CS 154 Formal Languages and Computability Assignment #3 Solutions

Department of Computer Science San Jose State University

Spring 2016 Instructor: Ron Mak

www.cs.sjsu.edu/~mak

The Pumping Lemma for Regular Languages

- \Box Let *L* be an infinite regular language.
- □ Then for <u>any</u> string $w \in L$, there exists a positive integer *m* such that we can decompose *w* into *xyz*, where
 - $|w| \ge m$ $|xy| \le m$

We might not know <u>what value</u> *m* has, only that it <u>exists</u>.

- $|y| \ge 1$
- And $w_i = xy^i z$ is also in L for <u>all</u> i = 0, 1, 2, ...

In particular, when i = 0, the string xz is in L.

Computer Science Dept. Spring 2016: March 8 CS 154: Formal Languages and Computability © R. Mak

The Pumping Lemma for RLs, cont'd

- □ We use the pumping lemma to prove that a given language L is <u>not</u> regular.
- We do so using a proof by contradiction.
- \Box Assume that L is regular. A language is either regular or not.
- □ And so the pumping lemma must hold for all strings w in L.
- □ Show that this leads to a contradiction.
- □ Therefore, the original assumption that L is regular must not be true and L is not regular.

- Use the pumping lemma to show that the language $L = \{a^n : n \text{ is a perfect cube: } 0, 1, 8, 27, ...\}$ is not regular. All string lengths are perfect cubes.
- Assume that *L* is regular and so the pumping lemma must hold for any string *w* in *L*. We don't know what *m*
- Choose $w = xyz = a^{m^3}$ with $|xy| \le m$ and $|y| \ge 1$.
- Since $w_i = xy^i z$ is in L for <u>all</u> i = 0, 1, 2, ..., choose i = 3: $w_3 = xy^3 z$

$$\square |xy^{3}z| = |xyz| + 2|y| = m^{3} + 2|y|$$

- D But $|y| \le m$ since $|xy| \le m$, and so $|xy^3z| = m^3 + 2|y| \le m^3 + 2m < (m+1)^3$ $(m+1)^3 = m^3 + 3m^2 + 3m + 1$
- □ Also since $|y| \ge 1$, $|xy^3z| = m^3 + 2|y| > m^3$
- □ So $m^3 < |xy^3z| < (m+1)^3$ and so $|xy^3z|$ cannot be a perfect cube since it's between two consecutive perfect cubes.
- Therefore, xy^3z is not in *L*, a contradiction, and so <u>*L* is not regular</u>.

Assignment #3: Question 1 (Alternate)

- Use the pumping lemma to show that the language $L = \{a^n : n \text{ is a perfect cube: } 0, 1, 8, 27, ...\}$ is not regular.
- □ Assume that L is regular and so the pumping lemma must hold for any string w in L.
- Choose $w = xyz = a^{m^3}$ with $|xy| \le m$ and $|y| \ge 1$.

$$\Box \quad \text{Then } y = a^k \text{ for some } 1 \le k \le m.$$

- □ The <u>pumped strings</u> will be $w_i = a^{m^3 + (i-1)k}$ for i = 0, 1, 2, ...
 - w_0 is the string that does not contain y.
- □ But $w_2 = a^{m^3+k} \notin L$ because $m^3 < m^3 + k < m^3 + m < (m+1)^3$ *i.e.*, $|w_2|$ is between two consecutive perfect cubes.
- **This is a contradiction, so** L is not regular.

- Use the pumping lemma to show that the language $L = \{a^n : n \text{ is a power of } 2: 1, 2, 4, 8, ...\}$ is not regular.
- □ Assume that L is regular and so the pumping lemma must hold for any string w in L.
- □ Let *p* be the smallest integer such that $2^p > m$.
- Choose $w = xyz = a^{2^p}$ and then $y = a^k$ for some $1 \le k \le m$.
- □ The <u>pumped strings</u> will be $w_i = a^{2^p + (i-1)k}$ for i = 0, 1, 2, ...
 - w_0 is the string that does not contain y.
- But $w_2 = a^{2^p+k} \notin L$ because $2^p < 2^p + k \le 2^p + m < 2^p + 2^p = 2^{p+1}$ *i.e.*, $|w_2|$ is between two consecutive powers of 2.
- **This is a contradiction, so** L is not regular.

- Use the pumping lemma to show that the language $L = \{a^{pq} : p \text{ and } q \text{ are both prime numbers}\}$ is not regular.
- □ Assume that L is regular and so the pumping lemma must hold for any string w in L.
- □ Let *p* and *q* be the smallest primes such that $pq \ge m$.
- Choose $w = xyz = a^{pq}$ and then $y = a^k$ for some $1 \le k \le m$.
- □ The <u>pumped strings</u> will be $w_i = a^{pq+(i-1)k}$ for i = 0, 1, 2, ...
 - w_0 is the string that does not contain y.
- □ But $w_{pq+1} = a^{pq+pqk} \notin L$ because pq + pqk = pq(1 + k)which is not a product of two primes.
- **This is a contradiction, so** L is not regular.

