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This paper lists eight design criteria that must be met if we are to provide
successful computer support for education in algebra, trig, and calculus. It also
describes Mathpert, a piece of software that was built with these criteria in mind.
The description given here is intended for designers of other software, for de-
signers of new teaching materials and curricula utilizing mathematical software,
and for professors interested in using such software. The design principles in
question involve both the user interface and the internal operation of the soft-
ware. For example, three important principles are cognitive fidelity, the glass
bor principle, and the correctness principle. After an overview of design princi-
ples, we discuss the design of Mathpert in the light of these principles, showing
how the main lines of the design were determined by these principles.!

1  Purposes of software for mathematics edu-
cation

The first step in proper software design is a clear statement of the purpose of
the software. Here, for example, is a statement of purpose for Mathpert:

Mathpert is intended to replace paper-and-pencil homework in algebra, trig,
and calculus, retaining compatibility with the existing curriculum while at the
same time supporting innovative curriculum changes; to provide easy-to-use

1The scope of this paper is strictly limited to an exposition of the design principles and
their application to Mathpert. 1 shall not attempt to review projects other than Mathpert in
the light of these design principles.



computer graphics for classroom demonstrations in those subjects, as well as
for home study; to replace or supplement chalk-and-blackboard in the classroom
for symbolic problems as well as graphs. Mathpert is not intended to replace
teachers or books: it is not explicitly tutorial. It is a “computerized environment
for solving problems.” It can be used by students of all ages and levels who are
prepared to learn the subject matter.

Most experiments to date with using software in calculus instruction have
used general-purpose symbolic programs such as Maple or Mathematica. These
programs were not developed specifically for education, and it is therefore small
wonder that their capabilities are not entirely matched to the needs of students.

I will show in this paper, among other things, that if we start with an edu-
cational purpose, and enunciate some simple design principles that more or less
obviously follow from that purpose, these principles have ramifications that run
through to the computational core of such a system, so that it is impossible to
achieve ideal results by tacking on some additional “interface” features to a pre-
viously existing computation system. To put the matter another way: it is not
possible entirely to separate “interface” considerations from “kernel” consider-
ations. Such a separation might be possible (to facilitate running on different
platforms), but only if the kernel itself has been designed with education in
mind.

The most serious and thorough attempt to build an educational system based
on pre-existing symbolic computation software is described in [17]. The first
paragraph of this paper says “we will demonstrate how specific features common
to symbolic computation programs diminish their pedagogical effectiveness.”
Nevertheless, they say “The reason to adopt an existing package rather than
develop ones own is the recognition that programs like Maple and Mathematica
represent massive programming efforts that do not need to be repeated.” They
identify many of the same problems with computation systems that are discussed
in this paper. In order to overcome the problem of incorrect inferences, they
developed a separate “derivation system” of “semantic machinery”, which runs
between Maple and their user interface. Also, a good deal of programming
in the Maple language was necessary to produce student-sized steps, rather
than mystifying answers. A more detailed comparision of their system with
Mathpert is beyond the scope of this paper. Their work does not constitute a
counterexample to the claim in the text, but rather additional support: rather
than “tacking on” an interface to Maple, it was found necessary to perform
many person-years of system development in both C and Maple to obtain a
usable system.

Although Mathpert is not designed to replace teachers and books, there is
a demand for stand-alone software that would allow a student to work alone,
independent of teachers and books. Therefore Mathpert has been designed in
such a way that it can later be incorporated in or used by systems which are
explicitly tutorial. This point will be taken up in the last section of this paper.



2 Design principles

In this section I present and discuss eight fundamental design principles that
guided the design of Mathpert.

2.1 Cognitive fidelity

We call mathematical software cognitively faithful if it satisfies the following cri-
terion. When generating solutions, as opposed to supporting student-generated
solutions, the software solves problems as the student should. This means that
it takes the same steps as the student should take, in a correct order. Of course,
there may be several acceptable “solution paths”, all of which will be accepted if
the student takes them; but the one which the computer generates if requested
to do so must be exemplary in every respect. In particular, high-powered al-
gorithms based on advanced methods are problematic. Most modern computer
algebra systems use such advanced methods for fundamental operations such as
factoring polynomials, solving equations, and computing integrals. What is a
student to think when she asks for a factorization of 2° +x + 1 and receives the
answer (v + 2+ 1)(x® — 22 +1)?

She will have no idea how such a factorization can be obtained, even though
the result can be verified by multiplying out. For a student who has mastered
elementary algebra, it might be quite a valuable aid to genuine mathemati-
cal exploration to have such an “oracle” available. But, the computer needs
to present elementary solutions to elementary problems when the student is
learning elementary methods, and it needs to not present answers achieved by
methods that the student cannot understand.

2.2 Glass box

This means that you can see how the computer solves the problem. The pro-
gram presents, or allows the student to construct, step-by-step solutions, not
just answers. This is a very important point, and often misunderstood. It is
comparatively easy for a program to get the one-line answer to a problem. It is
more difficult to generate a multi-line solution with understandable steps. When
combined with the requirement that the steps be cognitively faithful, this turned
out to be not only the most important but also the most difficult criterion to
satisfy. The glass-box criterion requires it to be apparent how each step was
obtained; in practice this means accompanying each step with a “justification”.

Figure 1 exhibits a sample step-by-step solution, captured from a Mathpert
screen.

The simplest computer algorithms almost never generate cognitively faithful
solutions. In applications where only the answer is of interest, and not the
steps by which it was obtained, this doesn’t matter. But in building software
for mathematics education, it is crucial. “Human” solutions vary greatly with
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Figure 1: A sample step-by-step solution.

the features of each particular problem, delicately adjusting the choice and
order of operations to be applied so that the resulting solution is economical
and beautiful. Software for mathematics education will also have to generate
economical and beautiful solutions.

In practice the ability of modern algorithms to solve problems the student
cannot solve is not as large an obstacle to the use of existing computer-algebra
systems as is the inability to break the computation into comprehensible steps.
Even when a solution can be obtained by elementary means, it is important to
break it into steps. For example, the following factorization of z'%° — 1 can be
obtained by a fairly short series of elementary steps, yet can be overwhelming
if presented all at once:

(- + 2 22+ 2+ 1)@ + 2 2% 25 1 1)
(x+ 11—+ 2% -2+ 2H (1 — 25 2% — 215  220)
(1+x2)(x8—x6+x4—x2+1)(x40—x30+x20—x10+1)

But if the computation system does not internally factor the polynomial by
a series of elementary steps, but instead by a high-powered method such as
Berlekamp’s algorithm, there is no hope of getting it to generate the required
series of elementary steps.



2.3 Customized to the level of the user

Cognitive fidelity demands that the software generate solutions that will be ex-
emplary for the student. But students at different levels need different solutions.

A beginning algebra student needs a five-line solution to the common denom-
inator problem 1/x+ 1/y. A calculus student evaluating a complicated integral
does not want to see five lines devoted to 1/x + 1/y = (z + y)/xy. It follows
that the program must contain some, albeit rudimentary, representations of its
user’s knowledge. This representation must be sufficient to enable the gener-
ation of solutions with many small steps or few, powerful steps, depending on
the requirements of the individual student.

Tt is apparently simpler to allow the user to create long (“fine-grained”)
or short (“coarse-grained”) solutions, than to require the computer to do it.
At least a “user model” would not be required. But there are still some dif-
ficulties even with user-generated solutions. Namely, this requirement means
that the program must have a varied arsenal of mathematical operations. In
order to allow the creation of fine-grained solutions, we need some very weak
symbolic operations. Mathpert can generate a five-or-six line solution to the
common-denominator problem 1/z + 1/y. Tt can also generate a one-line so-
lution. Figure 2 shows the five-line solution as it can appear on Mathperts
screen.
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Figure 2: A solution with many small steps



Mathematica, Macsyma, and Maple can only generate the one-line solution,
which is useless for learning common denominators. These general-purpose
programs need only one simple operation for taking common denominators.
To meet the requirement of generating fine-grained solutions, Mathpert needs
several different operations, for use at different mathematical levels. While
creating your solution, you can take big steps or little ones, as your ability and
temperament dictate.

