
CS 255: Design and Analysis of Algorithms SJSU Spring 2019
Professor Christopher Pollett March 4, 2019

Homework 2: Parallel Algorithms

Problem 1

CLRS 27.1-2. Draw the computation dag that results from executing P-Fib(5). Assuming that each
strand in the computation takes unit time, what are the work, span, and parallelism of the computation?
Show how to schedule the dag on 3 processors using greedy scheduling by labeling each strand with the time
step in which it is executed.

Solution: Scheduling the dag on 3 processors using a greedy DFS rule,

• Work (T1) is the total number of strands: T1 = 29

• Span (T∞) is the longest (critical) path from the initial strand to the final strand: T∞ = 10

• Parallelism is the ratio of work to span: T1/T∞ = 29/10 = 2.9

• There are 8 complete (3 strands), 1 incomplete (2 strands), and 3 incomplete (1 strand) steps = 29 = T1.

1



2

Problem 2

CLRS 27.1-6. Give a multithreaded algorithm to multiply an n × n matrix by an n-vector that achieves
Θ(n2/ lg n) parallelism while maintaining Θ(n2) work.

Solution: Consider the Mat-Vec procedure given in the textbook (Appendix), which has work T1 = Θ(n2)
and span T1 = Θ(n). To improve the parallelism of Mat-Vec to Θ(n2/ lg n), we investigate the dominating
linear term from the inner loop that is not parallelized. We are initially unable to parallelize the inner loop
due to potential race conditions, but to avoid races totally, we parallelize by computation of whole rows,
as opposed one term at a time. In other words, we expand the matrix into row vectors; given a matrix
A ∈ Mn(C) and vector x ∈ Cn, the ith element of the resultant vector y = Ax is the inner product of the
ith row of A with x. We can implement this by slightly modifying Mat-Vec with a divide-and-conquer
subroutine using nested parallelism similar to Mat-Vec-Main-Loop (Appendix) from the textbook,

Algorithm 1: P-Mat-Vec(A, x)

input : Matrix A, vector x
output: vector y: outcome of matrix-vector multiplication of A and x

1 n = A.rows
2 let y be a new vector of length n
3 parallel for i = 1 to n do
4 yi = 0

5 parallel for i = 1 to n do
6 yi = P-Mat-Vec-Loop(A, x, i, 1, n)

7 return y

Algorithm 2: P-Mat-Vec-Loop(A, x, i, j, j′)

input : Matrix A, vector x, index i, index j, index j′

output: The inner product of ith row of matrix A with vector x from index j to j′

1 if j == j′ then
2 return Aij × xj

3 else
4 mid = b(j + j′)/2c
5 leftHalf = spawn P-Mat-Vec-Loop(A, x, i, j,mid)
6 rightHalf = P-Mat-Vec-Loop(A, x, i,mid + 1, j′)
7 sync
8 return lowerHalf + upperHalf

The work necessary for P-Mat-Vec is found by analyzing the recursive calls in P-Mat-Vec-Loop as they
are the dominating term. Given that P-Mat-Vec-Loop recursively calls two subproblems of size n/2,
calculating the base case takes constant time, and combining their results takes constant time:

T1(n) = 2T1(n/2) + Θ(1)

By the Master theorem, the work associated with P-Mat-Vec is T1(n) = Θ(n2), as expected.

The span of P-Mat-Vec can be found by considering the recurrence tree of P-Mat-Vec-Loop. It is a
complete binary tree with depth lg n, thus the span is T∞ = Θ(lg n). Therefore, the parallelism of P-Mat-
Vec is T1/T∞ = Θ(n2/ lg n) while maintaining Θ(n2) work.



3

Problem 3

CLRS 27.2-5. Give pseudocode for an efficient multithreaded algorithm that transposes an n×n matrix in
place by using divide-and-conquer to divide the matrix recursively into four n/2×n/2 submatrices. Analyze
your algorithm.

