CS 247 - Project 2
For the following problems, hand in printouts of all the VHDL Source Code and Signal Waveforms.  Annotate the signal waveform printout with hand written comments to document them.  Also, be sure to answer those questions requiring a written explanation or diagram.  Your written explanation should be based on and backed up by simulation results.  Note that future projects may incrementally build upon previous projects.  In fact, problems within a project may build upon each other.  Therefore, be sure to adopt a file naming/archiving scheme whereby designs (.vhd files) can be reused for future problems.

1)  Enter the entity declaration and behavioral architecture specification of equiv_tester exactly as it appears (except for the line numbers) in the class notes.  Compile the entity and its behavioral specification, link, and then invoke the VHDL simulator on it.  Monitor the value of signals a and b to verify that their values match those as shown in the truth table in the notes.  [2 pts]

2)  Enter the entity declaration and behavioral architecture specification of equiv exactly as it appears (except for the line numbers) in the class notes.  Enter the entity declaration and structural architecture specification of the testbench exactly as shown in the class notes.  Put these two modules into the same .acc project used for equiv_tester in problem 1.  Compile all the entities and their architecture specifications, link them, and then invoke the VHDL simulator.  Monitor the value of all signals (including TMP).  Note that there is no time delay between output signal changes and input signal changes since the behavioral architecture body of equiv does not specify any time delays.  [2 pts]

3)  Add a delay time of 2ns and 3ns to lines 4 and 5 of equiv respectively.  Recompile, relink, and run the simulator to observe the output as a function of time.  How long does it take for output c to react to a change on either a or b?  How long does it take for the signal tmp to react to a change on either a or b?  Are these time delays as expected?  [2 pts]

4)  Reverse lines 4 and 5 of the behavioral model of equiv (the one with delay times) to verify that the order of statements is not important in event-driven simulation.  What would the result of this statement order reversal be if VHDL behaved as a typical programming language ?  [2 pts]

5)  The following is a simple, commonly used model to generate a perpetual clock signal in VHDL.  Write an entity declaration and behavioral model for a one pin device (call that pin CLK).  The behavioral model will contain just one signal assignment statement of the form:






CLK <= not CLK after 20 ns;

Assuming that CLK was needed to drive the input of another device, what direction (in, out, or inout) of signal does it need to be and why ?  [2 pts]

6)  Use the same type of model as problem 5 to develop an entity called counter that has three clocks (clk1, clk2, clk3) to generate a truth table consisting of all eight exhaustive binary values for the three signals.  That is, assume clk1 is the LSB and clk3 is the MSB of a truth table.  Describe your technique in words.  In particular, what would be a simple rule to employ for the delays between different bit positions assuming you want to count binary values at fixed time intervals, say every t ns ?  [3 pts]

7)  Write an entity declaration and behavioral architecture specification for a two input EXOR function.  Assume that this EXOR function responds to changes in its inputs after 10 ns of inertial delay.  Compile the EXOR entity and invoke the VHDL simulator on it.  Monitor the value of all signals.  Verify proper operation by setting the inputs to all four possible input combinations and observing the output signal's response as a function of simulation time.  Hint: reuse as much of equiv_tester and testbench from problems 1 and 2.  Note that this EXOR "function" only specifies "stimulus-response" behavior.  This type of model is often used by engineers to obtain a high-level functional verification for the "building blocks" that they intend on using in a design.  In problem 9, you will refine the design of the EXOR function to the gate level of detail by specifying a structural implementation for it.  [2 pts]

8)  Write an entity declaration and behavioral architecture specification for a two-input NOR gate.  Assume that this NOR gate responds to changes in its inputs after 4ns of inertial delay.  Verify its proper operation.  Again, reuse as many entities as possible from previous problems.  [2 pts] 

9)  Assume that the only parts you have for building various functions are NOR gates.  Using only the NOR gates defined in problem 8 with 4ns delay as components, design a 2-input EXOR function.  Draw a schematic of the circuit and develop a VHDL structural model of the circuit based upon your schematic.  Label your schematic to show correspondence with your structural VHDL model.  Apply the four input test vectors needed to completely test the 2-input part to verify proper performance.  The responses obtained here should match those of the behavioral model from problem 7 (except for timing differences).  Note that you can use the same entity declaration for EXOR as that used for problem 7; however, if you do so, be sure to specify that you want the simulator to use the structure model (instead of the behavior model) as the design unit.  [6 pts]

10)  Using the NOR gates with a 4ns delay as the fundamental component of an RS flip flop, write the entity declaration and structural architecture model which corresponds to the gate-level schematic below.  Do not put any initial values on any signals within the model itself.






[image: image1.wmf]R

S

Q

QBAR


Write a simple tester and testbench which just initializes R to '1' at simulation time = 0.  Do not do anything else to R or S yet.  Compile the RS flip flop entity and start the simulator.  Verify that the Q output goes to 0 and QBAR goes to 1 after the proper gate delays.  [4 pts]

11)  Modify the tester file for problem 10 so that R is not initialized, and neither is S.  Without initializing R (or any other signals) to '1' at simulation time = 0, rerun the simulation for problem 10 above so that the simulator is in the default initial startup state (i.e. current sim time = 0 and all signals = '0').  Explain what happens.  Could such a phenomena actually occur in real life using real physical components ?  Explain why or why not.  [Hint:  Think about how a flip-flop works.  Consider what simulation is and how it models the world.  Then consider what a physical flip-flop would do in the first few moments after power-up, which is what is being modeled by the simulator at sim time = (0 + some very small delta) with all signals initialized to '0'.]    

[12 pts, based primarily upon the written explanations you provide.]

12)  Write an entity declaration and behavioral specification for a test generation circuit appropriate for use on the RS flip flop of problem 10 that will generate the following waveform.  Verify that the RS flip flop can be set and reset by R and S.  As with any flip-flop, note that at any given time, only either R or S is '1'.  List all input and output signals of the UUT to verify proper operation.  Explain the UUT's response when either the set or reset inputs are 1 ns pulses.  [5 pts]


 EMBED Word.Picture.8  


13)  Repeat the simulation performed as part of problem 12 using TRANSPORT delay (instead of the default inertial delay) on the NOR gates of the RS flip flop.  Explain how and why the UUT's response is different from the inertial delay model.  [5 pts]

_1061295849.doc


R







S







Q







QBAR












_1061293951.unknown