Buchberger [8] proposes a “white box/black box” model for symbolic compu-
tation software in education. A “black box” corresponds to a one-step solution,
a “white box” to a fully detailed solution. Buchberger’s “white boxes” are the
same as my “glass boxes”. But his discussion considers the relationship between
the glass box requirement and the requirement that solutions be customized to
the user. An intermediate case, where the solution is in several steps but not at
the finest level of detail, could be analyzed in Buchberger’s terms as a white box
at the top level, in which subordinate steps are treated as black boxes. For exam-
ple, when integrating rational functions, partial-fraction decomposition can be
treated as a black box. Mathpert supports this paradigm fully, allowing the user
complete flexibility to customize the level of detail desired in the solutions. It is
a delight, when working out a step-by-step solution to an integration problem,
to just push a button to get a partial-fraction decomposition. Figure 3 shows
the beginning of a solution to an integration problem, in which two complicated
algebraic steps are taken at a single mouse click.

2.4 Correctness

You cannot perform a mathematically incorrect operation or derive a false result
with Mathpert. It is not as widely known as it should be that most systems in
use nowadays do not have this property. I shall therefore give some examples.

In Macsyma, we can set a = 0; and then divide both sides by a using the
command %/a. This will result in 1=0, because according to Macsyma, a/a = 1
and 0/a = 0. This example can be carried out in Mathematica, too, but you
must first tell it that dividing an equation means to divide both sides. The
cause of the error is ignoring the side condition a # 0 on the rule a/a = 1.

Here’s another example: if F'(x) = f(x) then f:f(x)dx = F(b) — F(a).
Apply this rule with f(z) = 1/2 and F(x) = —1/22 to get f}l(l/x)d:p = 0.
The cause of the error is ignoring the side condition that f must be continuous
on [a,b]. This is a standard homework problem in Calculus 1.

When these examples are presented, the suggestion is sometimes made that
these are simply “little bugs” that can be easily removed. This is a misconcep-
tion. The root cause of these problems is that mathematical operations gener-
ally have “side conditions” which are logical propositions. For example, the side
condition on the operation a/a = 1 is a # 0. When we make a mathematical
calculation, each line is actually dependent on a certain list of assumptions.
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Figure 3: A solution with some steps using powerful operations

Some steps, for example replacing ,/Zy by \/f\/@, add new assumptions to this
list. (In this case, the new assumptions are 0 < x and 0 < y.) When we do
mathematics by hand, we usually do not write the assumptions down explicitly,
but sometimes we make a note of additions to the list, and maintaining the list
correctly is vital, as the above examples show. Moreover, it is not possible to
restrict the complexity of these assumptions. Denominators must not be zero;
but denominators can be complicated, so the zero-sets of functions get involved.
These often depend on the domains of other functions, so we need to be able to
calculate domains. Domains, for example of /u(z), will depend on the sign of
1 in a neighborhood. This kind of question can in turn depend on whether func-
tions are monotone increasing or decreasing; things get arbitrarily complicated.
The side condition for evaluating definite integrals already involves continuity
of the integrand on an interval. These complexities show that the correctness
principle cannot be “added on” to a system that was not designed from the
start to support the maintenance of a list of assumptions during a calculation.

The correctness principle applies to graphs as well as to symbolic solutions.
When graphs have singularities, most commercial graphing software gets most
of them wrong. Graphs are made by connecting a finite set of points. These
points will probably not hit the singularities exactly, so the graph may not even
go off-screen at a singularity. Moreover, there is often a vertical line where the
singularity belongs. This arises because the software just connects one point



to the next, and “knows” nothing about singularities. Mathpert avoids these
pitfalls, by means that will be explained in Section 5. Figure 4 shows a graph of
tan x made by Mathpert, and a graph made by purely numerical computation,
as all other software I have seen does it.?
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Figure 4: Correct vs. incorrect graphs with singularities

Now that I've explained the difficulty of satisfying the correctness principle,
let me also emphasize its importance. Although this paper deals with edu-
cational software, I find it disconcerting to think of flying on planes whose jet
engines or flight-control systems were designed using mathematical software that
can derive 1 = 0 in two steps. If there are two-line contradictions, there may
also be more subtle errors that do not stand out. Not every wrong answer will
be obvious, even to an experienced engineer. However, let us restrict the discus-
sion to education. Errors that are obvious to an engineer may not be obvious
to a student. If the software draws graphs with vertical lines at singularities,
for example, students may be easily confused.

2.5 User is in control

The user decides what steps should be taken, and the computer takes them.
As in word-processing, the computer takes over the more “clerical” part. The
principle that the user should direct the solution requires either a command-
driven or mouse-driven interface. The principle of ease of use dictates a mouse-
driven interface. When Mathpert operates this way, it is said to be in menu
mode. The user selects an expression on the screen. This selection brings up
a menu of operations. The user then selects an operation. These operations
transform the current line and generate the next line. In this way a multi-line

2Some graphing calculators trap tan z as a special case and get it right, but they don’t get

2

tan x* right, or even simple rational functions.



solution is built up. FEarlier versions did not have the capability to select an
expression from the screen, and a more extensive system of menus was used to
select the operation; hence the name menu mode.

The principle that the computer can help you out when you are stuck requires
there to be an automatic mode, or auto mode, in which the program can itself
generate a solution. The user can switch between these two modes at will.

Each time I demonstrate Mathpert, and professors see the program gen-
erating step-by-step solutions to homework problems, some of them envision
students simply having Mathpert do the homework for them while they are
out watching Beavis and Butthead, and I have many times heard the question
whether there is a way to deny the students access to auto mode. Indeed, the
fear that students will learn little by watching the computer generate answers
may be relevant if they are using software that generates only answers, and gen-
erates those answers by incomprehensible methods. The computer then becomes
an oracle, and one who questions an oracle has no control.

In practice, students seldom misuse auto mode. They seem to take pleasure
in finding and applying the correct operations. The fact that the computer
carries out the mechanics of the application, so that you can’t lose a minus sign
or forget to copy a term, or incorrectly apply an operation, increases the user’s
control over the developing solution.

2.6 The computer can take over if the user is lost

A good symbolic computation program for education should be able to solve
(upon request) all the (symbolic or graphical) problems commonly given in
algebra, trig, and first-semester calculus. This is a very strong requirement, in
view of the fact that what is required is not just the answer, but an economical,
beautiful, and cognitively faithful step-by-step solution, tailored to the level of
the student.

Even if we only wanted answers, however, it is important to note that the
restriction to problems commonly given in courses is vital. There are technical
results showing that it is impossible to write programs to solve any given prob-
lem of the types studied in these courses. For example, Richardson [18] showed
that it is impossible to write a program that will take as input a given identity
f(z) = g(x) in one real variable, and determine whether or not that identity
is valid, where f and g are built up from exponentials, logs, and trig functions
using the arithmetic operations.®> Nevertheless, we do implicitly teach methods,
not just a collection of specific examples, and the requirement is simply that
the program must embody all the methods we teach.

3That is, there is no decision algorithm for this class of identities. Normally in trigonometry,
the trig functions are not nested, and the arguments of the trig functions are linear. There
is room for more careful work, narrowing the gap between the large classes of identities for
which there is provably no decision algorithm, and the small classes for which we actually
possess a decision algorithm. The “boundary” is at present largely unexplored.



