDL separates:

-The entity declaration (the I/O interface) of a design from its

-Architectural implementation details

Enables entity A to be used as part of entity B even if A not completely designed

Once entity declaration is compiled, it can be referenced as a component

Any update to architecture body has no influence on the entity declaration

Facilitates experimenting with alternative implementations (architectures)

Any architecture using entity as a component is not affected either

Enables one part of a design to change without recompiling other parts

A design entity's declaration must be compiled before its associated architecture

• Analogy:

Given a certain interface definition (entity declaration),

there may be a variety of internal implementations (architectures).

Architectural variants include vendors (Intel, AMD) and technology (TTL, CMOS).

Entity declaration enables one to specify the socket and wiring for the

circuit board before even having completed the chip that will go in the socket.

To use an entity as part of a larger device, one must specify

how to wire it into the device (via a component specification)

• Architectural Body

Describes the functional internal implementational details of an entity

Specifies the behavior, interconnections, and components of a design entity

Expresses the relationships between the inputs and outputs of a design entity

General form is:

architecture identifier of entity-name is

 declarations

begin

 statements

end identifier ;

where
identifier is by convention either Behavioral or Structural

declarations are signal and/or component declarations

statements are behav. Boolean exprs. or struct. component instantiations

VHDL has two types of architectural bodies that can be used to describe an entity

1) Behavioral description resemble algorithms of classical prog. languages

Behavioral description defines functionalities of a device

Described using an algorithm, i.e. a program of concurrent signal asgmts

2) Structural descriptions are essentially netlists

Structural description defines an interconnection of components
• There is no precise dividing line between behavioral and structural

All VHDL components must ultimately be given behavioral descriptions

All lowest (leaf) level components of an entity require a behavioral model

Even gate-level simulations require that the behavior of the gate be specified

• Architectural Body: Behavioral Description

Uses a Dataflow style of modeling

When (new) data becomes available, an output is computed

Expressed using primarily concurrent signal assignment statements

Tells the simulator how building block reacts to all possible inputs that it sees

Must be provided for each primitive building block in the design

Structure is not explicitly specified; however, it can be implicitly deduced

Boolean functional relationship operators map easily to real physical gates

A signal assignment statement is executed only when a RHS signal changes

Example:

ENTITY or2 IS

PORT
(in1 , in2 : IN BIT ; out1 : OUT BIT);

END or2;

ARCHITECTURE behavioral OF or2 IS

BEGIN

out1 <= in1 OR in2 AFTER 2 ns;

END behavioral;

This model can be thought of as performing the following:

Continually watches input ports (in1, in2) for any changes in value

Whenever in1 or in2 changes, a new value xxx is computed & scheduled

Port out1 receives the new value (experiences the event) after 2ns delay

This is the simplest recommended approach to modeling a basic gate

The above behavioral model creates the 'part' below for use in VHDL code

A Model with no signals in the declarations section has no local internal wires

Only has those signals listed in the ENTITY PORT specification
• Behavior Style Architecture Example:

The signal TMP represents an internal wire that connects various Boolean exprs.

Scope of signal TMP is restricted to within the architecture body

Not visible outside of equiv

Declared with its type (we use signals only) in declarations section (line 2)

ENTITY equiv IS

PORT (a, b : IN BIT ; c : OUT BIT);

END equiv;

1
ARCHITECTURE behavior OF equiv IS

2
SIGNAL tmp : BIT;

3
BEGIN

4

tmp <= a XOR b ;

5

c <= NOT tmp ;

6
END behavior;

Note: Order of the statements in VHDL behavioral dataflow model is not important

Identical behavior results if lines 4 and 5 were reversed

Simulation executes them concurrently in event driven fashion

• Architectural Body: Structural Description

Describes what an entity's subcomponents are and how they are connected

Provides a more direct correspondence to H/W than the behavioral description

Uses classical "Netlist" type input common to CAD simulators (e.g. SPICE)

Example:

1
ENTITY equiv IS

2

PORT (a, b : IN BIT ; c : OUT BIT);

3
END equiv;

4
ARCHITECTURE structure OF equiv IS

5
SIGNAL tmp : BIT;

6
COMPONENT xor2 PORT (x, y: IN BIT; z: OUT BIT); END COMPONENT;

7
COMPONENT inv PORT (x: IN BIT; z: OUT BIT); END COMPONENT;

8
BEGIN

9

u0: xor2 PORT MAP (a, b, tmp);

10

u1: inv PORT MAP (tmp, c);

11
END structure;

Note: The order of component instantiation statements is not important

Identical structural specification results if lines 9 and 10 were reversed

Above model has 4 actual signals visible within the part:

All signals listed in the part's entity declaration as input/output ports (a, b, c)

Any signals declared in a signal declaration statement (tmp)

Structure is described by declaring signals and connecting them to part ports

PORT MAP in component instantiation statements hook parts together

Internal signals allow parts to communicate with each other

Positional association used: ith signal maps (is connected) to ith part port

e.g.) In line 9, actual signal A maps to port X of part XOR2

Structural model uses same ENTITY declaration as behavioral model of equiv

Only one ENTITY declaration of equiv is needed

Multiple architectures (struc or behav) can be specified for each entity (equiv)

