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Abstract

The nature of the continuum has long been an important issue in the founda-
tions of mathematics. It played an important role in the work of Dedekind, Weyl,
and Brouwer, as well as early axiomatic geometers. When recursive function the-
ory was developed, it was immediately applied to the continuum, via Turing’s
“computable” numbers. But then the construction of “singular covers” showed,
it seemed, that the recursive reals had measure zero! Does this mean that we
have to choose between constructive reasoning consistent with Church’s thesis
and a unit interval of positive measure? Bishop’s measure theory saved us from
the horns of this dilemma–or did it just sweep the difficulty under the carpet? We
study the relationship between Bishop’s measure theory and the recursive singu-
lar covers; as a result of this analysis, we identify a logical principle FP (fullness
principle). FP is justified by the informal principle of geometric completeness,
and formally refutes Church’s thesis CT. We show that FP is a constructive
principle in that it is conservative over intuitionistic arithmetic HA and has the
numerical existence and disjunction properties. Returning to the original philo-
sophical questions about the nature of the geometric continuum, we ask what
the origin of our intuitions is. We show that modern physics supports the view of
Helmholtz on this matter: below the Planck length space is not coordinatizable
in the usual way.

Introduction

This paper concerns the notions of existence and constructive existence as they
apply to real numbers. The following two principles have often been considered:

(Church’s thesis) Every real number can be computed to any desired ap-
proximation by an algorithm.

(Geometric Completeness) The points on a line segment correspond to
real numbers in an interval.

These two statements seem to be different: the first one expresses an intu-
ition about particular real numbers. Each real number that someone might “give”
to us is only “given” if we are told how to compute it. The second statement,
on the other hand, expresses an intuition about the totality of real numbers (in

1



an interval). The geometric line segment must be “the sum of its parts”–it is
composed of points, so there must be “enough” points to fill up the line, without
leaving any “gaps”. Is it really possible that all those gaps are filled up with
computable numbers?

All the notions in these principles (computation, algorithm, real number,
geometric line segment) are notions about which we have strong intuitions, but
which required Herculean labors of mathematics to bring to their modern precise
formulations. Even before these concepts were made precise, people such as Weyl
and Brouwer were uncomfortable, but with the advent of Turing machines the
matter reached a sharper formulation. From the classical point of view, there are
only countably many computable real numbers, so no, not all the gaps can be
filled with computable numbers. Of course, the standard constructivist reply is
that the computable numbers are not constructively enumerable, so you cannot
point out an unfilled gap. But is this a fully satisfactory answer? One might
compare that answer to saying, after sweeping the dirt under the carpet, that
you cannot point it out.

In this paper, we will examine this question more closely.

The continuum in the history of logic

I will begin, not with the well-known contributions of Dedekind and Cantor, but
with another historical stream, from the development of geometry.

Geometry was in attendance at the birth of logic in Euclid’s Elements, and
the nature of the continuum was already giving philosophers difficulty before that
(Zeno’s paradox). In the middle of the nineteenth century, Staudt (Geometrie der
Lage 1847) took steps towards a modern deductive geometry; but Felix Klein ob-
served in 1873 the difficulties about continuity in Staudt’s treatment, complaining
of the necessity “to conceive points, also if these are defined by means of an in-
finite process, as already existing.” The second half of the nineteenth century
saw the development of an increasingly rigorous axiomatic approach to geom-
etry, for example Pasch’s Vorlesung über neuere Geometrie appeared in 1882;
but as Freudenthal observes in his fascinating history ([8], pp. 106–107), Pasch
had a number of Italian contemporaries: Veronese, Enrique, Pieri, Padoa. These
developments set the stage for the appearance in 1899 of Hilbert’s Grundlagen
der Geometrie [9]. 1 As Freudenthal says, the opinion is widespread that it was
Hilbert who first gave a completely deductive logical system for Euclidean geom-
etry, in which nothing was left to intuition. But in view of the achievements of
his predecessors just mentioned, what was there left for Hilbert to do?2

Freudenthal answers this rhetorical question as follows: From antiquity an
axiom was an evident truth, that could not be proved, but also needed no proof:

1Quite possibly they also influenced the work of Peano, who introduced modern logical
notation a few years later.

2Was blieb für Hilbert eigentlich noch zu tun? [8], p. 110.
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Whether one believed with Kant that axioms arose out of pure contemplation, or

with Helmholtz that they were idealizations of experience, or with Riemann that

they were hypothetical judgements about reality, in any event nobody doubted

that axioms expressed truths about the properties of actual space and were to be

used for the investigation of properties of actual space.

Hilbert’s book, on the other hand, begins with “Wir denken uns drie ver-
schiedene Systeme von Dingen: die Dinge des ersten Systems nennen wir Punkte;
die dingen des zweiten Systems nennen wir Gerade. . .”. Freudenthal says “With
this the umbilical cord between reality and geometry is severed.”