The ability of the system to generate an “ideal” solution can be put to good
pedagogical use to assist a student who is having difficulty. Several such features
are included in the design of Mathpert, but as these are not fundamental design
principles, they will not be discussed in this section.

Problems often can be solved in more than one way, for which the jargon is
“multiple solution paths”. Of course the ability of the computer to generate a
single “ideal” solution does not contradict its ability to support multiple solution
paths in menu mode. But it actually offers good support for multiple solution
paths in auto mode too. Although the system generates for each problem a
unique “ideal” solution, it has to be able to do that from any point. The user
could take one or several steps, and the computer must be able to finish up
the problem from there. Usually the computer can be sent down a particular
“solution path” in a few manually-directed steps, after which it will finish the
solution along the desired lines.

Sometimes the necessity of solving a problem by trial and error is brought up
in this connection. Mathpert can carry out such a search, as when searching for
the factors of a quadratic polynomial. When this subject is first being learned,
the attempted factorizations are shown to the student. There is a more extensive
discussion of trial-and-error in Section 3.4.

2.7 Ease of use

The system must be EASY TO USE. This point has been emphasized over
and over by everyone who has considered the use of computers in mathematics
education. Students are likely to be poor typists and may be afraid of computers.
Many of them are also afraid of mathematics. It is essential that the students
feel the computer is a help, not just another hurdle. Reports I have seen of
many experiments with computer-assisted calculus instruction show that often
the students do feel the computer adds to their difficulties, rather than helps.
The day has not yet arrived when many students buy mathematical software
that is not required, because they think it will help them learn.

Ease of use is often considered to be an “interface issue”, but I don’t be-
lieve that a well-designed program for education can really be separated into
an “interface” and a “kernel” operating completely independently. Take the
generation of step-by-step solutions, for example—is that an interface question?
If you take the narrow interpretation, it is not. Only the means by which the
user commands the steps to be taken, and the means by which the results are
displayed or printed, are interface questions. But on this narrow construction
of the term “interface”, the question of ease of use cuts much deeper than the
mere interface. Fase of use means that it is easy for the user to accomplish a
given purpose. Whether the purpose can be accomplished easily, or at all, may
well depend on the capabilities of the program as well as on the design of the
menus and dialog boxes and which buttons can be clicked when.

A critical moment for “ease of use” comes when the user is “stuck”, that
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is, does not know how to proceed. If the system has the capability to solve
the problem, it can be viewed as an “interface issue”: how to use that internal
capability to best advantage to help a student who is stuck. Whether one has
the program simply exhibit the next step, show the next menu choice, or give
a hint in English (or French for that matter), is a question of interface design,
in my view. I would not limit the term “interface” to mean where you have to
click or what you have to type to cause these things to happen.

Nevertheless, questions of interface design even in the narrow sense are of
some importance. I will consider some of them in Section 7.

2.8 Usable with standard curriculum

Even if the professor isn’t using it, and knows nothing about it, it should be
usable by the student. This criterion is perhaps more controversial than my
other criteria. But I have always believed that serious curriculum change will
be driven by student use of software, rather than the other way around. After a
decade of well-funded initiatives to bring technology into the calculus classroom,
most classes at most universities, and all classes at many leading universities,
are still taught without software assistance, and with a substantially unchanged
curriculum.

Answer-only programs such as Mathematica and Maple are hard to use with
the standard curriculum in mathematics, which emphasizes step-by-step solu-
tions. This has led some people to call for a new curriculum, in which students
would not learn the traditional step-by-step solution methods. Methods of in-
tegration in particular have suffered a bad press. There is talk of emphasizing
concepts instead of techniques. Of course, nobody is against teaching math-
ematical concepts—it’s like motherhood and apple pie. But there is a serious
question whether it makes sense to teach concepts without techniques.

Given the fact that answer-only software can’t support the present curricu-
lum, the faculty has been left with the choice: stick with the old curriculum
(and no software), or take a big leap: changing both what is taught and how
it is taught at the same time. Change will be easier if they can change gradu-
ally, adding software support to the existing curriculum, and then adjusting the
curriculum later as required.

3 Cognitive fidelity and glass box in Mathpert:
operations and pedagogy

The achievement of cognitive fidelity in Mathpert depends on the implemen-
tation of “operations” that correspond to identifiable “steps of computation”
taken by a student in the course of solving a problem. These operations can
then be invoked by name or formula from a menu (in various ways) or applied
by the program itself when generating an exemplary solution. It is essential
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that the basic steps of the solution correspond to what the human perceives as
“operations”.

3.1 Design of the operations

The cognitive fidelity principle requires a careful and detailed analysis of the
subject matter, to determine the correct choice of operations. There are some
130 menus of up to sixteen operations each, so there are about a thousand differ-
ent operations that Mathpert can perform (not counting graphical operations).
I believe that these operations permit the solution of all (non-word) problems
normally taught in algebra, trig, and calculus. In many cases it was a non-trivial
task to construct the appropriate set of operations, though in some cases it was
not difficult for an experienced teacher.

3.2 Rewrite rules, matching, and pedagogy

A rewrite rule is a one-directional equation, such as a(b+c) = ab+ac. By saying
it is one-directional, I mean that you can use it to rewrite a(b + ¢) as ab + ac,
but not the reverse. A rewrite rule is applied by using a process of matching to
see that some complicated expression “has the form of” the left hand side. For
example, we can use the rule just mentioned to rewrite x*(x + 1) as a® + a*.
Purists will note that I have used some other laws of algebra and arithmetic as
well!

Although rewrite-rule technology at first sight appears attractive, many of
the operations cannot be expressed in rewrite-rule form, because they take an
arbitrary number of arguments and because other arguments can come in be-
tween. Consider collect powers, for example, which is related to the rewrite rule
™ = 2", but applies to ax?bx>ztcx. The last x has to be collected even
though it doesn’t have an explicit exponent. The other x’s have to be collected
even though they are separated and there are more than two of them. Moreover,
there are further difficulties with rewrite rules in the presence of associativity
and commutativity.*

4Readers with training in the relevant branches of logic or computer science will be aware
that there is a vast literature on rewriting techniques. This technical footnote is directed to
such people (there was one among the referees). One of the general aims of this research
is to provide improved matching (technically: unification) algorithms which will incorporate
algebraic laws into the matching step, so that for example ab—+¢ should match ¢+ba. Although
there are beautiful algorithms and theorems about those algorithms, it should be noted that
the best of the crop will still not handle the rewriting of x* (x+1) as 25 + 2%, Readers wishing
to explore these algorithms will find an initial discussion and further references in [9].

This body of theory has not found application in Mathpert, and not because the author was
ignorant of the theory. Nevertheless Mathpert successfully handles matching. For example, it
is able to apply the rule cos? x4+ sin2z = 1 in the context 2+ 3sin? bz — 5zy + 3cos25z. But if
the second bx is made x5, Mathpert will miss the match until the operation Order factors is
applied. Note, however, that associative-commutative unification will miss the match in the
first example until the 3 is factored out.
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These observations have implications of interest to both programmers and
educators. The implication for the programmer is simply that rewrite-rule tech-
nology isn’t enough: each operation has to be implemented as a function in the
programming language.

