
Adding Breadth to CSI and CS2 Courses
Through Visual and Interactive Programming Projects

Ricardo Jimenez-Peris Sami Khuri
Universidad Politecnica San Jose State University

de Madrid Dept. of Mathematics and
Facultad de lnformatica Computer Science

208060 Madrid, Spain San Jose, CA 95192, USA
rjimenez@fi.upm.es khuri@cs.sjsu.edu

Marta Patiiio-Martinez
Universidad Politecnica

de Madrid
Facultad de lnformitica

208060 Madrid, Spain
mpatino@fi.upm.es

Abstract
The aim of programming projects in CSKS2 is to put in
practice concepts and techniques learnt during lectures.
Programming projects serve a dual purpose: first, the
students get to practice the programming concepts taught in
class, and second, they are introduced to an array of topics
that they will cover later in their computer science
education.

In this work, we present programming projects we have
successfully used in CSKS2. These topics have added
breadth to CSlKS2 as well as whetted our students’
appetite by exposing them to concurrent programming,
event-driven programming, graphics management and
human-computer interfaces, data compression, image
processing and genetic algorithms.

We also include the background material, such as tools
and libraries we have provided our students to render the
more difficult projects amenable to our introductory
computer science classes.

1. Introduction
One of the challenges that CSlKS2 instructors are

faced with is to motivate students to work on the
programming concepts they have learned during the
lectures. Quite often, students are discouraged because of
the nature of the problems they are asked to implement.
They fail to see the application of these programs in the real
world. We believe that assigning challenging programming
projects that capture their attention can solve the problem.
In this paper, we propose a set of programming project

PermissIon to make digital or hard copies of all or part of this work for
personal or classroom use IS granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copes bear this notlce and the full cltatlon on the ftrst page
To copy otherwse. to republish, to post on servers or to
redistribute to IIsts. reqwes proor specific permission and/or a fee.
SIGCSE ‘99 3/99 New Orleans. LA. USA
0 1999 ACM l-581 13.065.6/99/0003...$5.00

topics aimed at motivating students in some attractive areas
of computer science. These projects serve a dual purpose.
First, the students get to practice the programming concepts
taught in class, and second, they are introduced to an array
of topics that they will cover later in their computer science
education.

Imbedding the CSlKS2 curricula with additional topics
that students will be studying later in their computer science
education is not new. Holmes et al. [5] for instance, focus
on the breadth of topics to which computability might apply
by incorporating concept tutorials on various topics such as
security, error-correcting codes, and system analysis, in
their introductory courses.

Using the implementation of games to motivate CSl
students is also not new. Pargas et al. [7] use the game of
Nim to make the students learn “how to develop a strategy,
decide on the best structure and algorithms to implement
the strategy, and refine the design and implementation
through testing”. Similarly, Adams [l] uses a 2-person
game, “Chance-It” as a project to help students understand
object-oriented concepts. We agree with his findings that a
carefully devised game motivates students and providing
them with code fiamework gives them a good starting
point. \

Some of the projects ‘we introduce are, at first glance,
very challenging. We show how the difftculties can be
overcome by having the instructor provide some
background material that alleviates some of the difficulties
associated with the projects. Depending on the project, the
instructor’s assistance might consist in providing tools, or
libraries of functions that can get the students started on the
projects. We also describe. the concepts the students will be
practicing and the major benefits they will get from the
proposed projects.

Other works in the literature that share the same goal as
ours include Roberge [8] who presents a set of
programming projects aimed to have a visual impact so as
to motivate students. His work does not have a graphical
user interface and is not interactive, while our projects are.
Fell et al. [3,4] and Astrachan et al. [2] describe a set of
programming projects in the area of image enhancement

252

and data compression. We propose two projects in the same
area, but the projects themselves are very different.

The paper is organized as follows. Section 2 presents a
framework to support interactive games as programming
projects solving concurrency and graphic management.
Section 3 introduces “table” games appropriate for data
structures courses, and describes how to support mouse
based interfaces. Section 4 presents elementary image
treatment, including quadtree compression, and Section 5
uses genetic algorithms. Our concluding remarks are in
Section 6.

2. Object-Oriented and Concurrent Programming
with Interactive Games

Video game programming is one of the most motivating
topics for computer science students. Interactive games can
be used as software design programming projects. These
projects can be solved with ADTs (abstract data types) or
object-oriented design where students can practice these
techniques. Program design is difficult to teach because it is
a very abstract topic based on heuristics learnt from
experience. The kind of games presented in this section
consists of a collection of interacting objects. This fact
eases the task of identifying design abstractions in ADT as
well as in object-oriented iiameworks. The student is faced
with the task of choosing the right design from many
different ones.