But a few years later, Brouwer was again attempting to characterize and
elucidate the properties of the actual continuum. He wrestled for the first time
with the problem that will concern us in this paper: How can we reconcile the
computability of individual real numbers with our notion that the continuum
itself is “full of points”, so full as to make a geometric line? Apparently he
did not think that one can fill the gaps with computable numbers: he invented
his theory of choice sequences. He said, for example, there is a real number
0.334434333444344. . ., where we are free to choose at any stage a 3 or a 4 ar-
bitrarily, according to our free will. He did not require that we specify at any
finite stage an algorithm for making all the rest of the choices.3 The necessity
for functions defined on [0,1] to be defined on all choice sequences led to his
continuity principle, that all such functions are continuous. This principle flatly
contradicted classical mathematics, and was responsible in no small part for the
well-known public relations problems of Brouwer’s intuitionistic mathematics.

Hermann Weyl was also concerned with the problem of “filling the gaps”.
Weyl (in the preface to the 1917 edition of Das Kontinuum) wrote:

At the center of my reflections stands the conceptual problem posed by the

continuum–a problem which ought to bear the name of Pythagoras and which

we currently attempt to solve by means of the arithmetical theory of irrational

numbers.

In the twenties and thirties, Hilbert applied his axiomatic viewpoint to
other mathematical theories than geometry, and formulated his program to secure
mathematics from the dangers of the paradoxes by proving the consistency of
axiom systems. In his view, consistent axioms had to be “about something”–
consistency guaranteed existence. In some sense, that is what was proved in
the completeness theorem of Gödel, but in the twenties, let alone the 1910’s,
the concepts in the completeness theorem were not yet clear; not until Hilbert-
Ackerman 1929 does one find the question clearly formulated, and it was answered
two years later by Gödel.

In 1932, Weyl’s book was reprinted, and he remarked in the preface,
3Technically the notion of choice sequence allows us to restrict our future choices; we could

say, for example, that from now on we will choose every other digit to be a 3, and use our free
will only on the remaining digits.
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...in the period since its appearance, my work has been superseded by two trends

identified by the catchwords Intuitionism and Formalism. Still, this...has not led

to an even moderately satisfying or defensible conclusion...it seems not to be

out of the question that the limitations prescribed in the present treatise–i.e.,

unrestricted application of the concepts “existence” and “universality” to the

natural numbers, but not to sequences of natural numbers–can once again be of

fundamental significance.

Recursion theory and the continuum

The recursive continuum (if this is not a contradiction in terms) has been of
interest from the dawn of computability theory: Turing’s original paper on Turing
machines had the phrase “computable numbers” in the title. A recursive real
number is given by a recursive sequence of rational approximations converging
at a pre-specified rate, for example

|xk − xj| ≤ 1/2k + 1/2j.

(One cannot simply say that the decimal expansion is recursively computable
because of technicalities about 0.49999. . ..)

In the nineteen-forties, Stephen Kleene developed recursive realizability, giv-
ing for the first time a concrete and classically comprehensible interpretation of
the notion of “constructive existence.” The main idea of recursive realizability
is that the quantifier combination ∀x∃y is replaced by a recursive function that
produces y from x. For details see [10], pp. 501-516, or [14].

Kleene also observed the following fundamental fact:

Theorem 1 (Kleene’s singular tree) König’s lemma is false in the recursive
continuum. More precisely, there is an infinite binary tree with no infinite recur-
sive path.

Notation. We use the following standard notations from recursion theory: T (e, x, k)
means that k is a computation by the e-th computable partial function at input
x, and the result (output) of the computation is U (k). We also write {e}(x) for
this value U (k). Since these are partial functions, {e}(x) may be undefined for
some e and x; we write {e}(x) ∼= y to mean that {e}(x) is defined and is equal
to y, i.e., ∃k(T (e, x, k) ∧ U (k) = y).

Proof. One starts with two r.e., recursively inseparable sets, for example A =
{n : {n}(n) ∼= 0} and B{n : {n}(n) ∼= 1}. The tree will be constructed so that
any path f will separate A and B: if n ∈ A then f(n) = 0 and if n ∈ B then
f(n) = 1. The definition of the tree K is this: the finite binary sequence t of
length n belongs to K if for each k ≤ n, n steps of computation of {k}(k) do not
reveal that (t)k 6= {k}(k); that is,

K = {t : ¬∃j ≤ lh(t)(T (k, k, j) ∧ U (j) = (t)k}).
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We give 2N the product topology and measure, induced by the norm |x| =
2−k where k is the least integer such that x(k) 6= 0. Kleene’s construction also
shows that the Heine-Borel theorem fails in recursive 2N , since the finite se-
quences t which are not in K, but whose initial segments are all in K, form a
covering of recursive 2N without a finite subcover.

Closely related to Kleene’s singular tree is the following construction of a
“singular cover.”

Theorem 2 (Lacombe’s singular cover) The set of recursive members of 2N

has measure zero.