The implication for educators is more far-reaching, though less obvious.
Many of the difficulties (“bugs”) that I have observed in student solutions (or
failures to generate solutions) can be attributed to failures in the student’s
matching algorithm.®> Just to give one example: consider using the (reverse)
distributive law ab+ ac = a(b+ c) to rewrite 2*(z +1)+x + 1 as (z* 4+ 1)(x+1).
Even if the difficulty about grouping the first = + 1 so as to match a to x + 1
is overcome, there is still the problem that c is 1 here, so literal matching won’t
suffice. The matching procedure itself has to incorporate some other algebraic
laws for this to work right. Another, unrelated difficulty apparent in this same
example occurs the first time students have to match one of the letters in a
pattern to a sum, instead of to just a monomial. Nearly every student fails the
first time this is asked. Yet many textbooks I have examined fail to give an
illustrative example. The first such problem occurs in the homework assign-
ment, where it is guaranteed to be frustrating. Many a case of “math phobia”
begins with examples like this, in which a homework problem is asked which
in some sense “follows from” the principles in the text, but involves some new
twist, which the computer scientist can describe precisely in terms of extra code
required for the matching algorithm.®

3.3 Order of operations

It is interesting, both for the computer scientist and the educator, to consider
the problem of which rule to apply when. First of all, one should observe that
many rules are inverses: for example log ab = log a + log b can be used in either
direction, and indeed must sometimes be used in one direction, and sometimes
in the other direction. Sometimes we must factor, sometimes we must multiply
out.

The simplest control mechanism would be context-free, in the sense that the
decision as to which operation to perform could be made locally. For example,
the decision whether to put a sum of fractions over a common denominator
would have to be made without regard for the context in which the sum of
fractions occurs. In practice, there are two separate factors influencing such
decisions that are not directly available in this method. First, it matters what
kind of problem we are solving. For example, if the problem type (the goal of
the problem) is common denominators, obviously we want to use common de-
nominators regardless. If the problem type is partial fractions, equally obviously

5The “buggy theory of learning” was first promulgated by J. S. Brown and R. Burton, see
for example [10].

8T am certainly not the first to observe that student errors are sometimes attributable to
faulty matching. See for example [14] and [16].
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it would not be a good idea. Second, the context of the term being simplified
(in the sense of the current line in which it is embedded) matters: for example,
we never want to use common denominators inside an unevaluated derivative.
It looks silly to use common denominators inside a derivative, like this:

411y
de\x a2

d jx+1

dx ( x? )
followed by a long computation using the quotient rule; the “correct” solution
differentiates term-by-term, without using common denominators. There are
many instances of such contextual dependencies.

Adjusting Mathpert’s problem-solving algorithm to take these contextual
demands into account has accounted for much of the work on the algorithm.
None of this would be necessary in an answer-only program. On the other
hand, a great deal of fine-tuning is required to cause the algorithm to use the
right operations in the right order to produce the right step-by-step solutions.
During the process of developing Mathpert, 1 observed many loops and infinite
regresses generated by meta-rules that conflict in a given situation. Each time
I had to modify the meta-rules which looked good before, adding or changing
the conditions under which certain mathematical operations should be applied.

Loops. Another complication, in addition to contextual dependencies, is the
possibility that different operations taken in combination can cause loops. For
example, you can factor and then expand a polynomial; so auto mode must never
activate both operations, or a loop will result. There is nothing like a formal
proof that the current system is always terminating; such a proof would be
extremely complicated and probably could only be carried out with mechanical
assistance. Indeed, it may well not even be the case-there may well be loops that
haven’t been observed. Certainly I have observed many unanticipated loops in
the process of development and testing.

In order to guard against unanticipated loops in automode, Mathpert incor-
porates automatic loop detection: it will never go into an infinite regress, but
will detect that it is about to enter a loop. Early versions would then deliver a
rueful message: I seem to be stuck in a loop. You’d better take over. The present
version does something more like what a person would do: it just doesn’t use
the operation that would cause a repeated line, but looks for something else to
do.

Awoiding Loops in Equation Solving. The avoidance of loops is particularly
critical in equation solving. The difficulty is that various algebraic laws have
to be applied in one direction for some equations, and in the reverse direction
for other equations, so that at first sight it seems impossible to avoid loops and
still solve all equations. Here I have had some help from Alan Bundy’s theory
of equation-solving [9]. His general theory had to be integrated with special-
purpose solvers for linear equations and non-linear polynomials, but his ideas
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of “attraction” and “collection” guided the way auto mode selects operations
according to the form of the equation.

3.4 Pedagogical implications

Once algebra, trig, and calculus have been codified into a set of about a thousand
rules, can we say, if you know the rules, you know the mathematics? This is true
to the extent that all the symbolic problems in the books can be solved using
those rules. But it overlooks the fact that you must not only know the rules,
you must know which rule to apply when. This is really much the more difficult
thing to know. Mathpert has several thousand lines of what amount to rules for
using the rules. These rules are internal to the program, rather than visible to
the user, and govern the machinery of the automode solution-generator. The
process of developing and fine-tuning these meta-rules took much more time
than the implementation of individual operations for computation, which was
comparatively simple.

Yet, when we look at textbooks and course outlines, most of what students
are taught is how to execute the rules one or two at a time. Fach section
presents another few rules, and exercises which are solved using those rules.
The student studies algebra this way, and then learns trig a few rules at a time.
When the student comes to trig identities, for the first time a variety of different
rules is required. A detailed analysis by A. Lauringson revealed 59 operations
required to solve a certain set of identities, while corresponding sets on other
topics required at most 30 operations. Probably the notorious difficulty of this
subject is mainly attributable to this feature. There is little or no discussion in
textbooks about strategy for trig identities. For example, there are three rules
for expanding cos 2z, and success is often dependent on choosing the right one,
but textbooks do not even discuss the issue.

Solving equations is another area in which strategy is crucial, but seldom
explicitly discussed. Here is a place where the contributions of computer science
should be allowed to “trickle down” to textbooks. Bundy’s ideas of attraction
and collection are simple and straightforward and can easily be explained to
algebra students. I am resisting the temptation to prove this point by explaining
them here and now; but see [9]. These ideas bring order to the otherwise
mysterious business of solving equations, reducing what appears to be an art to
a science. Don’t write another algebra textbook without reading Bundy.

Then the student goes into calculus, where he or she is required to “sim-
plify” expressions in order to solve calculus problems. Omne semester 1 kept
statistics on exam errors: Eighty percent of exam errors in first-semester cal-
culus were actually errors in algebra or trig that theoretically were prerequisite
to the course. These errors were sometimes due to failures in the matching al-
gorithm, sometimes to incorrect memory of a rule pattern, but often simply to
not, recognizing which rules would do the required job. That was never taught;
the “born mathematicians” pick it up somehow, by osmosis.
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The above remarks should be carefully considered not only by designers of
such software, but especially by textbook authors, course designers, and teach-
ers. No wonder students are confused: the control apparatus is more complex
than the rules being controlled, but is never explicitly discussed! Textbooks
should contain explicit discussions of these matters, as well as carefully chosen
examples and exercises to illustrate the correct choice of operations according
to the goal and the context. Most important, they should contain many more
sections and examples in which a mixed bag of different rules need to be applied.

One interesting question is this: how much does mathematics depend on
trial-and-error search? My experience in developing the auto mode algorithm
of Mathpert leads to the conclusion that search is used in elementary mathe-
matics in only a few places: searching for the factors of a quadratic polynomial,
searching for a linear factor of a higher-degree polynomial, and searching for a
good grouping of the factors in factor-by-grouping. In calculus we might add,
searching for a substitution in integration by substitution, and searching for a
choice of parts in integration by parts. All other problems, including the choice
of which rule to use on cos 2z, can be solved without searching.”