The first challenge is concurrency management;
interactive games must simultaneously move several objects
and respond to input from the keyboard. From our
experience, introductory students usually cannot handle
concurrent programming. We provide them with a library
of simple functions and a skeleton of the main loop. Two
primitives are needed to control the keyboard and two more
to make automatic movements:
l KeyPressed : Boolean that tells whether a key has

been pressed or not.

l ReadKey(var key : Char) reads a key without echo.

l TimeElapsed(): Boolean that returns true if the
countdown has finished.

l StartCountdown(count : Integer) registers the current
time and the duration of the countdown.

The first two functions are available in most compilers.
The last two can be readily built from a “get time” function.

What follows is the skeleton of the loop that
simultaneously moves objects and reads pressed keys corn
the keyboard:
while not TimeElapsed () & NOT KeyPressed Do

(* Do Nothing *)
end; (* while *)

if KeyPressed then ReadKey(key)
(* Process the read key *)

end; (* if *)

if TimeElapsed () then StartCountDown(time);

(* Automatic Movement *)
end (* if *)

The empty loop tests if a key has been entered or if the
time between two successive movements has elapsed. When
at least one of these events happens, the loop ends and the
events are treated. Upon entering a key, it must be read and
the associated action performed. When the countdown
finishes, it must be restarted and the automatic movement
performed.

The second problem to be solved is the graphics
management. Some games are more amenable to ASCII
text representation, in which case it is sufficient to provide
a function that displays a character with a particular color at
a given screen position. To facilitate graphic management,
we provide the students with elementary functions, such as
starting the graphic mode, returning to text mode, and
drawing a pixel in some color in a given screen position. In
some programming projects, it is also useful to provide
primitives to display either simple graphic elements #at
allow constructing the required figures, or higher level
primitives that display a complete element of the game.

In the next section, we introduce games we have
successfully used over the years as CSl/CS2 projects.

2.1 Asteroids
This game consists of a set of asteroids (circles) and a

spaceship (triangle). The user controls the spaceship and
must destroy all the asteroids without crashing.

All asteroids are initially of the same size, but when hit,
the asteroid splits into two pieces of smaller sizes (Figure
1). After multiple hits, the asteroid size reaches a certain
threshold and disintegrates. Each asteroid has a speed and a
direction, which change when it is hit. The direction after
the hit changes by +I- 45”.

Oo OO
0 0
0 0 0 $i?

0 o” 0 ! 0

Figure 1. Spaceship splitting an asteroid

The user can control the spaceship’s direction (degrees)
and speed (measured in pixels per second). The shot range
is also measured in pixels.

Through this project, students develop skills in ADT
and object-oriented design. Its adequacy for object-oriented
design stems from the fact that:
l The three objects (asteroids, spaceships and shots)

have many similarities that can be exploited with the
use of inheritance (they are mobile objects with
different peculiarities).

253

l The collection of all the objects (the three types) can
be stored in a polymorphic list. It will have to make use
of dynamic binding.

2.2 Tetris
Tetris consists of a rectangular board and various

pieces, as seen in Figure 2, which fall from the top. The
pieces can be rotated 90” and shifted horizontally while
they fall. This project can be displayed in text or graphic
mode. In text mode, the block char “c15” can be used as a
building block for the pieces. The board can be drawn with
semi-graphic characters. In graphic mode, any simple
graphic library will suffice.

This constitutes a good programming project to practice
program design. In an object-oriented framework, each
piece can be implemented as a class inheriting from a root
abstract class. The interface between the board and the
pieces is an interesting problem that can be solved with
different approaches, depending on the landing surface of a
falling piece.

Figure 2. Tetris pieces and game snapshot

The game offers a wide number of possible additions
and variations. Score accumulation can be added. After a
predefined score, the speed of falling pieces could be
increased. With different speeds, an initial configuration
with some pieces already at the bottom of the board could
be loaded from a file. A help feature showing the next piece
can be added to the project.

We have found that this project tests the students’
knowledge of loops, array management and configuration
file management for the different scenarios associated with
each speed.

3. Event-Oriented Programming with “Table”
Games

We have used “table” games as programming projects
in CS2. They usually require a more intensive manipulation
of data structures than the games of the previous section.
For example, card games usually require heaps, queues,
double-ended queues and variations of these data structures.
The graphic user interface and the interaction between the
layer and the game pose some challenges for these projects.

We provide the students with primitives to display each
card in a card game. The interface can be performed
through the keyboard and/or the mouse. The keyboard
primitives of the previous section can also be used here.
Additional primitives needed are:
l GetMousePosition(var x: Integer; var x: Integer).

Returns current mouse pointer.

l IsMouseButtonPressed(LefiButton: Boolean).
Determines whether a mouse button has been pressed
or not.

l ShowMousePointerAt(cursor: KindOfCursor, x, y:
Integer). Shows a mouse pointer at (x, y), deleting the
previous mouse pointer. KindOfCursor can be an
enumerated type providing the different shapes /
available for the mouse pointer.

