#### CS 154 Formal Languages and Computability Assignment #2 Solutions

#### Department of Computer Science San Jose State University

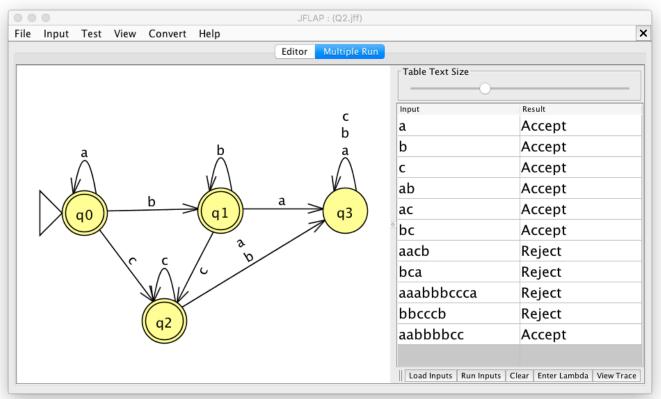


Spring 2016 Instructor: Ron Mak

www.cs.sjsu.edu/~mak



□ Use JFLAP to construct the transition graph for the DFA that accepts all strings (and only those strings) on the alphabet  $\{a, b, c\}$  that have an odd number of *a*'s.


| • •  | •            |      |          |         |      | JFLAP : (Q  | 1.jff)                                 |                                    |
|------|--------------|------|----------|---------|------|-------------|----------------------------------------|------------------------------------|
| File | Input        | Test | View     | Convert | Help |             |                                        |                                    |
|      |              |      |          |         |      | Editor Mult | iple Run                               |                                    |
|      |              |      |          |         |      |             | Table Text Size                        |                                    |
|      |              |      |          |         |      |             | —————————————————————————————————————— |                                    |
|      |              |      |          |         |      | b           | Input                                  | Result                             |
|      |              | b    |          |         |      | b           | a                                      | Accept                             |
|      |              | C    |          |         |      | c           | ab                                     | Accept                             |
|      |              | ( )  |          |         |      | , (, )      | abc                                    | Accept                             |
|      |              | K    | 1        | 2       |      |             | abaab                                  | Accept                             |
|      | $\mathbb{N}$ |      | <u> </u> | a       |      |             | bccbc                                  | Reject                             |
|      | X            | q0   | F        |         |      |             | baccaab                                | Accept                             |
|      | V            |      |          | a       |      |             | accbbaaba                              | Reject                             |
|      |              |      |          |         |      |             |                                        |                                    |
|      |              |      |          |         |      |             | Load Inputs Run In                     | puts Clear Enter Lambda View Trace |



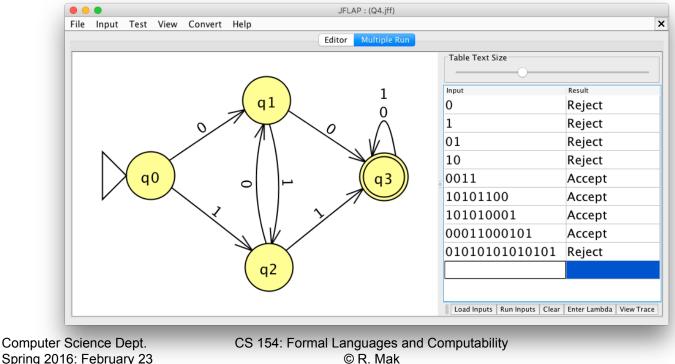
Computer Science Dept. Spring 2016: February 23

Use JFLAP to construct the transition graph for the DFA that accepts all strings (and only those strings) on the alphabet {a, b, c} that have the symbols in alphabetical


order.