One of the referees raised the possibility that Mathpert could teach or give
access to its internal meta-rules. This suggestion has two answers. The short
answer is that Mathpert is not designed to be explicitly tutorial (see Section 1).
It would almost certainly be a good idea to give more instruction in problem-
solving strategy, possibly aided by more explicit “rules of thumb” suggested
by the internal Mathpert meta-rules. However, it is not within the scope of
the statement of purpose of Mathpert given in Section 1. The long answer is
more interesting, and bears on deep issues in artificial intelligence and cognitive
science. Namely: it is not at all clear that human mathematicians really operate
in this way, using a collection of meta-rules. Maybe there is planning and goal-
seeking at a deeper level; maybe there is “understanding”. Chess programs
operate by rules and calculations, but perhaps grand masters do not. Even if this
is true, students of chess do study rules. This issue has caused more arguments
than any other in the philosophical foundations of artificial intelligence.

4 Customizing the solution in Mathpert

In Section 2 we have given an example to illustrate the fact that Mathpert can
generate solutions with many small steps, or solutions with few but powerful
steps. This section will discuss how this is achieved.

First of all, when the user is controlling the steps of the solution, the user
can choose the operation, and so it will suffice if there is a choice of the powerful
or the weak operation. When the user has selected a sum containing a fraction

"Nicaud et. al. [16] describe a system that helps students learn to solve factorization
problems by teaching them to search for a solution, backtracking at failure. The examples
given in the paper are in the topic known in Algebra I as “factor by grouping”.
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or fractions, the menu of available operations will provide more than one choice.
For the beginning algebra student (that is, if the problem was entered under
an elementary topic), this list will include Find common denominator. This will
simply multiply both fractions by an appropriate factor ¢/c, as in the first step
in Figure 2. If the user thoroughly understands common denominators and basic
algebra, for example a second-semester calculus student, the operation Common
denominator and simplify numerator will do everything: for example,

1 n 1
41 22-1

will be transformed to

x(x? +1)
(x—D+1)(x2—x+1)

A student still wanting to see more detail can first explicitly factor the de-
nominator, and then use Common Denominator, and finally Simplify, to get a
three-step solution.

Customized solutions like this are easy for Mathpert to provide in menu
mode, because the symbolic computation engine was developed in accordance
with the design principle of cognitive fidelity. Another project whose progress 1
have followed, was originally based on the idea of putting a step-by-step interface
on REDUCE. After the implementation had progressed for some time, it was
noticed that the steps were often too large and confusing. Note that this is
a completely different class of difficulties from the logical problems discussed
in connection with the correctness principle. Once one starts down the road
of implementing simpler operations in terms of more complex ones, using a
programmable CA system such as REDUCE or Mathematica, what guarantee
is there that the process will be simpler than implementing an educational CA
system from scratch? And even if it turned out to be, one would still have the
logical difficulties.

Mathpert is designed not only to permit the user to produce different solu-
tions to the same problem, but also to do so itself when running in auto mode.
If a common denominator is required to solve an integral, it should be done in
one step for a calculus student, but for a beginning algebra student, automode
should produce the long solution to 1/x+ 1/y. How is this to be accomplished?

In order to support the generation of different solutions to the same problem,
Mathpert maintains an internal model of its user. This model has been discussed
in some detail [4]; for this paper it will suffice to know that the model consists
essentially in labelling each of the approximately one thousand operations as
either unknown, learning, known, or well known. Initializing the model consists
in assigning these labels.

Experience since 1990 has taught an important lesson. The original inten-
tion, inspired by the “buggy model of learning” [10] was that the user model
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should model a particular individual. This model was to be initialized by a
diagnostic test program, and the model was even made user-editable in early
versions of Mathpert. However, experience soon showed that it is easy to get
an “out-of-balance” user model, which will cause strange-looking solutions, in
which there may be several tiny steps and suddenly a mysterious large step.
Indeed, reflection shows that we don’t actually want to model the real student,
but rather some fictional ideal student at the appropriate level for the subject, so
that the auto-mode solutions are ideal solutions, rather than ones which might
be generated by our (buggy) real student.®

The end result of these considerations is that the user model has become
invisible to the user. When the user first enters Mathpert, he or she chooses
from a menu what the “topic” of the session will be. These topic choices are
intended to encompass about one day’s lesson each (corresponding to one section
of a textbook). The user model is automatically initialized based on the choice
of topic. This user model will produce solutions at the level of detail generally
appropriate for a class on that topic; the solutions will not use operations that
are unknown (unless the problem can’t be done without them). Thus I’Hopital’s
rule will not be used (in auto mode) on lim, ¢ (sinz)/2% when L’Hopital’s rule
won’t be taught until next week; but next week, when the topic is L’Hopital’s
rule, it will be used.

In short: it suffices to customize the solution to the level of the individual
student. It doesn’t really need to be customized to the individual student.

5 The correctness principle in Mathpert

Necessity of a theorem-prover. Having established the difficulty and importance
of the correctness principle, let me remark on what it took to build a system
that satisfies it. Mathpertincorporates a non-trivial theorem-prover (about 6000
lines of C in the current implementation, about ten percent of the total code).
This prover is a piece of work that can stand on its own as a contribution to
the branch of computer science known as automated deduction.? There are
few other programs combining some symbolic computation capabilities with
logical deduction capabilities; we may mention Wu’s work on geometry [19] and
Analytica [11] in this connection. Descriptions of the Mathpert prover can be
found in [3] and [5]; and a discussion of some later additions is in [6].

Logic is in the background. Although a correct handling of logical matters
is essential for correctness, we rarely ask students to consider logical matters

8A team working on the APLUSIX project has developed a program [14], [15] which di-
agnoses a student’s knowledge in a limited sub-domain of algebra, based on some twenty or
thirty transformation rules in polynomial arithmetic. This work represents the state of the
art in diagnosing and modelling individual students in the subject of mathematics.

91 have recently written another program called Weierstrass, based on the Mathpert prover,
which has automatically generated an epsilon-delta proof of the continuity of z°; previous
programs could do this only for linear functions.
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explicitly. The cognitive-fidelity principle then requires that the logical work
performed by the software remain mostly invisible. The glass-box principle,
however, requires that it be visible on demand. Each (visible) line of the so-
lution has associated with it a list of assumptions on which it depends. For
example, if you enter 1/x + 1/y as the problem, this will depend on the (im-
plicit) assumptions = # 0 and y # 0. Mathpert makes these assumptions explicit,
but does not display them unless you request it.

One of referees questioned this point of the design, saying that one of the
main points of undergraduate mathematical education is training in logical
thinking, and that therefore attention should be focussed on the logical aspects
of the steps. Personally, I think this is a valid point deserving of consideration
by teachers and textbook authors. Indeed the View Assumptions option in Math-
pert can certainly be used to expose the logical underpinnings, so the teacher
could simply instruct the student to make use of it. Moreover, on those occa-
sions when Mathpert refuses to execute an operation because its side conditions
cannot be satisfied, the user’s attention will be forcibly drawn to the logical
aspect of the situation. But the design principle of supporting the existing cur-
riculum took precedence in this case (as well as some others) over the desire to
“improve” the existing curriculum according to my own lights.

Correctness of Graphs. As discussed in Section 2, a purely numerical ap-
proach to graphing leads to incorrect graphs when the function being graphed
has jumps or singularities. Graphs are made by connecting a finite set of points.
If these points are chosen simply by partitioning the x-axis, the points will prob-
ably not hit the singularities exactly, so the graph may not even go off-screen at
a singularity. Moreover, there is often a vertical line where the singularity be-
longs. This arises because the software just connects one point to the next, and
“knows” nothing about singularities. Similarly, jumps will be drawn as short
nearly-vertical lines. There is another class of function that is often incorrectly
graphed: those with many maxima and minima close together. Two common
examples would be sin(40zx) and sin(1/z). What happens to a purely numeri-
cal grapher is that when the peaks are sharp, a maximum will occur between
two plotted points, and the line segment connecting the points will simply cut
across, going nowhere near the true maximum. Even an “adaptive step size”
algorithm such as is used by Mathematica will not help, because the numerical
clues that the step-sizer looks for occur only near the peak, and they are skipped
too! Matters are made worse by the fact that these errors sometimes produce
highly symmetric patterns, e.g. in the case of sinax for a between 30 and 50.
It’s an interesting puzzle to explain the patterns, but they bear no relation to
the true graph, and may well confuse a student.