Through these games, we teach the fundamentals of user
interfaces, such as drag and drop cards, click and event-
oriented programming. We use a control loop similar to the
one presented in Section 2, for a drag and drop interface:

GetMousePosition(x, y)

while not IsMouseButtonPressed(true) do

GetMousePosition(x, y)

ShowMousePointerAt(norma1, x, y)

end; (* while *)

if “is any object at (x, y) to drag” then

while IsMouseButtonPressed(true) do
GetMousePosition(newX, newY);
ShowMousePointerAt(dragging, newX, newY)

if “object at (x, y) can be dropped at (newX, newY)”
then

“Move object at (x, y) to (newX, newY)”

else “Show error message”

end (* if *)

end; (* while *)

end (* if *)
The card game solitaire, for instance, provides an

excellent source for programming projects. Students can
practice ADT or object-oriented design and
implementation. The visually attractive display of cards is
achieved by providing a primitive that displays a card at a
particular position with the face up or down. The image of
the cards can be captured from Windows’ game “Solitaire”,
by copying the window content to the clipboard and then
editing and saving it in bmp format. Other card games, and
non-card games, such as domino, and Wari (a two-player
board game from Egypt), can be implemented by using our
outlined drag and drop interface.

4. Edge Enhancement and Quadtree Image
Compression

One of the most attractive areas of computer science is
the manipulation of images. This is due to its graphic
appearance and its interesting applications in medicine,
spatial missions, etc. In this section, we present two
projects that involve simple enhancement algorithms and
image compression. These projects allow students to

254

practice loops, one and two dimensional arrays, files,
complex dynamic data structures (quadtrees), etc. CSlKS2
students will need some assistance to read image files and
display them.

4.1 Edge Enhancement Algorithms
Image enhancement is the process of applying

techniques to emphasize and sharpen image features for
display and analysis. Contrast enhancing and histogram
equalization [3] are simple enough to be covered in
CSlKS2 courses. Edge enhancement algorithms also,,
could be easily tackled in introductory computer science
classes.

Image edge enhancement reduces an image and focuses
only on the edge details of the image (see Figure 3). It is
often used as a preprocessing step where the edge outlines
of objects within the image are subsequently used for
feature or object recognition. Edge detection is based on the
relationship a pixel has with its neighboring pixels. An edge
is defined by the discontinuity in gray-level values. For
example, to detect vertical edges, we can shift an image to
the left by one pixel and then subtract it from the original
image. Two adjacent pixels with very different brightness
values will yield a very large brightness value, while
neighboring pixels with very similar shades of gray will
yield a small brightness value. The shifting and difference
method is basically achieved by manipulating 3x3 arrays.
This project allows the students to learn two-dimensional
array manipulation, sequential file reading and writing,
loops, etc.

4.2 Quadtree Image Compression
Reading and manipulating images in various formats,

such as tiff and jpeg, is too difficult for introductory
students. Our approach has been to write a program that
reads ms-windows bitmap files (bmp) and to use a multi-
format graphic converter (there are many free ones on the
web) to transform images from different formats to bmp. A
sample bmp file reader can be found in [9] with the source
code included in a floppy disk. In this section, we
concentrate on the compression of bitmap images only.

Figure 3. Original and edge enhanced images

Compressing bitmap images can be achieved by using
quadtrees: where a node either is a leaf or has exactly four
children. The compression paradigm is based on the
assumption that if a randomly selected pixel in the image is
black let’s say, then there is a good chance that its
immediate neighbors are also black. The compression

algorithm thus scans the bitmap image looking for areas full
of pixels with the same color.

The compression algorithm takes as input a bitmap
image and outputs a quadtree. The complexity of the
bitmap image will affect the size of the tree. The top-down
construction first builds a root node. The bitmap image is
divided into four quadrants, each corresponding to a child
of the root node. Thus, the leftmost child of the root node in
Figures 5 and 6 correspond to the block of 4x4 pixels in the
upper left quadrant of Figure 4, while the rightmost child of
the root node corresponds to the block of 4x4 pixels in the
upper right quadrant of Figure 4.

The compression algorithm then checks each quadrant:
l Any quadrant that consists of pixels of the same color

becomes a leaf node with that color.
l Any quadrant whose pixels are not all of the same

color is recursively divided into four smaller
subquadrants.

The algorithm stops when there are no more quadrants
of different values.

The 8x8 bitmap image of Figure 4 is compressed into
the 57-node quadtree of Figure 6. Forty-three nodes are
leaves (9x4=36 at the lowest level and seven at the level
before the last) and the other fourteen are interior nodes
that contain pointers.