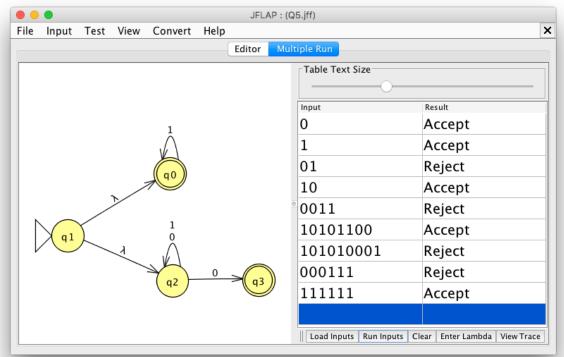





Computer Science Dept. Spring 2016: February 23

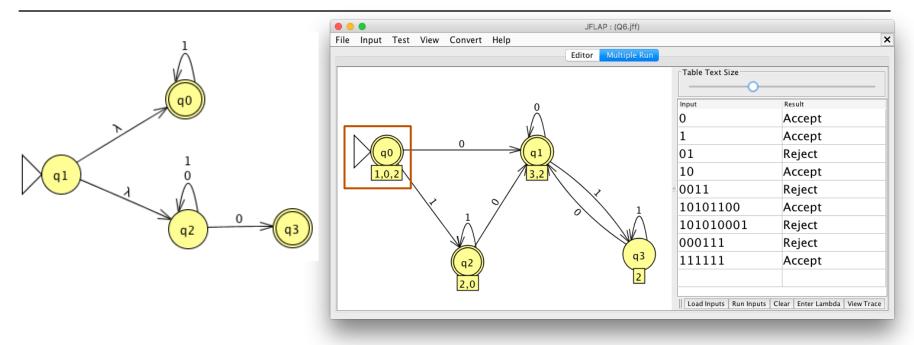
- Describe in words the strings that the following DFA accepts and demonstrate your answer with some sample strings.
  - All strings that contain an even number of 0's or an even number of 1's.





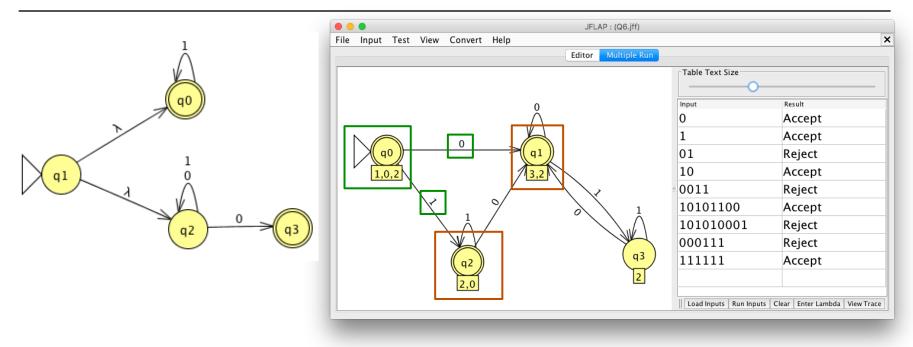

- Describe in words the strings that the following DFA accepts and demonstrate your answer with some sample strings.
  - All strings that contain either two consecutive 0's or two consecutive 1's.






- Describe in words the strings that the following NFA accepts and demonstrate your answer with some sample strings.
  - All strings that contain all 1's or end with a 0.

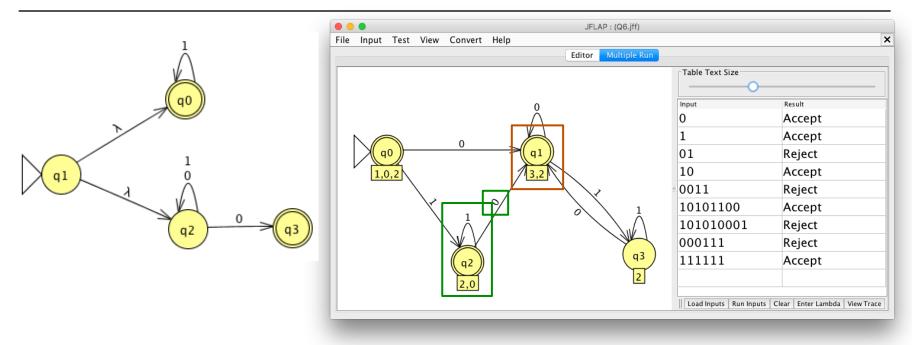





Computer Science Dept. Spring 2016: February 23



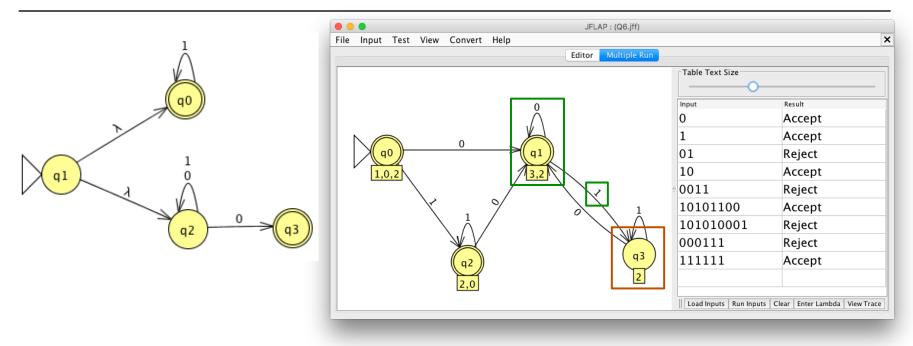
□ NFA start state  $q_0$  has  $\lambda$ -transitions to states  $q_1$  and  $q_2$ , so label the DFA start state  $\{q_0, q_1, q_2\}$ .