Proof. Let ε > 0 be given and let k be a fixed integer with 1/2k < ε. Let y1, . . . , yn

be an enumeration of all indices of partial recursive functions y whose initial
segments of length k + y are defined. Let An be the set of all extensions of the
initial segment t of {yn} of length yn + k. The measure of An is 1/2yn+k. Every
recursive member of 2N belongs to one of the An, but their total (classically
defined) measure is bounded by

∞∑

n=1

1
2yn+k

≤ 1
2k

< ε.

Remarks. Credit for this theorem is shared by Zaslavskĭi and Čeitin [16], who
made the argument constructive instead of classical, and adapted the construction
to the unit interval, paying attention to making the intervals overlap only at
endpoints, but Lacombe’s publication was first. The neighborhoods produced in
Lacombe’s construction are not disjoint; in general An will meet Am when {yn}
and {ym} have a common initial segment longer than max(yn, ym) + k.

Lacombe’s construction is a “double shocker”: the recursive members of
[0,1] or 2N have measure less than 1, and what’s more, they have measure zero!
Contrary to what one might initially suspect, neither of these shocks is implicit
in Kleene’s construction. This matter is worth investigating. We can get a cover
of the recursive elements of 2N from Kleene’s tree by taking the collection of
neighborhoods determined by finite sequences t that do not belong to the tree,
but all their initial segments do belong. The elements of this cover are pairwise
disjoint. What is their total measure? One, or less than one? The following lemma
answers this question.

Lemma 1 The cover of the set of recursive members of 2N determined by Kleene’s
singular tree has total measure 1 (classically); constructively, the partial sums of
the lengths of the cover are not bounded by 1 − ε for any ε > 0.

Proof. Let U0 be empty and K0 = 2N . Let Um+1 be the set of members of 2N

whose initial segment of length m + 1 does not belong to Kleene’s tree K, but
whose initial segment of length m does belong to K. Then the Um are pairwise
disjoint and their union covers the recursive elements of 2N . Let Km+1 be the
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set of members of 2N whose initial segments of length m + 1 belong to K. Thus
Um+1 ∪ Km+1 = Km. What sequences t of length m are initial segments of
members of Um? Those such that we have ∃j < m(T (j, j,m) ∧ U (m) = (t)j).
Given m, there is at most one j such that T (j, j,m); if there is no such j or if
j ≥ m, then Um = Um−1. Otherwise (if there is such a j), then half the sequences
in Km−1 will drop out in Um. In other words: for each m, either Um+1 is empty
and Km+1 = Km, or Um+1 consists of exactly half of Km. The total measure of
the Um is thus (classically) the sum of the series 1/2 + 1/4 + . . .1/2j + . . . = 1.
We have not proved the constructive convergence of this series, since we do not
know how large we must take m to get within a specified distance of 1. But if the
cover had the partial sums of its measures bounded below 1, then there would be
a maximum on the values of m such that Um+1 is nonempty, and the tree would
be finite, which it is not. So we have proved constructively that for every ε, it is
not the case that the partial sums are bounded by 1 − ε.

In addition to these failures in topology and measure theory, the final public-
relations disaster for recursive analysis is the failure in the recursive reals of the
theorem that bounded monotone sequences have limits. Specker [13] discovered
the existence of (what are now called) Specker sequences: recursive, strictly in-
creasing sequences of rationals belonging to [0,1] but not converging to any re-
cursive real number. Such a sequence can be given as follows: We construct the
decimal expansion of the numbers to contain only 3 and 4 (so as to avoid prob-
lems with tails of nines). The k-th digit of xn will be 3 if n steps of computation
of {k}(k) do not yield a value, or 4 if they do yield a value. This sequence is
monotone since digits only change from 3 to 4; and the limit number, if it ex-
isted, would enable us to solve the halting problem, since {k}(k) halts if and only
if the k-th digit of the limit number is 4.

The Kreisel basis theorem ([12], p. 187) says that a recursive binary tree
always has a ∆2

0 path. The fact that ∆2
0 is best-possible is illustrated by the

Kleene’s singular tree. König’s lemma also fails in the class of functions recursive
in α, for a fixed α. To avoid this phenomenon, we must go to the collection of
partial Π1

1 functions. König’s lemma holds in this class: The total functions in
this class are hyperarithmetic, and every hyperarithmetic infinite binary tree has
a hyperarithmetic path. Thus from a purely recursion-theoretic point of view,
there appears a connection between the fullness of the continuum and our ability
to quantify over the integers. In a collection of functionals of finite type, we
need the numerical quantifier E (considered as a type 2 functional) to guarantee
the geometric fullness of the type 1 functions. (The hyperarithmetic functions
are exactly those functions of type 1 recursive in E.) Feferman’s analyses of
predicativity [5, 6] show that the hyperarithmetic reals form a model of theories
of predicativity, so Weyl might consider his viewpoint, and the doubts quoted
above, to be partially justified by these results.
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Bishop’s constructive mathematics