If entity X is used as a part in entity Y, entity X is a component of entity Y

Need to provide a component declaration for part X within architecture of Y

Lines 6 and 7 of above model specify that parts xor2 and inv are to be used

Specifications must correspond to a visible entity

Assumes that the following entities will eventually be designed/compiled

12
ENTITY xor2 IS PORT (x, y: IN BIT; z: OUT BIT); END xor2;

13
ENTITY inv IS PORT (x: IN BIT; z: OUT BIT); END inv;

• Component Declaration vs. Entity Declaration

Entity Declaration (lines 1-3, and 12, 13)

Is a separately compilable library unit

Never occurs inside another library unit

Declares that something really 'exists' in the design library

Component Declaration (lines 6, 7)

Never stands alone

Only occurs inside another entity's architecture

Merely declares a template that does not really 'exist' in the design library

Component Instantiation (lines 9, 10)

Creates an instance of the component in a structural architectural body

Instantiation references Component Declaration; not the Entity Declaration

Dual definition of external views gives designer an important flexibility

e.g.) Suppose hardware component A consists of parts B, C, and D

So, architecture body for A declares B, C, and D as components

Instantiations of B, C, and D appear in structural body of A

If instantiation referred directly to entity declaration of B, C, and D, then

A could not be analyzed until entities B, C, and D were analyzed

Enables any order of analysis (i.e., compilation) to occur

Especially important when groups of designers are working together

Note: Use the same port names in comp. declrtn as those in the entity declaration

Otherwise, need to map the different names via a configuration stmt

We will not use configuration statements.

• Tester

Behavioral model which provides test pattern stimulus to the unit under test (UUT)

Generates a time-based sequence of 1/0 signal values for UUT's input ports

Input and output ports of tester should be in opposite direction from those of UUT

Example:

ENTITY equiv_tester IS

PORT
(a, b : OUT BIT ; c : IN BIT);

END equiv_tester;

ARCHITECTURE behavioral OF equiv_tester IS

BEGIN

a <=
'0' AFTER 0 ns,

'0' AFTER 10 ns,

'1' AFTER 20 ns,

'1' AFTER 30 ns;

b <=
'0' AFTER 0 ns,

'1' AFTER 10 ns,

'0' AFTER 20 ns,

'1' AFTER 30 ns;

END behavioral;

In this case, the data (signal events) applied can be summarized as:

	Time
	a
	b

	0 ns
	0
	0

	10 ns
	0
	1

	20 ns
	1
	0

	30 ns
	1
	1

• Testbench

A structural model that hooks together the tester and the unit under test (UUT)

The tester and the unit under test are components of the testbench

Need to be included in component declaration statements of the testbench

Signals are declared for all inputs and outputs of the UUT

Note: Its easiest to use same names for signals and all I/O ports on tester & UUT

So, tester port x is connected to UUT port x using testbench signal x

Tester's outputs should connect to the UUT's inputs

Each UUT input port has a corresponding output port on the tester

Tester's inputs should connect to the UUT's outputs

Each UUT output port has a corresponding input port on the tester

Testbench serves these main purposes:

1) Generates a stimulus for simulation (waveforms) with tester

2) Applies stimulus to entity under test (UUT) through signal connections

3) Enables monitoring of signals in testbench through VHDL simulator

Testbench becomes the primary entity to be simulated

Example:

ENTITY testbench IS

END testbench;

ARCHITECTURE structure OF testbench IS

COMPONENT equiv_tester PORT(a, b: OUT BIT; c: IN BIT); END COMPONENT;

COMPONENT equiv PORT(a, b: IN BIT; c: OUT BIT); END COMPONENT;

SIGNAL a, b, c: BIT;

BEGIN

tester: equiv_tester PORT MAP (a, b, c);

UUT: equiv PORT MAP (a, b, c);

END structure;

Creates the following top-level self-contained testbench for checking equiv:

• A Typical VHDL Environment consists of several parts:

1) WORK library reserved for your designs

WORK is the default current working library during analysis and simulation

A special library that does not need to be declared in order to be referenced

Always visible and always the current library for storing analyzed units

Although different libraries can be declared, we will always use WORK

2) STD library containing packages STANDARD and TEXTIO

STANDARD package containing predefined data type declarations

Type Bit is ('0', '1');

Type Time (ns, us, ms)

TEXTIO package containing some utility functions

Ability to input and output data is limited in VHDL

3) Predefined Behavioral Operators:

AND, OR, NAND, NOR, XOR, NOT

4) Analyzer (Compiler)

Checks a VHDL unit for syntactic and static semantic correctness

Inserts the VHDL unit (if it is correct) into the WORK library

5) Simulator

Executes models allowing user to verify run time and semantic correctness

Better simulators can draw graphical waveforms for signals of interest

• Order of Analysis

An Entity must always be compiled before its architecture

Best to compile lower level entities (e.g. gates) and their architectures first

Then continue compiling upwards in the design hierarchy

Compile top-level testbench last

Note: Typical VHDL Environments will do this automatically if options are set properly

Note: Easiest to keep each entity and architecture in one .VHD source file

This will allow you to easily reuse .VHD source file for later problems

• VHDL allows hierarchical structured machine design to control complexity

Allows Efficient Simulation:

Only the part under investigation need be accurately simulated (gate level)

Remainder of system can be less accurately defined/simulated (behaviorally)

Allows Design Hierarchies

Structural description of a design can use other primitive components (etc.)

Behavioral model for the device, or at least for all primitive devices are reqd.

_1143496366.unknown

_1143496367.unknown

_1143496365.unknown

_1143496364.unknown