- $\square \text{ NFA: } \delta(q_0, 0) = \phi \text{ and } \delta(q_1, 0) = \phi \text{ and } \delta(q_2, 0) = \{q_2, q_3\}, \text{ so } DFA \ \delta(\{q_0, q_1, q_2\}, 0) = \{q_2, q_3\}. \text{ Perform the union.}$
- □ NFA:  $\delta(q_0, 1) = \{q_0\}$  and  $\delta(q_1, 1) = \phi$  and  $\delta(q_2, 1) = \{q_2\}$ , so DFA  $\delta(\{q_0, q_1, q_2\}, 1) = \{q_0, q_2\}$ .

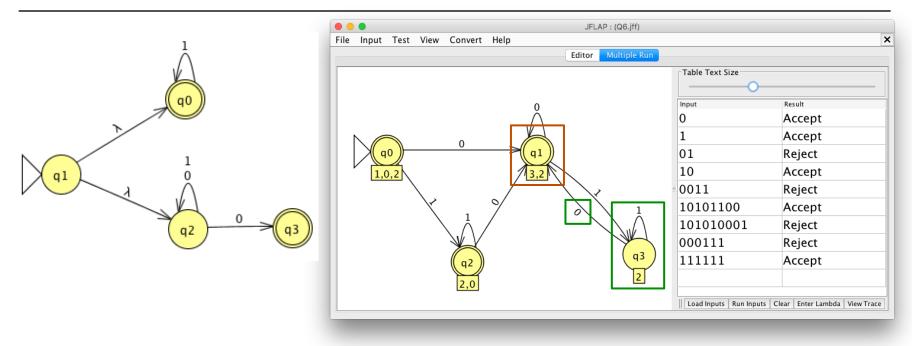



Computer Science Dept. Spring 2016: February 23



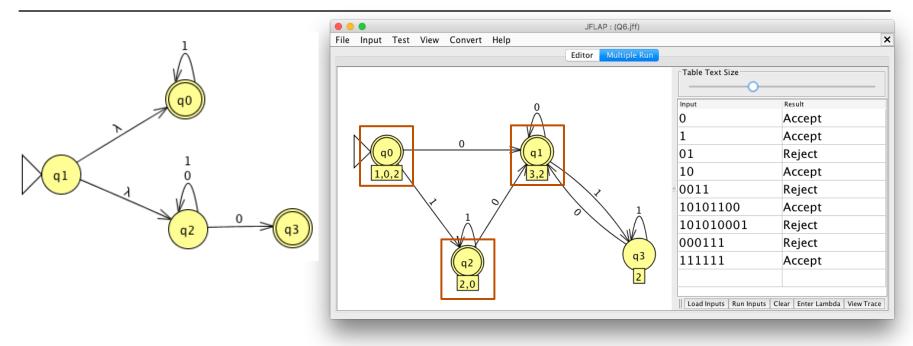
- □ NFA:  $\delta(q_0, 0) = \phi$  and  $\delta(q_2, 0) = \{q_2, q_3\}$ , so DFA  $\delta(\{q_0, q_2\}, 0) = \{q_2, q_3\}$ .
- □ NFA:  $\delta(q_0, 1) = \{q_0\}$  and  $\delta(q_2, 1) = \{q_2\}$ , so DFA  $\delta(\{q_0, q_2\}, 1) = \{q_0, q_2\}$ .




Computer Science Dept. Spring 2016: February 23



- □ NFA:  $\delta(q_2, 0) = \{q_2, q_3\}$  and  $\delta(q_3, 0) = \phi$ , so DFA  $\delta(\{q_2, q_3\}, 0) = \{q_2, q_3\}$ .
- □ NFA:  $\delta(q_2, 1) = \{q_2\}$  and  $\delta(q_3, 1) = \phi$ , so DFA  $\delta(\{q_2, q_3\}, 1) = \{q_2\}$ .