These three failures of important classical results of analysis might seem to be
the death knell of Church’s thesis, since they appear to flatly contradict the
principle of geometric completeness. Brouwer died in 1966, so he lived to see
these results, but in his usual style, he never commented on them in print. They
may have made him glad that he had developed the theory of choice sequences.
Nevertheless, the Russian constructivists under the leader of Markov pursued
the development of constructive mathematics assuming Church’s thesis for some
decades. At the time of Brouwer’s death it appeared that your choices were:

(1) accept Brouwer’s theories, give up most of mathematics and give up
talking to most mathematicians; or

(2) accept Church’s thesis, give up analysis and give up talking to most
mathematicians; or

(3) reject constructive mathematics entirely.
This was not a difficult choice for most mathematicians; but Errett Bishop

refused the prongs of this dilemma and published a book [2] in 1967 (the year
after Brouwer’s death) in which he developed constructive mathematics without
using either Church’s thesis or choice sequences. Since he didn’t assume every real
is recursive, the recursive counterexamples do not apply directly. Since he didn’t
assume there are some non-recursive reals (e.g. choice sequences), the classical
theorems are not directly contradicted. His idea was to show that by suitable
choices of definitions, the constructive content of classical mathematics could be
brought to the fore, and was substantial.

Logicians labored in the subsequent decade to analyze what Bishop had
done, by constructing suitable formal theories and studying their formal inter-
pretations. This work is summarized in [1]. These studies verified (for various
formal theories) that Bishop’s work is indeed consistent with Church’s thesis as
well as with classical mathematics, and is constructive in the sense that “when
a person proves an integer to exist, he or she can produce that integer”. This is
reflected in the “numerical existence property” of a formal theory T: if T proves
∃xA(x) then for some numeral n̄, T proves A(n̄).

Bishop’s measure theory

One of Bishop’s achievements was the development of a constructive version
of measure theory, according to which the unit interval has measure one. This
measure theory was revised in [3]. A similar revised version appears in the second
edition of Bishop’s book, which added Douglas Bridges as co-author, and whose
final version was completed by Bridges after Bishop’s death.4 In this section we
extract from Bishop’s theory the definition of “set of measure zero”, and the
statement and proof of the fundamental lemma that permits Bishop to prove

4See also the discussion of the formalization of Bishop’s measure theory in [7].
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that sets of positive measure are nonempty.5 At first this seems surprising, since
merely knowing that a set has positive measure does not seem to provide enough
information to actually compute a member of the set. The following simple piece
of constructive order theory will be needed: if u + v < 1 then either u < 1/2 or
v < 1/2. One proves this as follows: for some ε > 0 we have u+v ≤ 1−ε. Then it
is contradictory that both u ≥ 1/2 + ε/2 and v ≥ 1/2 + ε/2. Hence u < 1/2− ε/4
or v < 1/2− ε/4. At the last step we used the usual constructive replacement for
trichotomy: if a < b then for all x we have x < b or a < x.

It will turn out to be sufficient to understand the concept “set of measure
zero” in Bishop’s measure theory. Bishop’s measure theory applies to “comple-
mented sets”; for our purposes we can define

−A = {x : ∀y ∈ A(y 6= x)}.

Here all variables range over [0,1], and x 6= y means what constructivists usually
call “apartness”; that is, it means that for some rational ε > 0, |x−y| > ε. What
we usually call the measure of A is then the measure of the complemented set
(−A,A).

Bishop’s definition on page 159 of [2] (with f identically zero) implies that
A has measure zero if and only if for each ε > 0 there exists a sequence of
nonnegative functions fj of bounded variation such that6

(a)
∑∞

j=1

∫
fj(x) dx exists and is less than ε.

(b) x ∈ −A whenever ∃δ > 0∀N (
∑N

j=1 fj(x) ≤ 1 − δ).

Bishop gives as an example the case when A is the set of rational numbers in
[0,1]. Enumerate A by a sequence qn. For each ε > 0 there is a function fn which
is 1 at qn and decreases linearly to zero on either side of qn so that its integral
is at most ε/2n. Thus condition (a) is satisfied. For condition (b): suppose the
condition on the right of (b) holds for x, and let qn be a given rational; then
since fn decreases linearly its slope is known, and we can bound x away from qn

in terms of n and δ, so x 6= qn, so x ∈ −A.
The fundamental lemma in Bishop’s measure theory (p. 160 of [2], with g

identically 1; compare p. 219 of [4]) connects a measure-theoretic statement with
an existence statement about a point. Essentially, it says that if a set X has
measure less than the whole space, then we can find a point x in −X. We will
give a more precise statement. In the statement,“test function” means continuous
function with compact support.

Lemma 2 (Basic lemma of constructive measure theory) Let X be a lo-
cally compact space. Let g be a nonnegative test function and let fj be nonnegative

5Bishop’s measure theory is quite complicated: it has been presented in three different forms
in the literature and the final form in [4] occupies more than eighty pages. It is therefore
worthwhile to extract here the information relevant to the questions at hand.