Mathpert solves these difficulties by making use of its symbolic computation
engine both while preparing to graph and during the actual graphing. Let
us consider the problem of sharp maxima first. First of all, before graphing
Mathpert computes the symbolic derivative of the function to be graphed, and
then as it graphs, it numerically evaluates the derivative as well as the function.
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If the derivative changes sign from one plotted point to the next, Mathpert uses
a numerical equation-solving method to find a zero of the derivative between
the two points, and makes sure to plot a point at that x-coordinate as well as
the original two. In this way it ensures hitting the maximum. Of course, if the
graph has maxima closer together than one pixel, some inaccuracies are going to
result anyway. After all, there is no hope of drawing a perfect graph of sin(1/x)
on a screen with a finite number of pixels! But what we can achieve is a clear
picture of the envelope of the graph.

Turning to the problems of singularities and jumps: Mathpert appeals to the
symbolic code used by the theorem-prover (not the operations accessible to the
user) to calculate the singularities (if any) before making the graph. It then
takes care to draw the graph correctly at the singularities, now that it “knows”
where they are. For example, it calculates that the singularities of tan x are at
(2n+ 1)7/2, and then when graphing tan z over a specific interval @ < x < b, it
calculates the relevant values of n and draws the graph correctly.

In difficult cases the program may fail to find a formula for the singularities.
Even if it does find a formula for the singularities, if that formula involves an
integer parameter as in the above example, it may be too difficult to find the set
of relevant values of n. That set may not even be finite. For example, tan(1/x)
is too hard. But, Mathpert at least graphs all rational functions correctly, and
I hope it graphs all functions that would arise in a calculus course correctly.

It is easy to adapt the result of Richardson [18] to show that the problem
of computing the singularities of a given elementary function is not recursively
solvable. No matter how one improves the algorithm, there will always be
functions whose singularities are not calculated. However, in such a case the
user will get a warning that Mathpert could not calculate the singularities, and
the graph may be incorrect.

Another approach to these problems, “honest plotting”, is reported on in
[1], [2]. “Honest plotting” refers to the use of interval arithmetic in calculating
the graph values. That is, all arithmetic is done carrying along upper and lower
bounds. In places where the possible error is significant, the graph line gets
thicker. In bad examples, such as sin(x)/x near the origin, it becomes a region
instead of a line, but at least the correct graph is known to lie in the shaded
region. Honest plotting was described years ago in [12] and is used in Avitzur’s
Graphing Calculator (which is distributed with the Power Macintosh computer).

The Correctness Principle and Pedagogy. 1 found in the writings of Maria
Montessori, the Italian educator, a principle that is highly relevant.’® Montes-
sori demanded that educational materials satisfy the principle she called “con-
trol of error”. This means that the materials should be “self-correcting”: the
materials themselves must inform the student, without the intercession of the
teacher, when the activity has been completed successfully. Montessori had in
mind physical materials for preschool and elementary school children. For ex-

108ee Chapter 24 of Montessori [1967].
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ample, suppose the task is to sort ten wooden dowels by length. Control of
error can be provided by making the rods of different diameters, and requiring
the sorting to be done by inserting the rods in holes. You can’t put a rod in a
too-small hole. You can, of course, put a rod in a too-large hole, but if you do,
you’ll have some rods left over that won’t fit anywhere. There is only one way
to fit all the rods in a hole, and that’s the correct way.

Mathpert provides control of error by means of the correctness principle.
You simply can’t take a mathematically incorrect step. You can, of course, take
a mathematically correct but irrelevant step; you can factor a polynomial and
then multiply out the factors again. You can go on repeating those steps all day
long if you like, but you can’t make a mistake when multiplying out the factors.
When the problem is finished, Mathpert will tell you That’s the answer.

6 Using the computer’s power when the user
is stuck

One of the design principles in Section 2 required that the computer should be
able to take over on request (presumably, that means when the user is lost).
There are, however, a number of intermediate and pedagogically interesting
states the user can be in besides “proceeding competently” and “lost”. There
is, for example, the state “now what?”, in which the user has been proceeding
competently, and is generally competent with this topic, but does not see im-
mediately what to do next. Even the state “lost” can be divided into “lost and
given up” and “lost, but hoping to recover”.

How can we best use the power of the computer to solve the problems,
when the user is in these various states of confusion? This section will explain
how the current version of Mathpert uses its auto mode capabilities in different
situations.

First of all, the user who is “lost and given up” can simply click the Auto Fin-
ish button to let the computer finish the solution. Presumably the lost student
then studies the solution, in order to do better next time.

The user who is “lost, but hoping to recover” can click Auto Step. This
causes Mathpert to generate just one (more) step of the solution. Repeated
clicking on Auto Step will thus duplicate, one step at a time, the effect of Auto
Finish. But perhaps the student can realize his hope of recovery after seeing one
or two steps, and continue the solution himself.

Hint generation. A more interesting case is the user in the state “Now
what?”, who does not quite feel lost, but can’t quite figure out what to do
either. This user could of course click Auto Step, but may be reluctant to
“admit defeat” by so doing. Mathpert provides another alternative: the Hint
button. When the user presses Hint, Mathpert internally generates one more
solution step, but does not show it. Instead, having determined what operation
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it would use, it looks up an appropriate natural-language hint in a pre-stored
table of hints. These hints are designed to sound like what a teacher would say
in the situation. They are conversationally phrased, containing formulas only
when necessary, but they are designed to enable the student to extract the menu
choice which should be made to invoke the suggested operation, or at least the
term to select to proceed using the Term Selection Interface.

Error Analysis. Although you can’t carry out an incorrect step in Mathpert,
you can try to do so, by making an inappropriate menu choice. Of course, the
operation may be applicable even though in some sense inappropriate, in which
case Mathpert, in accordance with its principles, will let you take that step. But
you may have chosen an inapplicable operation, in which case Mathpert must
refuse your request. It is desirable that in this situation the most informative
error message possible should be supplied. Of course, some very common errors
can be trapped individually, and appropriate messages can be stored in the
program. However, with over a thousand operations, there are a million possible
pairs of the form (correct operation, chosen operation). So some attempt at
dynamic error-message generation is imperative. For example, some errors are
simply due to omitting a necessary preliminary step. Mathpert will catch many
of these errors. The method is this: when an operation is inapplicable, Mathpert
internally takes four steps of the automode solution starting from the current
line. If the user’s operation is used in one of these four steps, it is a good bet
that the user is “on the right track”, and a helpful message can be generated
informing the user what preparatory step has to be done first. Of course, errors
that are “not in the ballpark” will still have to generate some uninformative
message such as Sorry, that operation can’t be applied here.

7 Traditional interface issues: ease of use

In this paper I have focussed attention on the way in which the interface and
“kernel” or computational engine of a good symbolic computation program for
education are necessarily interrelated. Nevertheless, there are a number of is-
sues, mostly connected with my design principle Ease of Use, that are traditional
“interface issues”.