Computer Science Dept. Spring 2016: February 23



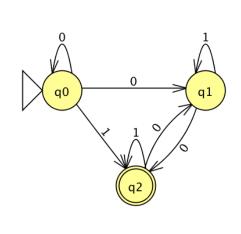
- $\square \text{ NFA: } \delta(q_2, 0) = \{q_2, q_3\} \text{ so DFA } \delta(\{q_2\}, 0) = \{q_2, q_3\}.$
- $\square \text{ NFA: } \delta(q_2, 1) = \{q_2\} \text{ so DFA } \delta(\{q_2\}, 1) = \{q_2\}.$

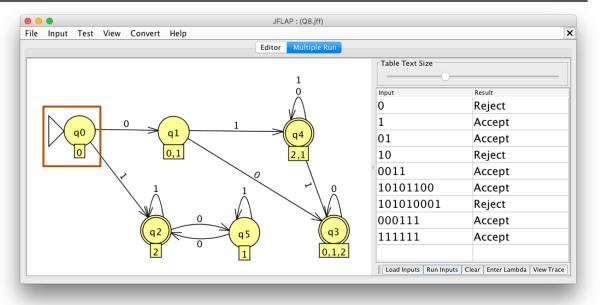




□ Since NFA  $q_0$  and  $q_3$  are final states, DFA  $\{q_0, q_1, q_2\}$ ,  $\{q_0, q_2\}$ , and  $\{q_2, q_3\}$  must be final states.



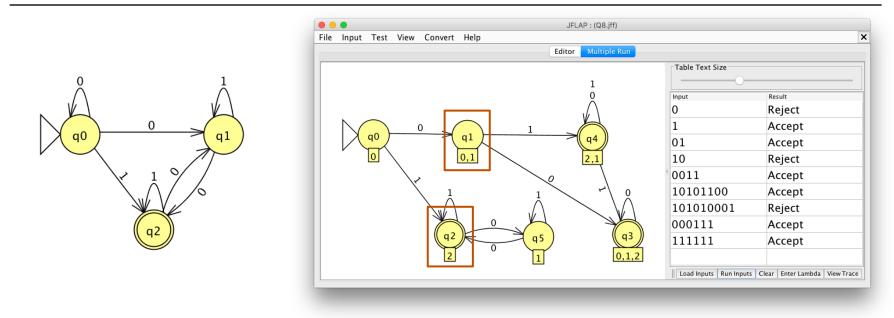

□ Construct the NFA where  $\Sigma = \{0, 1\}$ ,  $q_0$  is the starting state, and  $q_2$  is the final state.


|       | 0          | 1     |
|-------|------------|-------|
| $q_0$ | $q_0, q_1$ | $q_2$ |
| $q_1$ | $q_2$      | $q_1$ |
| $q_2$ | $q_1$      | $q_2$ |

| •    | •     |          |      |                |          | JFLAP : (Q             | 7.jff)              |          |                |            |
|------|-------|----------|------|----------------|----------|------------------------|---------------------|----------|----------------|------------|
| File | Input | Test     | View | Convert        | Help     |                        |                     |          |                | ×          |
|      |       |          |      |                |          | Editor Mult            | iple Run            |          |                |            |
|      |       |          |      |                |          |                        | Table Text Size     | )        |                |            |
|      |       | 0        |      |                |          | 1                      | Input               | R        | lesult         |            |
|      |       | Ň        |      |                |          | $\dot{\frown}$         | 0                   | F        | Reject         |            |
|      |       |          | ١    |                |          | $\langle \rangle$      | 1                   | A        | Accept         |            |
|      |       |          |      | 0              |          |                        | 01                  | A        | Accept         |            |
|      |       | q0       |      |                |          | $\left( q^{1} \right)$ | 10                  | F        | Reject         |            |
|      | V     | $\smile$ |      |                |          | 7                      | 0011                | A        | Accept         |            |
|      |       |          |      | $\checkmark$ 1 | $\gamma$ |                        | 10101100            | A        | Accept         |            |
|      |       |          |      | $\sum_{n} ($   |          | /0                     | 101010001           | F        | Reject         |            |
|      |       |          |      |                | K        |                        | 000111              | A        | Accept         |            |
|      |       |          |      | ( q2           | ))       |                        | 111111              | A        | Accept         |            |
|      |       |          |      |                | /        |                        |                     |          |                |            |
|      |       |          |      |                |          |                        | Load Inputs Run Inp | uts Clea | r Enter Lambda | View Trace |