6Bishop’s definition has a condition (c) which falls away in the case of measure zero, when
the f in Bishop’s definition is taken to be identically zero.
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test functions such that
∑∞

j=1

∫
fj dx converges and is less than

∫
g(x) dx. Then

we can find an x in X and ε > 0 such that for all positive integers m

m∑

j=1

fj(x) ≤ g(x) − ε.

The basic idea of the proof of this lemma is considerably easier to grasp in a
“totally disconnected” space such as 2N , where the space can be divided into, for
example, two disjoint subspaces each of measure half that of the whole space. The
plan of the proof is “divide and conquer”. Consider the illustrative case ofX = 2N

and g identically 1. We divide the space into two pieces, A = {f : f(0) = 0} and
B = {f : f(0) = 1}. Given a set X with measure less than 1, we argue that either
X∩A orX∩B has measure less than 1/2. We can make this choice constructively,
by the piece of inequality reasoning given above: if u+ v < 1 then either u < 1/2
or v < 1/2. Then we can continue in the fashion of the usual proof of Bolzano-
Weierstrass, determining at the n-th stage a neighborhood Un of radius 1/2n

such that the measure of X ∩ Un is less than half the measure of Un, and at the
n + 1-st stage dividing the neighborhood Un in half, selecting one of the halves
as Un+1. Let gi be characteristic function of the neighborhood determined at the
i-th stage, and xi its center. Then the xi form a Cauchy sequence whose limit
will be the desired x. Of course, we still have to argue that x belongs to −X, but
this is easy: assume that

∑m
j=1 fj(x) > 1 − ε for some positive integer m. Then

(by the continuity of fj and the characteristic functions gi), for sufficiently large
n we have

m∑

j=1

fj(x)gn(x) ≥ (1 − ε)gn(x).

Integrating, we have

∫
(1 − ε)gn dx ≤

∞∑

j=1

fj(x)gn(x) dx

contradicting the hypothesis.
If the space is not disconnected (for example [0,1]) then one has to use a

partition of unity. A partition of unity is a finite collection of functions g1, . . . , gm

whose sum is identically 1, but each of which is nonzero only on a set of small di-
ameter, say 1/n2. In a totally disconnected space, partitions of unity are trivial to
construct; for example in 2N , let Nt be the set of functions with finite initial seg-
ment t, and pick any collection of neighborhoods Nt that cover the whole space,
and let the gi be the characteristic functions of these neighborhoods. The use of
partitions of unity is implicit in [2], p. 160-161, and more explicit in [4], p. 219,
although in neither case is the phrase “partition of unity” actually mentioned.

Remark. What I want to call attention to is the absolutely crucial role
played by the hypothesis that

∑∞
j=1

∫
fj dx converges. We needed that number
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to be constructively well-defined in order to use the u+ v argument to to decide
whether to “go left or right” at the n-th stage in computing x. If all we knew was
that the partial sums were bounded, we wouldn’t be able to make that decision.

Singular covers and constructive measure theory

The main point of this section is to explain, without requiring a full exposition
of constructive measure theory, how it is possible that Bishop’s measure theory
could be consistent with Church’s thesis, in spite of the singular covers described
above. This question is already indirectly approached in Exercise 2, page 70 of [1],
which addresses the following technicality: the sum of the lengths of the intervals
of the singular cover is not a recursive real. A more precise statement is that the
cover consists of a recursive sequence of intervals, and the total length of any
finite number of them is less than ε. But the series whose terms are the lengths is
not recursively convergent. Putting the matter another way, if the singular cover
consists of intervals In whose lengths are L(In), then the partial sums sn of the
series

∑
L(In) form a Specker sequence. The total length of the covering intervals

cannot be computed to a predetermined accuracy. In Bishop’s terminology it
might be a fugitive sequence–it can always jump by an unknown amount, no
matter how long you have already been computing. Exercise 2 asks the reader to
prove this fact, but for a hint it suggest that otherwise, Bishop-Cheng measure
theory would be contradicted if Church’s thesis is assumed, while we know from
metamathematical studies that Bishop-Cheng measure theory can be formalized
in theories that are consistent with Church’s thesis. This may technically count
as a solution, but from the point of view of understanding the situation, it is
circular. What follows is a technically useless attempt to prove what we know to
be impossible, but it is helpful for understanding.

Let us try to use the singular covers An defined above to prove that the
set A of all recursive members of 2N has measure zero, imitating the proof that
the rationals have measure zero. In 2N , characteristic functions of neighborhoods
are continuous, we can take fn to be the characteristic function of An, which
depends on a given ε even though the notation An does not show this dependence.
Condition (b) works: if the right-hand side of (b) holds, then x is not in any An,
and hence is not a total recursive member of 2N . Turning to (a), the integral∫
fj(x) dx is bounded above by 1/2yn+k, where 1/2k < ε, but as we remarked

above, the neighborhoods in Lacombe’s cover do overlap, so the actual (classical)
value of the sum on the left may be less than the bound, and we do not have a
constructive proof that it converges. The fact that we can’t estimate the rate of
convergence of this sum prevents us from proving that the set of recursive reals
has measure zero.