7.1 Source of problems

Although Mathpert can solve problems given by the user (instead of only pre-
stored problems), T found when our student laboratory opened that nobody
actually wants to type problems in. Both students and professors want to find
the problems already in a problem file ready to call up. Moreover, if using
the program in connection with a class, they want to find the exact problems
that have been assigned in class, not the problems chosen by the author of
Mathpert. This is important because it permits professors to make the use of
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Mathpert optional. This problem has been solved, in a way that gets appropriate
problems to the student without even requiring file names to be known or typed,
while still allowing full flexibility to either student or professor to customize the
problem files as desired.

When a student installs her new copy of Mathpert, she will choose her text-
book from among the supported textbooks, and the problem files for that text-
book will be included in the installation, in addition to the problem files devel-
oped and distributed with Mathpert.!! Nevertheless, the program has to support
entering an entirely new problem of your own choice. At present this means typ-
ing things like x~2+y~2 when you mean 2% +12. There is thus a “one-dimensional
notation” for typing in mathematics, different from the “two-dimensional no-
tation” used in books and for on-screen display. Some other programs offer
“equation editors”: click-and-drag interfaces, using palettes of symbols, that
allow users to build up formulas directly in two-dimensional notation. The con-
struction and desirability of such interfaces is today a widely-discussed issue, to
which I have little to contribute. What little I have is simply this observation:
while an engineer is likely to bring her own problem, a student is likely to want
to solve the homework problems. If they are already on disk, nobody will have
to type (or click and drag) to get the problems entered. Figure 5 shows what it
looks like to see the problems stored on disk. You can press Next or Previous to
peruse the available problems.

7.2 Selection of operations

There are over a thousand operations in Mathpert. Even with a menu-driven
interface, if all thousand operations were always available, it would be confusing
to try to find the one you need. There is therefore a serious “interface problem”
in enabling the user to find an appropriate operation and cause it to be used.
It seems useful to distinguish here between the user who knows what she wants
to do, and the user who does not. Let us consider the user who knows what
she wants to do, by which I mean that she knows which operation she wants
to apply. This is not the same as knowing the name by which this operation
is known on a menu; what is meant is that she could easily write out the next
step using pencil and paper, unless the computations are too intricate to do by
hand.

In particular such a user will know which sub-expression she wants to work
on. Mathpert permits her to select this expression by using the mouse to enclose
it in a rectangle. When she makes this selection, the enclosing rectangle gets a
colored background, just as when you select text in a word processor, and a short
menu of operations comes up, sometimes containing only one operation, but
sometimes containing three or even ten operations. The listed operations include

11 As of March 1995, only two textbooks are supported, and we are in the process of obtaining
permission from publishers to support more.
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Figure 5: Getting a problem without typing

everything you could do to the selected term, and the include also everything
you could do with the selected term, such as transfer it to the other side of the
equation. This Term Selection Interface allows the user who knows what she
wants to do to get the next line on the screen as quickly as possible, with a
minimum of menu-searching. Figure 6 shows how the selected term appears on
the screen. The selected term is highlighted (the default color is light yellow,
but all colors can be changed by the user, and of course the illustration here
is monochrome). The menu of possible operations should appear at the right
of the selected equation, but the image-capturing software used to make the
illustrations proved incapable of handling a “floating menu”. Therefore the
menu has just been typeset, rather than captured from the screen.

The term selection interface provides an elegant solution to the operator
selection problem for the user who knows what she wants to do. Now consider
the user who does not know what she wants to do. This user has several options,
among them Auto Step and Hint, which have already been discussed. There is
a good chance that the use of Hint may convert this user into one who can
profitably use the Term Selection Interface. If the user doesn’t feel lost enough
to press Hint, there is an intermediate option: go browsing in the menus of
operations. Before the implementation of the Term Selection Interface, all users
had to do this to take the next step in menu mode. This browsing is not
quite so difficult as it might seem, as measures are taken to cut the number
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Figure 6: Selecting a term to work on

subtract from both sides

divide both sides

collect all & terms in a sum

cancel + terms

write it as a polynomial in ?

add fractions a/b+b/c = (a+b)/c
common denominator

common denom and simplify numerator

Figure 7: The menu brought up by the selected term in the previous Figure.
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of menus of operations that can be browsed to a minimum. Luckily, in any
given mathematical situation, most of the operations are irrelevant. Normally,
all the operations you might need will fit on fewer than 20 menus of at most 16
operations each, so you need only one menu with entries like Fractions, Square
Roots, and Integration by Substitution; each of those has an associated pop-up
menu listing the operations themselves. Of course, this menu of 20 menus must
be dynamically computed from the problem type and the current line of the
computation—it can change after each new line. For example, when the last
integral sign is gone, no more integration menus will appear.

The Term Selection Interface is quite new, and all laboratory experience
with Mathpert was based on the menu-browsing interface. Two facts emerged:
(1) Tt is feasible to use this interface, indeed students quickly develop the skill
of finding the operation they want. Nevertheless, (2) Nobody really likes doing
so, although they do like seeing the solution develop as a result. In other words,
the menu-browsing is a psychological “cost” to be weighed against the “benefit”
of results obtained. The Term Selection Interface, on the other hand, is fun to
use.

Incidentally, multiple selections are allowed; for example one can move sev-
eral different terms to the other side, or one can apply the same operation to
two different subexpressions at the same step.

7.3 Arguments of operations

Some operations require an argument, that is, an additional term to be supplied
by the user. For example, the operation add to both sides, used in solving
equations. If the user chooses this operation in the old menu-browsing interface,
a popup window will appear for data entry, and she would be prompted Add
what to both sides? After she enters a term (and it is checked and accepted
as a suitable response for that particular operation), then the popup window
will disappear and she can continue. In auto mode, if an operation requires an
argument it must be automatically selected.

The Term Selection Interface improves this markedly: to multiply an equa-
tion by something, just select that something in the visible equation, and then
choose Multiply both sides from the resulting short menu. This works fine as
long as the desired argument is visible somewhere to be selected. In some cases
multiple selection can be used too, as in the case of multiplying an equation by
12 because it has denominators of 3 and 4 in different places: just select both
the 3 and the 4. But if for some reason you want to multiply the equation by
27 when no 27 occurs, you will have to do that the old way, by selecting the
whole equation, then choosing Multiply both sides, and then typing in 27 when
prompted.

The necessity of entering arguments for operations means that the problems
of one-dimensional versus two-dimensional notation can’t be swept under the
carpet, entirely by providing problems on-disk. Fortunately, the arguments to
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operations are typically quite short and simple. Moreover, they often (perhaps
almost always) are expressions currently visible on the screen, and so the Term
Selection Interface can be used. The remaining cases when somebody has to
type in an argument should be very rare. I am unable to give an example.

7.4 Justifications

The operations must return not only the result of the calculation, but also a
justification for display as the “reason” for the step. An interesting and subtle
interface question arises here. On the one hand, these “justifications” must
look right when printed in a solution, as a reason for a step. On the other
hand, they should also correspond to what is written on the menu to invoke the
corresponding operation, so that if one has a Mathpert solution in hand, one
could in principle duplicate it. For example, if the student takes one step in
auto mode, it should be apparent how that step could have been taken in menu
mode. These criteria were not always easy to balance. For example, Factor
out highest power might occur on a menu, and one might want the justification
to be ab + ac = a(b + ¢). But this justification won’t lead the user to Factor
out highest power. Careful attention to both desiderata while making up the
justifications was necessary, and perhaps the best balance has not always been
struck. With the introduction of the Term Selection Interface, this has become
a less important issue, as the necessity to browse the menus has diminished
considerably.

7.5 Interface to the grapher

Mathpert can make every kind of two-dimensional graph. It can make ordinary
graphs of a function y = f(x); it can graph two functions at once (on the same
axes or on different axes); it can make polar or parametric plots. It can graph
not only functions but arbitrary relations f(x,y) = 0. It can also show you the
complex roots of a polynomial, or solve an ordinary differential equation.

