CS 154 Formal Languages and Computability Assignment #7 Solutions

Department of Computer Science San Jose State University

Spring 2016 Instructor: Ron Mak

www.cs.sjsu.edu/~mak

- Show that the set of <u>recursively enumerable</u> languages is closed under <u>union</u>.
 - Let L₁ and L₂ be two recursively enumerable languages, and M₁ and M₂ be their accepting Turning machines, respectively.
 - Let M_{union} be a TM that comprises M_1 and M_2 running in parallel. Why do they have to run in parallel?
 - An input string w is accepted by M_{union} if it is accepted by <u>either</u> M_1 or M_2 <u>or both</u>.
 - M_{union} is a TM that accepts $L_1 \cup L_2$ and therefore the set of recursively enumerable languages is closed under union.

Computer Science Dept. Spring 2016: May 3

Assignment #7: Problem 1, cont'd

- Show that the set of <u>recursively enumerable</u> languages is closed under <u>intersection</u>.
 - Similar to the proof for union.
 - Let $M_{intersect}$ be a TM that comprises M_1 and M_2 .
 - An input string w is accepted by $M_{intersect}$ if it is accepted by <u>both</u> M_1 and M_2 . Since both need to halt and accept, they can run serially.
 - $M_{intersect}$ is a TM that accepts $L_1 \cap L_2$ and therefore the set of recursively enumerable languages is closed under intersection.

- Show that the set of <u>recursive</u> languages is closed under <u>union and intersection</u>.
 - Similar to proofs for recursively enumerable languages, except that we don't have to run M₁ and M₂ in parallel – one after the other will do.
 - But because L_1 and L_2 are recursive, we know that their membership TMs M_1 and M_2 will always halt.
 - Therefore, M_{union} and M_{intersect} will always halt, and so the set of recursive languages is closed under union and intersection.

- Show that the set of <u>recursive</u> languages is closed under <u>reversal</u>.
 - Let L be a recursive language and M be its membership TM.
 - Then we can construct an membership TM for L^R that reverses its input string and then calls TM M.
 - Therefore, the set of recursive languages is closed under reversal.

- Show that language L is recursive if it is accepted by a <u>non</u>deterministic Turing machine that always halts on any input string.
 - Theorem 10.2 of the textbook says that any nondeterministic TM can be simulated by (and is therefore equivalent to) a standard deterministic TM.
 - Therefore, if the TM always halts, then L must be recursive.

- □ Suppose a language *L* has a function fsuch that f(w) = 1 if $w \in L$ and f(w) = 0 otherwise. Show that function *f* is Turing-computable if and only if the language *L* is recursive.
 - Let *L* be recursive.
 - Then L must have a membership TM M that always halts.
 - Therefore, the TM for f simply feeds its input string w into M and outputs M's result as its own.

Assignment #7: Problem 5, cont'd

- □ Suppose a language *L* has a function fsuch that f(w) = 1 if $w \in L$ and f(w) = 0 otherwise. Show that function *f* is Turing-computable if and only if the language *L* is recursive.
 - Let f be computable.
 - Then f has a TM F that for input string w outputs either 1 or 0 depending on whether or not it accepts w.
 - Therefore, the TM for L simply feeds its input into F and outputs F's result as its own.

- □ Let *D* be a recursive language of string pairs $\langle x, y \rangle$. Let *C* be the set of all strings *x* for which there exists some *y* such that $\langle x, y \rangle \in D$. Show that *C* is recursively enumerable.
 - Since D is recursive, it has a membership TM M_D that always halts.
 - Construct a TM M_C that, for each input string x, it can generate all possible strings y in proper order.
 - For each generated y, M_C calls M_D with the pair $\langle x, y \rangle$.
 - M_C accepts x if M_D halts and accepts some pair $\langle x, y \rangle$.

Given x, M_C might never find a y such M_D accepts $\langle x, y \rangle$, and so M_C might not halt.

- □ Let *C* be a recursively enumerable language. Show that there exists a recursive language *D* of string pairs such that *C* contains exactly the strings *x* such that there exists some *y* such that $<x, y> \in D$.
 - Let TM M_C accept C. Create a TM M_D .
 - For each $x \in C$, choose a string y that represents a positive integer. Why limit the number of steps?
 - M_D simulates M_C on x and lets M_C run at most y steps.
 - If M_C accepts x within y steps, then M_D accepts $\langle x, y \rangle$.
 - Therefore, M_D defines the recursive language D.

Computer Science Dept. Spring 2016: May 3 CS 154: Formal Languages and Computability © R. Mak