Let us ignore that difficulty for a moment, and try to use the fundamental
lemma of constructive measure theory to construct a non-recursive real. To deter-
mine the first value x(0) we consider U = {x : x(0) = 0} and V = {x : x(0) = 1}.
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Let S be the union of the singular cover, so S has measure < 1 and we need
to know whether it is S ∩ U or S ∩ V that has measure less than 1/2. Again
we encounter the same problem: the measure of S is not a number that we can
compute to any desired accuracy.

To cap this discussion, we will show directly that the measure of the union
of the singular cover An is not a recursive number; in other words, the measures
of the union of the first N terms form a Specker sequence. Recall the definition
of the singular cover; it suffices to take k = 1 so the measure comes out less than
1/2. Then we enumerate as y1, . . . , yn those y such that {y}(y + 1) is defined,
and we define An to be the set of elements f of 2N such that f(x) = {yn}(x)
for x < yn + 1. Thus the measure of An is 2−yn−1. Any two of the An are either
disjoint, or one contains the other. Suppose the measure of the union were a
computable number. Then, given a rational ε > 0, we could compute an integer
K = κ(ε) such that for j > K, either Aj is contained in one of the first K sets
An, or the measure of Aj is less than ε. Let tj = {yj}(yj + 1). Then either {y}
extends tn for some n ≤ K, or 2−yj−1 < ε.

The condition 2−yj−1 < ε is equivalent to yj > 1+lg(1/ε), so it says that we
won’t have short programs y coming out at a late stage of the enumeration yn. We
will show, however, that this possibility cannot be prevented. The enumeration
yn is constructed in the first place by enumerating all computations, and putting
y in the sequence yn when we have successfully computed all values {y}(x) for
x < y. Some of those computations might take a long time, so a short program y
might come out arbitrarily late in the sequence yn. That is the intuitive reason
why the measure of the union of the singular cover is not computable. We can
use the recursion theorem to make this intuition into a proof, as shown in the
next paragraph. The recursion theorem permits us to use the number y in the
definition of the partial recursive function {y}.

By the recursion theorem define a recursive function y as follows: to compute
{y}(x), first compute ε = 2−y−1 and then K = κ(ε). Then compute (i.e., search
for) a sequence number t that does not extend tn for any n ≤ K, but t is at least
as long as all the tn with n ≤ K. The search for such a t will succeed, since the
measure of the union of the first K of the An is less than 1/2. Then the value to
return as {y}(x) is (t)x if x < lh(t), and 0 otherwise. But before returning this
value, we (artificially) enter a long loop, so that the computation of {y}(x) will
take a long time, specifically at least K + 1 steps. Then the index J of y in the
sequence yn will be at least K+1, so by hypothesis we have either y extends tn for
some n ≤ K, or 2−y−1 < ε. The first alternative does not hold since {y} extends
t and t is at least as long as tn but does not extend tn. Hence 2−y−1 < ε; but by
definition of ε, 2−y−1 = ε. This contradiction completes the proof. This proof gives
a direct solution of Exercise 2, p. 70 of [1], without reference to Bishop’s measure
theory or any metamathematical argument, and thereby demonstrates why the
singular cover does not contradict Bishop’s measure theory: the latter has the
hypothesis that the sum of the measures of the cover should be a constructively-
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defined real number, but that hypothesis, which is crucial for the fundamental
theorem that sets of positive measure contain some element, fails for the singular
cover in recursive mathematics.

Geometric completeness and constructive logic

Bishop’s beautiful construction of a measure theory that is consistent both with
classical mathematics and with Church’s thesis is dazzling, but somehow the
singular cover constructions still leave one with the feeling that Church’s thesis
is at odds with the geometric completeness principle. In this section we try to
capture that feeling in formulas.

Definition 1 For subsets X of a locally compact metric space, we define X has
measure at most t to mean that X is covered by a union of (a sequence of)
neighborhoods such that the sum of the measures of any finite number of those
neighborhoods is less than or equal to t.

Thus the set of recursive members of [0,1] has measure at most ε, for every
ε > 0. This concept drops the condition imposed by Bishop that the measure of
the cover itself must be computable.

With the aid of this definition we can consider the following principle, ex-
pressing the “fullness” of the continuum:

Fullness Principle (FP): If [0,1] has measure at most t then t ≥ 1.
Although FP is meant to express an intuition about [0,1], its equivalent

expression as a statement about 2N is also interesting. There is a natural con-
nection between binary trees and covers of 2N . For t a finite binary sequence and
f ∈ 2N , let t ⊆ f mean that f has t for an initial segment. Each finite binary
sequence t determines a neighborhood Ut = {f : t ⊆ f}. The cover associated
with a tree T consists of all the Ut such that t 6∈ T but all initial segments of t
are in T . Distinct members of this cover are distinct, since if Ut and Us are in
this cover then neither t nor s has the other for an initial segment. A tree has
size at most t if the sum of the measures of any finite union of the Ut is at most
t. A tree is well-founded if every path eventually runs out of the tree. FP is then
closely related to this statement:

Tree Fullness Principle (TFP) If a well-founded binary tree has size at
most t then t ≥ 1.