It is one thing to make a grapher and another thing to make a grapher that
is usable for classroom demonstrations and independent use by students. You
must be able to get the graph you want quickly. You must be able to show
the effect of changing a parameter quickly, without having to go through an
elaborate data-entry system first. For example, we want to draw a series of
graphs of y = 2% —ax for a =1,2,3,4,..., and then ¢ = 1,0, -1, =2, .. ..

You must be able to “zoom up” to a larger portion of the graph or “zoom
down” (microscope style) at will, without data entry and waiting. You should
be able to change every detail of the graph’s appearance (line width, colors,
etc.) yet not be distracted by screenfuls of such information when you don’t
want to change these things.

Some users reported to me that they find it important to be able to put a
grid over the graph and remove it at will. People want to be able to make the
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ticks on the x-axis occur at multiples of 7 when they are graphing trig functions.

The ability to change parameters and axis ranges quickly is vital to edu-
cation. For example, given a grapher that can plot the complex roots of a
polynomial, if you can change parameters rapidly you can do the following:
show how the roots of 22 — bz + 1 move when b is changed, at a speed fast
enough that the movement appears to be animated. (They move around the
unit circle, through a bifurcation where they meet at x = 1, then spread out in
opposite directions on the z-axis.) One can also make n a parameter and see
how the roots of ™ — 1 depend on n.

Small details of an interface often make a difference to the “look and feel”
of software. An example that comes to mind is the question of putting titles
on graphs. People want the title of the graph to use normal (two-dimensional)
mathematical notation. That means it won’t fit into a one-line title bar and
should be placed on the graph itself. But then, the user must be able to move
the title (with the mouse) to the location where it “looks best”. This will vary
from graph to graph. Moreover, if two graphs are being drawn on the same
axes, the two titles need to be independently movable, so they can be placed
near the corresponding curves.

Given the above requirements, what is the correct interface design? One
wants to provide tools to accomplish the above tasks, in such a way that users
will see and use the tools, but without cluttering up the screen, and adhering
to the design principle of ease of use. Since there are so many things you can
do to change your graph, it’s not easy to provide a complete set of tools for
accomplishing all those things easily without overwhelming the user with too
many confusing icons, buttons, and menus. Mathpert tries to provide a small
number of the most commonly-used tools in a visible form as a Graph ToolBar,
occupying a narrow vertical strip to the left of each graph. The rest of the tools
are accessed via menus. Using the ToolBar, you can zoom in or out and change
parameter values with a single click.

One interesting issue in the design of a grapher interface is whether the
graph should be instantly updated when a change is specified, or whether the
user should be able to specify several changes before redrawing. The increas-
ing speed of computers that run Mathpert has weighed in favor of instant re-
draw, for example when a zoom button or parameter-increment button has been
pressed. Avitzur’s Graphing Calculator (see Avitzur [1995]) sets a high stan-
dard for a grapher interface, and the Power Macintosh on which it runs certainly
has enough speed to make instant redraw attractive. But there are a few cir-
cumstances where instant redraw is awkward, namely when the redraw is not
actually instant, but takes too long. For example, looking at the partial sums of
a series with the number of terms as a parameter, you will not want to change
the number of terms from 5 to 50 by increments of 1 if you have to wait for
each graph along the way to be drawn. (Such a formula can’t be entered in the
Graphing Calculator.) Another example is a contour plot. In most situations,
however, instant redraw is preferable, so the cases mentioned have to be handled
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as well as possible by other features of interface design, such as easily access to
dialog boxes for changing the parameter value by large amounts, and a button
to interrupt a slow drawing.

8 Interfaces and pedagogy

The development of software for symbolic computation has already caused sub-
stantial debate about the mathematics curriculum and pedagogy. The devel-
opment of education-specific software for computations and graphs will have
further effects.

Here is a single example of what can be done. When teaching Calculus 11
using Mathpert, one day I introduced exponential functions vy = a* graphically,
letting them change the parameter a. I asked each student to find the value
of @ which gives the graph slope 1 as it crosses the y-axis. They had to read
the numerical value of the slope (which is easy with Mathpert), and adjust the
value of @ accordingly. In this way they each soon arrived at value of e accurate
to several decimal places. Then we used the graphical ODE solver to look
at the solutions of ¥’ = ¥, and saw their similar shape. We then calculated
the derivative of e* symbolically, using the definition of the derivative as a
limit. Finally they were given a file of homework problems on differentiation of
functions involving exponentials.

I promised at the beginning of the paper to return to the issue of software
that would not only replace pencil and paper, but also teachers and books.
One preliminary step in this direction is afforded by the Microsoft Windows
technology known as OLE (Object Linking and Embedding) [7], and by the
competing Apple technology OpenDoc. This means that documents created by
one software application (such as a spreadsheet or Mathpert) can be embedded
in a document created by another application (such as a word processor). In
practice it works like this: You write a page of a textbook in your favorite
word processor explaining the exponential function ¥ = a*. You make a graph
of it in Mathpert and paste that into your document using tools that today
come with Windows. You include instructions for the student to click on the
graph and find the value of a that makes the slope be 1 where it crosses the
y-axis. The student reading your document clicks on the graph, and Mathpert
starts up on that document. When the student has completed the exercise,
she exits Mathpert and is back in your textbook, ready for the next part of
the exercise, as described above. OLE technology means that anyone who can
write textbooks can also write teaching materials that incorporate symbolic
computation software. Publishers are nowadays busy putting existing textbooks
on CD-ROM, with hypertext links from subject to subject. In the future, such
CD-ROM based texts will also have live links to symbolic computation software.
Recently there has been a wave of speculation that instead of CD-ROM, the base
for hypertext educational material should be the World Wide Web.
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Software to replace teachers and books will certainly be “multimedia”, mean-
ing it will incorporate sound and video. These features will have to be incorpo-
rated with full respect to the principle that the user is in control. Such software
will not consist of videotaped 50-minute lectures. It will have live links to short
video presentations, which might be either lecture-style (but limited to one short
topic), or videos designed to show the applications of mathematics. Maybe you
could click on the double-angle formulas for trigonometry and get a video lec-
ture deriving them, and click again and get a video showing how they are used
to design airplane wings or engines. A click in the right place might bring you
a short history of those formulas, with biographical details if desired.

I have referred above to the curricular reformists who would have us em-
phasize concepts instead of techniques. I think this argument will fade away
with the introduction of software that is capable of carrying out step-by-step
solutions, thus supporting instruction in mathematical techniques. Would you
like a mechanic working on your car who has been trained in the concepts of
engine design? Well, of course, but she had better also know how to service
the car. Similarly, we want the engineers who design jet planes to have a thor-
ough background in mathematical techniques, as well as concepts. I don’t think
there is a controversy here. I believe the development of software meeting the
design criteria set forth in this paper will enable the teaching of both techniques
and concepts, in an integrated curriculum that has yet to be developed. Both
the design and the delivery of this curriculum will be profoundly influenced by
technology.

9 Use and availability of Mathpert

Development of Mathpert began in 1985; by 1989 I was using it to teach classes
at San Jose State University, but the students had no access: it was used only for
classroom demonstrations. In 1990 I was awarded an ILI grant from NSF to open
a student mathematics learning lab at San Jose State, and taught two semesters
of calculus to students in that lab using Mathpert. Several other faculty members
also used Mathpert for a few classes in that laboratory. By 1994 the calculation
engine of Mathpert was nearly finished, but the interface (DOS) was five years
out of date. Therefore an interface was developed using Microsoft Windows 3.1
in 1994-95. As of this writing (September 1995), Mathpert is projected to reach
the market in early 1996.
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