Solution: Consider the transpose of a block matrix expansion of some arbitrary square matrix A ∈Mn,

AT =

[
A11 A12

A21 A22

]T
=

[
AT

11 A21

A12 AT
22

]

We may solve for AT by partitioning A into four submatrices of size n/2 × n/2. Then, we swap block A12

with A21, recursively call two subproblems AT
11 and AT

22 on submatrices of size n/2× n/2, and combine the
results. The transpose of a single element matrix is itself. High level pseudocode is presented below:

Algorithm 3: P-Mat-Transpose(A)

input : Matrix A
output: The transpose of A

1 n = A.rows
2 if n == 1 then
3 return A

4 else
5 partition A into four n/2× n/2 submatrices: A11, A12, A21, and A22

6 // swap A12 and A21

7 A′
12 = A21

8 A′
21 = A12

9 // recursively call P-Mat-Transpose on subproblems.
10 A′

11 = spawn P-Mat-Transpose A11

11 A′
22 = P-Mat-Transpose A22

12 sync
13 A′ = combine A′

11, A
′
12, A

′
21, and A′

22

14 return A′

Analysis: The work T1 of P-Mat-Transpose in terms of the number of elements in the matrix E = n2 is
given by the recurrence T1(E) = 2T1(E/4)+Θ(E) as each recursive call to P-Mat-Transpose is called on a
subproblem of size n/2×n/2 with E/4 elements and each swap procedure must traverse at least E/4 = Θ(E)
elements. By the master theorem, the work T1 = Θ(E) = Θ(n2).

The span of P-Mat-Transpose is given by the maximum span of the swap procedure and the recursive calls
to P-Mat-Transpose. Each swap procedure has a span of Θ(lg(n2)) = Θ(lg n) using infinite processors
on n2 elements and the recursive calls obey the recurrence T∞(E) = T∞(E/4) + Θ(1) because combining
takes constant time. By the Master theorem, the span of the recursive calls is also Θ(lg n). Therefore,
because the span of the swap procedure and the recursive calls is asymptotically equal, the overall span of
P-Mat-Transpose is T∞ = Θ(lg n). The parallelism of P-Mat-Transpose is T1/T∞ = Θ(n2/ lg n).



4

Problem 4

Let A = (Aij) represent the adjacency matrix of an n node graph. I.e. aij is 1 if there is an edge from i to j
and 0 otherwise. Let Atrans = (a′ij) be the adjacency matrix of the transitive closure of A. That is, a′ij = 1
if there is a path from i to j in A and 0 otherwise. Design a multithreaded algorithm which computes Atrans

with work O(n4) and span O(log3(n)).

Solution: Main Idea: The transitive closure of a graph given its adjacency matrix A can be found by
taking nth power of A, i.e. Atrans = An. This is equivalent to finding the existence of paths of length at most
n from i to j in A. To do exponentiation, we call P-Matrix-Multiply-Recursive (Appendix) recursively
on pairs of matrices of size n/2. These subproblems are independent and can be solved in parallel. For
example, at n = 8, A8 = A4 ×A4 = (A2 ×A2)(A2 ×A2) = (A1 ×A1)(A1 ×A1)(A1 ×A1)(A1 ×A1).

Algorithm 4: P-Matrix-Transitive-Closure(A)

input : Adjacency Matrix A
output: Transitive Closure Atrans

1 return P-Matrix-Exponentiation(A, 1, n)

Algorithm 5: P-Matrix-Exponentiation(A, i, i′)

input : Matrix A ∈Mn, index i, index i′

output: A to the power of i′ − i + 1

1 Let C ∈Mn

2 if i == i’ then
3 return A

4 if i’ - i == 1 then
5 return P-Matrix-Multiply-Recursive(C,A,A)

6 mid = b(i + i′)/2c
7 leftHalf = spawn P-Matrix-Exponentiation(A, i,mid)
8 rightHalf = P-Matrix-Exponentiation(A,mid + 1, i′)
9 sync

10 return P-Matrix-Multiply-Recursive(C, leftHalf, rightHalf)

Proof of correctness: Matrix multiplcation works and we multiply A at the base level n times =⇒ An.