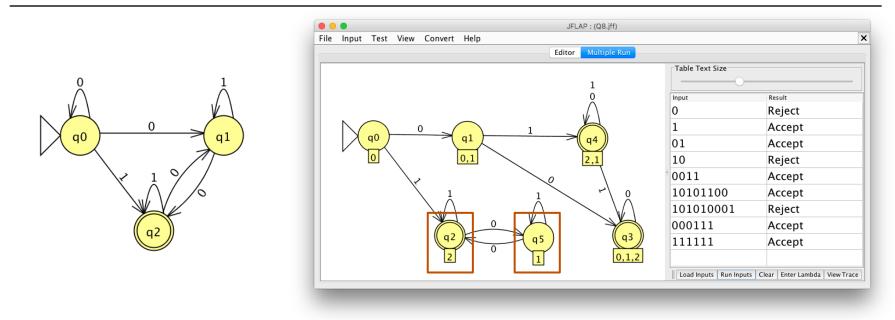


Computer Science Dept. Spring 2016: February 23



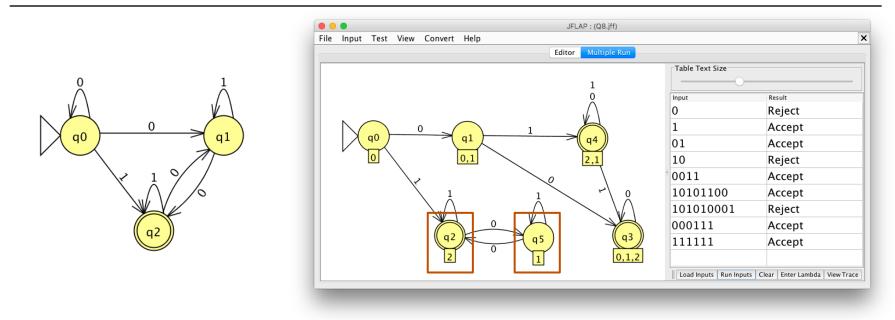



□ NFA: start state  $q_0$ , so DFA start state  $\{q_0\}$ 



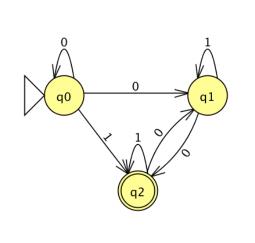

Computer Science Dept. Spring 2016: February 23

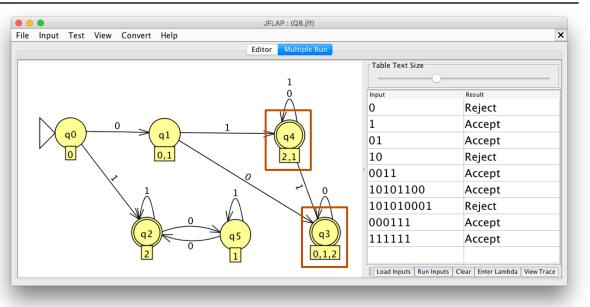



 $\square \text{ NFA: } \delta(q_0, 0) = \{q_0, q_1\}, \text{ so DFA } \delta(\{q_0\}, 0) = \{q_0, q_1\}$  $\square \text{ NFA: } \delta(q_0, 1) = \{q_2\}, \text{ so DFA } \delta(\{q_0\}, 1) = \{q_2\}$ 





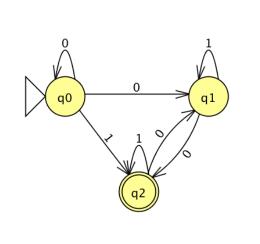

 $\square \text{ NDA: } \delta(q_2, 0) = \{q_1\}, \text{ so DFA } \delta(\{q_2\}, 0) = \{q_1\}$  $\square \text{ NDA: } \delta(q_2, 1) = \{q_2\}, \text{ so DFA } \delta(\{q_2\}, 1) = \{q_2\}$ 