- Use the pumping lemma to show that the language $L = \{a^p b^q : p \text{ divided by } q \text{ is an integer quotient}\}$ is not regular.
- □ Assume that L is regular and so the pumping lemma must hold for any string w in L.
- Choose $w = a^m b^m$ and then $y = a^k$ for some $1 \le k \le m$.
- □ In the pumped strings, choose i = 0 to remove y from the first half of w and so (m-k)/m is not integer.
- **This is a contradiction, so** L is not regular.

- Use the pumping lemma to show that the language $L = \{a^p b^q : p + q \text{ is a prime number}\}$ is not regular.
- □ Assume that L is regular and so the pumping lemma must hold for any string w in L.
- Choose $w = a^m b^{p-m}$ where p > m is a prime number.
- Choose $y = a^k$ for some $1 \le k \le m$.
- □ The <u>pumped strings</u> will be $w_i = a^{m+(i-1)k}b^{p-m}$ for i = 0, 1, 2, ...
 - w_0 is the string that does not contain y.
- □ But $w_{p+1} = a^{m+pk}b^{p-m} \notin L$ because (m + pk) + (p m) = p(1 + k)and so the sum of the two exponents is not prime.
- This is a contradiction, so <u>L is not regular</u>.

- Let $\Sigma = \{0, 1, +, =\}$. Use the pumping lemma to show that the language $L = \{b_1=b_2+b_3: b_1, b_2, b_3 \text{ are binary integers,} and <math>b_1$ is the sum of b_2 and $b_3\}$ is not regular. For example, the string 1001=10+111 is in *L*.
- □ Assume that L is regular and so the pumping lemma must hold for any string w in L.
- □ Choose w = xyz be the string $1^m = 0^m + 1^m$.
 - Example: 11111=00000+11111
- □ And so $y = 1^k$ for some $1 \le k \le m$.
- □ Then xy^2z is the string $1^{m+k}=0^m+1^m$ which is not in *L*.
- \square This is a contradiction, so <u>*L*</u> is not regular.

□ Let language *L* be denoted by the regular expression a*b*. What is wrong with the following "proof" that *L* is not regular? Of course, *L* is regular.

Assume that *L* is regular. Then it must be defined by a DFA with *k* states, for some integer k > 0. Take the string $w = a^k b^k$ and split it w = xyz, with y = ab. Then wy^2z is not in *L*, which contradicts the pumping lemma. Therefore, *L* cannot be regular.

□ Since $|xy| \le m$, setting y = ab says that $m = |a^*| + 1$.

- But the pumping lemma states that there there <u>exists</u> a positive integer *m*, so even if $m = |a^*| + 1$ doesn't work for the lemma, there could be another value for *m* that does.
- For example, if $m \le |a^*|$ and y is all a's, the lemma holds.

- □ Prove whether or not language $L = \{a^{p+qi} : p \text{ and } q \text{ are fixed integer values, and } i \ge 0\}$ is regular.
- □ The language is regular because its strings are denoted by the regular expression $a^p(a^q)^*$.

- □ Prove whether or not language $L = \{a^p b^q : p \ge 100 \text{ and } q \ge 100 \text{ are fixed integer values}\}$ is regular.
- □ The language is regular because its strings are denoted by the regular expression $a^{100}a^*b^{100}b^*$.

Assume that <stmt>, <if_stmt>, <boolexpr>, and <assign_stmt> are nonterminal symbols, and if, else, (, and) are terminal symbols.

Here's a grammar written in BNF for Java-style IF statements:

<stmt></stmt>	::= <assign_stmt> <if_stmt></if_stmt></assign_stmt>	
<if_stmt></if_stmt>	::= if (<boolexpr>) <stmt></stmt></boolexpr>	
	<pre> if (<boolexpr>) <stmt> else <stmt></stmt></stmt></boolexpr></pre>	•

How is this grammar ambiguous? Give an example of an ambiguity.

Assignment #3: Question 10, cont'd

<stmt></stmt>	::=	<assign_stmt> <if_stmt></if_stmt></assign_stmt>
<if_stmt></if_stmt>	::=	<pre>if (<boolexpr>) <stmt></stmt></boolexpr></pre>
	I	<pre>if (<boolexpr>) <stmt> else <stmt></stmt></stmt></boolexpr></pre>

- An if statement has an optional else part.
- An if statement contains one or two statements, П each of which can in turn be an if statement.
- The grammar is ambiguous. п
- In the statement

if (a == b) if (c == d) x = 1 else y = 1

To which if statement does the else part belong? ls it if (a == b) if (c == d) x = 1 else y = 1 Most languages take the first choice.

if (a == b) if (c == d) x = 1 else y = 1

Or