Running Time and Analysis: The work M1(n) of P-Matrix-Multiply-Recursive is found by serial-
ization. Partitioning takes constant time, and 8 recursive calls are made on n/2× n/2 matrices. Combining
the results of the subproblems is equal to the number of terms in the resultant matrix n × n = n2, or
Θ(n2) time. The recurrence for M1(n) is therefore M1(n) = 8M1(n/2) + Θ(n2) = Θ(n3) by the Master
theorem. The span M∞ of P-Matrix-Multiply-Recursive is determined by the span of any recursive
call (as all non base-case subproblems have the same span) and the cost of the parallel for loops after syn-
chronization which is Θ(lg n). Therefore, the recurrence of the span of P-Matrix-Multiply-Recursive is
M∞(n) = M∞(n/2) + Θ(lg n) = Θ(lg2(n)).

The work T1(n) of P-Matrix-Transitive-Closure is equal to the work E1(n) of P-Matrix-Exponentiation.
Serializing P-Matrix-Exponentiation would yield n subproblems, i.e. n calls to P-Matrix-Multiply-
Recursive, and work of E1(n) = Θ(nM1(n)). Therefore the total work is T1(n) = E1(n) = Θ(nM1(n)) =
Θ(n4), as desired. The span T∞(n) of P-Matrix-Transitive-Closure is equal to the span E∞(n) of
P-Matrix-Exponentiation. The span of P-Matrix-Exponentiation on n subproblems is E∞(n) =
Θ((lg n)M∞(n)). Therefore, the total span is T∞ = E∞ = Θ((lg n)M∞(n)) = Θ(lg3(n)).



5

Problem 5

Suppose we have an array A[1] to A[n] each entry of which has a positive integer. Devise a CREW PRAM
algorithm that sets each of these A[i]’s to the value of the maximum among A[i]’s in O(log n) steps using at
most n processors.

Solution: We sort the array using BoxSort in O(log n) steps. Once the array is sorted, we access the value
of the maximum and store it in some variable x in O(1) time. Then, setting each A[i] for i ∈ 1 . . . n to x with
at most n processors takes another O(log n) steps. Therefore, the overall procedure takes O(log n) steps.

Pseudocode:

Algorithm 6: Set-Max(A)

input : Array A
output: Array A with all elements set to the maximum value in A

1 n = A.rows
2 Box-Sort-Sub(A,n, 1, n)
3 x = A[n− 1]
4 parallel for i = 1 to n do
5 A[i] = x

6 return A

Algorithm 7: Box-Sort-Sub(A,n, i, i′)

1 if i′ − i <= log n then
2 LogSort(A[i . . . i′]) ; // trivial for n processors on a PRAM

3 else
4 S ← Pick k =

√
n elements at random and sort with n processors ; // splitters

5 Use the elements of S as “splitters” in A[i . . . i′] to create k + 1 subproblems
6 for each subproblem A[i, S1], A[S1, S2], . . . A[Sk, i

′] do
7 Box-Sort-Sub(A,n, . . . )



6

Coding Portion

For the coding part of this homework I would like you to write two parallel programs in Java: Thread-
Outer.java and JoclOuter.java. These programs should compute the outer product of two column vectors
~v and ~w, i.e. ~v ~wT . The first program makes use of Java Threads and the second makes use of JOCL jar
file that provides Java bindings to OpenCL. Both of these programs should compute the norm of a vector
of integers that comes from a file. I would like you to code both of your programs so that their spans are
O(log n). ThreadOuter.java will be compiled from the command line via:

java ThreadOuter.java

It can use either classic Java Threads or the Fork Join/Parallel Array frameworks in java.util.concurrent.
We didn’t talk about the latter so you’ll be on our own to lean if you want to use those. To run your program
I will then type:

java ThreadOuter filename with vector data

On this input, you program should read in the contents of filename with vector data, which should consist
of lines with two comma separated integers followed by a new line character/line, make two vectors ~x and
~y from these, and computes their outer product. Finally, it should output the resulting matrix, entries in a
row comma separated, rows delimited by a newline. For example, I might have the file my vectors.txt with
contents:

1,−1
2, 1
3, 4
10, 5

On this input, it should output:

−1, 1, 4, 5
−2, 2, 8, 10
−3, 3, 12, 15
−10, 10, 40, 50

Your JoclOuter.java program should do exactly the same thing, but use JOCL rather than Java Threads.
I.e., I’ll compile it with:

java JoclOuter.java

You can assume I have set up the classpath to find the JoCL jar file. Then I’ll run your program with a line
like:

java JoclOuter filename with vector data

For each program you should add a mechanism of your choice to time just the portion of the code in which
parallel processing is done (not reading in the file, you probably want to be using System.nanoTime()). I
want you to do experiments with both programs varying the length of the vector you compute the outer of.
Look up the number of cores the machine you are experimenting on has, and the number of GPU shader
processors it has. If you plot time versus the length of vectors you compute the outer products of, does it
match what you’d expect in each case if Brent’s Theorem were an equality rather than an inequality? Write
up your experiments also in Hw2.pdf. This timing should be turned off by default.