At this point we review the standard notation for sequences coded as inte-
gers: we assume that every integer is a sequence number; lh(t) is the length of
the sequence encoded by t and its members are (t)0, . . . , (t)n−1, where n = lh(t).
We write t ⊆ q or q ⊇ t to mean “q extends t”, that is, lh(t) ≤ lh(q)) ∧ ∀j <
lh(t)((t)j = (q)j). For β a function (of type 1) we write t ⊂ f to mean ∀j <
lh(t)((t)j = f(j)). We write ∀β ∈ 2N . . . to abbreviate ∀β(∀kβ(k) < 2 → . . ..

FP is formulated with a function variable for the sequence of neighborhoods;
TFP admits several formalizations: it could be a second-order principle (with a set
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variable for the tree), or a first-order schema, with a formula for the complement
of the tree. For definiteness, we take a version that is similar to FP, in that a
function variable α is used to enumerate a sequence of neighborhoods.

∀β ∈ 2N∃k∃n(β(k) ⊇ α(n)) ∧ ∀m
( m∑

j=0

2−lh(α(j)) ≤ t
)
→ t ≥ 1 TFP

By Church’s thesis CT, we mean, as usual, the assertion that every se-
quence of integers is given by some recursive function. In view of the singular
cover, FP contradicts Church’s thesis CT. Hence FP is not derivable in Bishop’s
constructive mathematics (BCM) or in formal systems that are consistent with
CT.

Not only that, FP contradicts “there exists a real α such that every other
real is recursive in α.” This can be proved by relativizing the singular-cover
construction to functions recursive in α.

FP is intended to express a formal version of the geometric completeness
principle, that there are enough points to fill up a geometric line. Since it refutes
CT, it proves not-not there exists a non-recursive member α of NN , so it proves
not-not there exists a non-recursive subset ofN×N , namely the graph of α. There
is therefore some metamathematical work to do to check that this principle is
not completely non-constructive.

FP is carefully formulated to avoid hidden assertions about the computabil-
ity of numbers; it is intended to express that a lot of points exist (or technically,
do not fail to exist) to fill up a line, without asserting that we can find any specific
ones among those points. Contrast FP with the following:

Strong Fullness Principle (SFP) If a subset X of [0,1] has measure at
most 1 − ε, and ε > 0, then we can find a member of −X.

This principle strengthens the fundamental lemma of constructive measure
theory by dropping the requirement that the measure of X must constructively
exist.

We also will consider several constructive versions of König’s lemma, or more
precisely, of “weak König’s lemma”. Weak König’s lemma is “weak” in that the
tree is binary (or equivalently of bounded branching), rather than just of finitary
(but possibly unbounded) branching. We formalize this in theories without set
variables as a schema, using a formula to represent the tree. The usual formulation
of weak König’s lemma (considered in the proof theory of subsystems of classical
analysis) says that every infinite binary tree has an infinite path.

To formalize WKL and related principles, we must decide how to represent
a binary tree: a set variable, or a formula (resulting in a schema), or a function
variable. To choose the version most closely related to FP, we suppose the com-
plement of the tree is given by a sequence of neighborhoods. A function α will
be thought of as enumerating sequence numbers α(n), and sequence number t
belongs to the complement of the tree if α(n) ⊆ t for some n. Thus the tree itself
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consists of those sequence numbers t such that ∀n¬(α(n) ⊆ t). In this formula-
tion, the closure of the tree under subsequence is automatic: if s ⊆ t and t does
not extend any α(n), then s does not extend any α(n) either, since if it did, t
would extend that same α(n). Weak König’s lemma becomes:

∀m∃t(lh(t) ≥ m ∧ ∀k¬(α(k) ⊆ t)) →
∃β ∈ 2N∀j∀k¬(α(k) ⊂ β̄(j)) (WKL)

Constructively, we consider the version “every infinite binary tree cannot fail to
have an infinite path,” which we call “intuitionistic weak König’s lemma”:

∀m∃t(lh(t) ≥ m ∧ ∀k¬(α(k) ⊆ t)) →
¬¬∃β ∈ 2N∀j∀k¬(α(k) ⊂ β̄(j)) (IWKL)

We call a tree “well-founded” if every path eventually runs out of the tree. Thus
IWKL says “every infinite tree is not well-founded”. The following are equivalent
expressions of IWKL: “every well-founded binary tree is not infinite,” and “there
are no well-founded infinite binary trees.”

That Lacombe’s result (for some ε < 1) already implies Kleene’s (without
assuming that all members of 2N are recursive) is the content of the following:

Theorem 3 With constructive reasoning, IWKL implies TFP and FP.