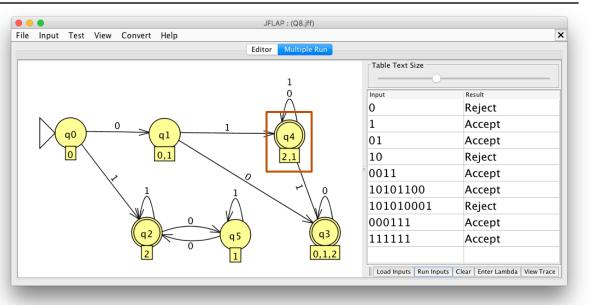





NDA:  $\delta(q_1, 0) = \{q_2\}$ , so DFA  $\delta(\{q_1\}, 0) = \{q_2\}$  NDA:  $\delta(q_1, 1) = \{q_1\}$ , so DFA  $\delta(\{q_1\}, 1) = \{q_1\}$ 



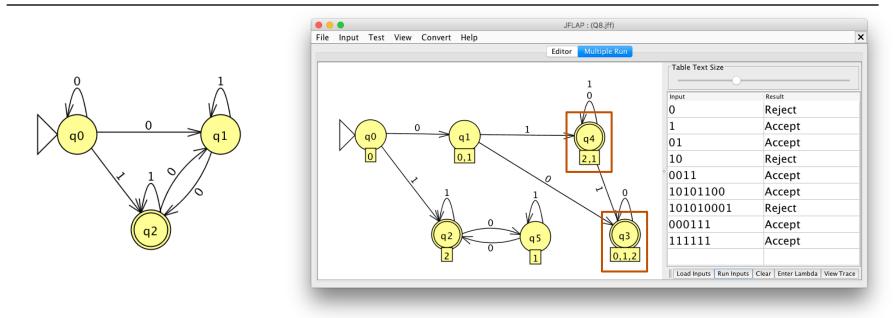



- $\square \text{ NFA: } \delta(q_0, 0) = \{q_0, q_1\} \text{ and } \delta(q_1, 0) = \{q_2\}, \\ \text{so DFA } \delta(\{q_0, q_1\}, 0) = \{q_0, q_1, q_2\}$
- $\square \text{ NFA: } \delta(q_0, 1) = \{q_2\} \text{ and } \delta(q_1, 1) = \{q_1\}, \\ \text{so DFA } \delta(\{q_0, q_1\}, 1) = \{q_1, q_2\}$



Computer Science Dept. Spring 2016: February 23

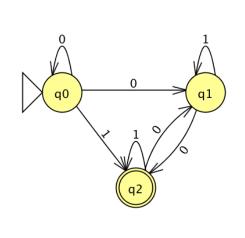


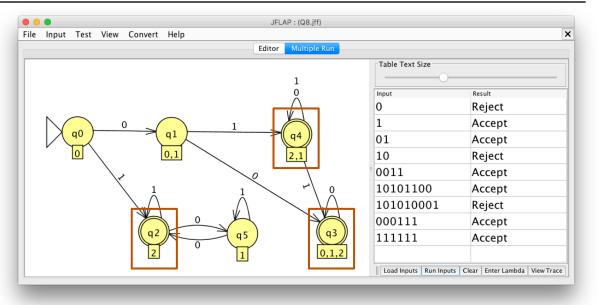



- □ NDA:  $\delta(q_1, 0) = \{q_2\}$  and  $\delta(q_2, 0) = \{q_1\}$ , so DFA  $\delta(\{q_1, q_2\}, 0) = \{q_1, q_2\}$
- D NDA:  $\delta(q_1, 1) = \{q_1\}$  and  $\delta(q_2, 1) = \{q_2\}$ , so DFA  $\delta(\{q_1, q_2\}, 1) = \{q_1, q_2\}$



Computer Science Dept. Spring 2016: February 23





 $\square \text{ NDA: } \delta(q_0, 0) = \{q_0, q_1\} \text{ and } \delta(q_1, 0) = \{q_2\} \text{ and } \delta(q_2, 0) = \{q_1\}, \text{ so DFA } \delta(\{q_0, q_1, q_2\}, 0) = \{q_0, q_1, q_2\}$ 

 $\square \text{ NDA: } \delta(q_0, 1) = \{q_2\} \text{ and } \delta(q_1, 1) = \{q_1\} \text{ and } \delta(q_2, 1) = \{q_2\}, \text{ so DFA } \delta(\{q_0, q_1, q_2\}, 1) = \{q_1, q_2\}$ 