The above concludes the description of the required homework. I am also willing to give 1 bonus point if
you recode your JOCL program in Vulkan and if you show me your Vulkan code working.



7

Solution:

Using Java Thread,

Vector size Time (ns)
2 111190
4 112913
8 121152
16 121036
32 122767
64 126379



8

Using Java OpenCL,

Vector size Time (ns)
2 2030586
4 2026400
8 1993398
16 2197324
32 1986226
64 1848095
128 2118836
256 2135733
512 2147843
1024 1843220

We calculate the outer product of two vectors using Java Threads and Java OpenCL (JOCL). This was done
in span T∞ = Θ(log n). Coding and experiments were conducted on a 2015 Macbook Pro with a 2.8 GHz
Quad-core Intel Core i7 processor. There is a Built-In Intel Iris Pro GPU as well as a PCIe AMD Radeon
R9 M370X GPU. The AMD Radeon R9 is running 640 cores with 640 shading units.

The experiments were timed using Java’s System.nanoTime() function. Vectors of varying length were
randomly generated with elements ranging from 1 to 1000. Brent’s Theorem is given by:

TP ≤
T1

P
+ T∞

The amount of work scales with the input size, T1 = Θ(n), and the span T∞ = Θ(log n). Therefore, Brent’s
theorem becomes TP ≤ Θ(n) + Θ(log n). Assuming equality, TP = Θ(n). The experimental data from both
Threads and JOCL are roughly constant and therefore satisfy Brent’s Theorem with respect to T∞ in this
scenario. However this performance will decrease when the size of the input is greater than the number of
processors P available, i.e. when T1/P dominates T∞.



9

Appendix

Algorithm 8: Mat-Vec(A, x)

input : Matrix A, vector x
output: vector y: outcome of matrix-vector multiplication of A and x

1 n← A.rows
2 let y be a new vector of length n
3 parallel for i = 1 to n do
4 yi = 0

5 parallel for i = 1 to n do
6 for j = 1 to n do
7 yi = yi + aijxj

8 return y

Algorithm 9: Mat-Vec-Main-Loop(A, x, y, n, i, i′)

1 if i == i′ then
2 for j = 1 to n do
3 yi = yi + aijxj

4 else
5 mid = b(i + i′)/2c
6 spawn Mat-Vec-Main-Loop(A, x, y, n, i,mid)
7 Mat-Vec-Main-Loop(A, x, y, n,mid + 1, i′)
8 sync

Algorithm 10: P-Matrix-Multiply-Recursive(C,A,B)

1 n = A.rows
2 if n==1 then
3 c11 = a11 × b11

4 else
5 let T be a new n× n matrix
6 partition A,B,C, and T into n/2× n/2 submatrices

A11, A12, A21, A22;B11, B12, B21, B22;C11, C12, C21, C22; and T11, T12, T21, T22; respectively
7 spawn P-Matrix-Multiply-Recursive(C11, A11, B11)
8 spawn P-Matrix-Multiply-Recursive(C12, A11, B12)
9 spawn P-Matrix-Multiply-Recursive(C21, A21, B11)

10 spawn P-Matrix-Multiply-Recursive(C22, A21, B12)
11 spawn P-Matrix-Multiply-Recursive(T11, A12, B21)
12 spawn P-Matrix-Multiply-Recursive(T12, A12, B22)
13 spawn P-Matrix-Multiply-Recursive(T21, A22, B21)
14 P-Matrix-Multiply-Recursive(T22, A22, B22)
15 sync
16 parallel for i = 1 to n do
17 parallel for j = 1 to n do
18 cij = cij + tij