The actual quadtree produced by the compression
algorithm is represented in Figure 6. Note that the quadrant
numbering used in all figures is : : .

t 1

Figure 4. Image before compression

Figure 5. Quadtree representing the compressed image

As mentioned in the introduction of this section,
students can be given either bitmap images to test their
programs or images in other forms with the bitmap
converter that will produce bmp files. So the bitmap
converter can be used as a preprocessing step to convert the
given image in bitmap form after which they can use their
programs to perform the compression, which in essence
translates into constructing the quadtree.

255

00100010 110011000100 00110011 01000100

Figure 6. Quadtree implementation of Figure 5

Benefits that students can get from this project, besides
being introduced to data compression, include:
l Implementing the recursive, top-down compression

algorithm mentioned earlier that takes as input a
bitmap image, similar to Figure 4, and produces a
quadtree, similar to Figure 6.

l Implementing the decompression algorithm that
produces a bitmap image from a quadtree.

0 Writing a non-recursive algorithm that essentially starts
by constructing a complete quadtree, thus assuming
that no quadrant consists of the same color and then
checks the assumption. Whenever the assumption is
false and a quadrant consists of the same color, the four
nodes are deleted from the tree and their parent
becomes a leaf. The process is bottom-up, starting
from the leaves and ending at the root node.

In summary, through the above compression, students
are exposed to the recursive top-down construction of non-
binary dynamic trees, which necessitate the manipulation of
interesting data structures. They will also be introduced to
the bottom-up compression algorithm. A comparison of
both approaches is valuable, since top-down and bottom-up
construction of trees are found in many other fields of
computer science, such as the parsing phase in the
compiling process, the testing stage in software engineering
and in dynamic programming.

5. Genetic Algorithms
Information-processing systems that have certain

performance characteristics that mimic biology, such as
neural networks and evolutionary computation, have gained
popularity. Genetic algorithms belong to the second
category and are a very good candidate for CSl/CS2
projects. They are general search algorithms that perform
best for problems with very large search space and for
which more traditional methods have failed to find optimal
solutions. It would be very challenging to have the students
implement a genetic algorithm. Instead, we have used a
software package, LibGA [6], for our projects. It is a library
of routines, in which the various genetic operators for
reproduction, crossover, and mutation, can be set and
changed by using a configuration file, thus eliminating the
need of recompiling. It also offers a user-friendly interface.

To use LibGA, one has to encode the problem at hand
by using an appropriate representation (binary strings most
often), and a fitness function that computes the “strength”
of each string in the population. We discuss the
representation and fitness function in class, and then ask the
students to do the implementation and perform
experimental runs with LibGA.

Besides being exposed to non-traditional algorithms,
optimization problems, such as knapsack and scheduling
problems, arrays, loops, file I/O, and some elementary
probability theory, the students learn how to incorporate
their own code in an existing software package. This is a
very valuable experience since they will be faced with
similar situations in their academic studies as well as later
in their jobs.

6. Conclusion
We present a set of topics we have used as a source for

visual and interactive projects to motivate our CSl/CS2
students. We introduce several sample-programming
projects in each area, and the background material we
provide to assist the students in their projects. The
background material makes our more challenging projects
amenable to CSlKS2 students. The programming projects
presented in this paper have allowed our students to
practice the programming concepts taught in class and have
introduced an array of topics that they will encounter later
in their computer science education.

7.
1.

2.

3.

4.

5.

6.

7.

8.

9.

References
Adams, J. C. Chance-It: An Object-Oriented Capstone
Project for CSl. Proceedings of SIGCSE’98, 1998, pp. lo-
14.
Astrachan, 0. and Rodger, S. Animation, Visualization, and
Interaction in CS 1 Assignments. Proceedings of SZGCSE ‘98,
1998, pp. 317-321.

Fell, H. J. and Proulx V. K. Exploring Martian Planetary
Images. CU Exercises for CS 1. Proceedings of SIGCSE ‘97,
1997, pp. 30-34.

Fell, H. J., Proulx V. K. and Rasala, R. Scaling: A Design
Pattern in Introductory Computer Science Courses.
Proceedings of SZGCSE ‘98, 1998, pp. 326-330.

Holmes, G. and Smith, T. C. Adding Some Spice to CSI
Curricula. Proceedings of SZGCSE ‘97, 1997, pp. 204-208.

LibGA: http://euler.mcs.utulsa.edukorcoran/libga.html

Pargas, R. P., Underwood, J. N. and Lundy, J. C.
Tournament Play in CS 1. Proceedings of SZGCSE ‘97. 1997,
pp. 214-218.

Roberge, J. Creating Programming Projects with Visual
Impact. Proceedings of SIGCSE ‘92. 1992, pp. 230-234.

Swan, T. Borland Pascal 7.0 Programming for Windows.
Borland Bantam, 1993.

256