Computer Science Dept. Spring 2016: February 23

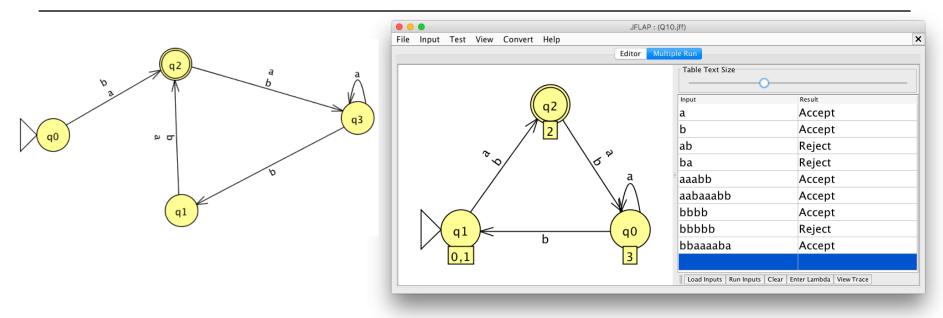




□ NDA final state  $q_2$ , so DFA final states  $\{q_2\}$ ,  $\{q_1, q_2\}$ , and  $\{q_0, q_1, q_2\}$ 



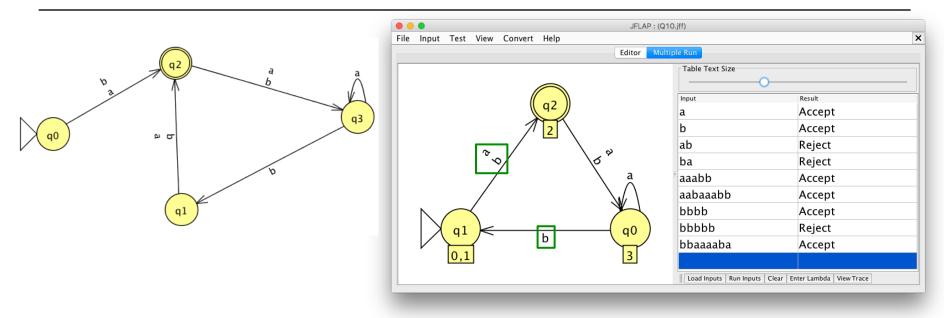
Computer Science Dept. Spring 2016: February 23


□ Construct the DFA where  $\Sigma = \{a, b\}$ ,  $q_0$  is the starting state, and  $q_2$  is the final state.

|                                   | JFLAP : (Q9.jff)                |                                        |            |
|-----------------------------------|---------------------------------|----------------------------------------|------------|
| File Input Test View Convert Help |                                 |                                        | ×          |
|                                   | Editor Multiple Run             |                                        |            |
|                                   | Table                           | e Text Size                            |            |
|                                   |                                 | 0                                      |            |
|                                   | Input                           | Result                                 |            |
|                                   | a                               | Accept                                 |            |
| P P                               | $\frac{a}{b}$ $\bigwedge^{a}$ b | Accept                                 |            |
| 2                                 | ab                              | Reject                                 |            |
|                                   | (q3) ba                         | Reject                                 |            |
| ф0 <sup>№</sup> Ф                 | aaal                            | bb Accept                              |            |
|                                   |                                 | aaabb Accept                           |            |
|                                   | bbb                             | b Accept                               |            |
| ql                                | bbb                             | bb Reject                              |            |
| di di                             | bba                             | aaaba Accept                           |            |
|                                   |                                 |                                        |            |
|                                   | Load                            | d Inputs Run Inputs Clear Enter Lambda | View Trace |

|       | a     | b     |
|-------|-------|-------|
| $q_0$ | $q_2$ | $q_2$ |
| $q_1$ | $q_2$ | $q_2$ |
| $q_2$ | $q_3$ | $q_3$ |
| $q_3$ | $q_3$ | $q_1$ |




Computer Science Dept. Spring 2016: February 23



- □ State  $q_2$  is final: 013|2
- □ From states  $q_0$  and  $q_1$ , all strings lead to final state  $q_2$ : 01|3|2
- No further partitioning is possible.



Computer Science Dept. Spring 2016: February 23



- **Original:**  $\delta(q_0, w) = \delta(q_1, w) = q_2$  for all w in Σ Minimized:  $\delta^*(\{q_0, q_1\}, w) = \{q_2\}$
- Original:  $\delta(q_3, b) = q_1$ Minimized:  $\delta(\{q_3\}, b) = \{q_0, q_1\}$



Computer Science Dept. Spring 2016: February 23