Proof. Suppose IWKL; we will prove TFP. Suppose that 2N has measure at most
t. That is, there is a cover of 2N , the partial sums of whose lengths are bounded
by t. Since 2N is totally disconnected (open neighborhoods are also closed) we
can define a new cover whose elements do not overlap, by removing from each
Un the part covered by the union of the Uk for k < n. Let the elements of this
disjoint cover be denoted by Vn. Since Vn ⊆ Un, the partial sums of the lengths
of Vn are bounded by t. Each Vn is the set of all f ∈ 2N which extend some
binary sequence tn. The proper initial segments of these tn form a tree T . Since
Vn is a cover of 2N , this tree has no infinite path.

Hence by IWKL, T is not an infinite tree. That is, not not there exists an
integer m such that every member of T has length less than m. If there were
such an m, then since T has no infinite path, the sum of the measures of the Vn

would be exactly 1. Hence, not not t ≥ 1. But ¬¬t ≥ 1 implies t ≥ 1, completing
the proof.
Remark. The tree T is not necessarily decidable, since the enumeration of the Un

might at any time spit out some relatively large neighborhoods, corresponding
to short members of T . Intuitively, T would be decidable only if the partial sums
of the measures of the Un do not form a “fugitive sequence”.

The converse question amounts, intuitively, to whether the existence of
Kleene’s singular tree already implies the existence of Lacombe’s singular cover
(dropping the assumption that all members of 2N are recursive). Technically, it
amounts to the question whether ¬WKL implies not not there exists a number
t < 1 and a singular cover of measure at most t.
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Open Question 1 Does FP imply IWKL? Or even the restriction of IWKL
to decidable trees?

Remark. We show here how one line of attack fails. Suppose given an infinite
binary tree T with no infinite path. We must derive a contradiction. Form the
cover of neighborhoods Nt = {f : t is an initial segment of f}, where t is not in
T but all its initial segments are in T . (This step makes the extra assumption
that T is decidable, but even with this assumption the argument won’t work.)
By TFP the partial sums of the measures of this cover are not bounded by any
number less than 1. This situation, however, is not contradictory, as shown in
the discussion of Kleene’s singular tree. In general, then, the cover constructed in
this way from a singular tree need not be a singular cover. But whether there is
some other way to construct a singular cover from a singular tree, I do not know.

Brouwer’s intuition about the continuum led him to formulate the fan theo-
rem, which implies as a special case that a well-founded binary tree is finite; this
is essentially Heine-Borel’s theorem for 2N :

∀β ∈ 2N∃kA(β̄(k)) → ∃m∀β ∈ 2N∃k ≤ mA(β̄(k))

To follow the pattern we have used for FP and IWKL, we consider only the
special case in which the predicate A is given by a sequence of neighborhoods:

∀β ∈ 2N∃k∃n(β̄(k) ⊆ α(n)) → ∀β ∈ 2N∃k ≤ m∃n(β̄(k) ⊆ α(n)) HB

In words: “every well-founded binary tree is finite.” The converse of HB is then
just IWKL, so our investigations connect in this way to the century-old investi-
gations of Brouwer; but it seems to me that an intuition other than the geometric
completeness principle is needed to justify HB; and the fan theorem, which allows
any predicate to define the complement of the tree, rather than just a sequence of
neighborhoods, is (presumably) even stronger. From the philosophical viewpoint
we are arguing for the acceptance of FP based on geometric completeness, which
is (on the face of it) weaker than HB and possibly weaker than IWKL.

Numerical Existence Property of FP

In this section we will use a well known form of realizability to show that FP
has the disjunction property and the numerical existence property when added
to the usual formal theories for constructive mathematics. TFP and WKL can
be expressed in any of the formal theories discussed in [1]. For simplicity we
consider here intuitionistic arithmetic of finite types HAω, which has variables for
integers, and for functions of finite type, and a scheme for definining function(al)s
by primitive recursion. WKL is formalized by using a type-1 variable for the
characteristic function of the tree. To formalize TFP, a cover can be considered
as determined by a sequence of neighborhoods, where a neighborhood Nt is given
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by the sequence number t. Thus a cover is a function from integers to integers. The
formula f ∈ t abbreviates t ⊂ f which in term abbreviates ∀k < lh(t)f(k) = (t)k,
where (t)k is the k − th element of the sequence coded by the integer t. Thus a
cover of 2N is a function α such that

∀β ∈ 2N∃k(β ∈ α(k)).

The measure of the neighborhood t is 2−lh(t), so to say that the partial sums of
cover α are bounded by rational number r is to say that

∀k
k∑

i=0

2−lh(α(i)) ≤ r.

It is well-known how to formalize the arithmetic of rational numbers in the arith-
metic of integers; the indexed-sum functional can be defined by the recursion
scheme of HAω.

Theorem 4 (i) HAω + FP has the disjunction property and the numerical ex-
istence property.

(ii) If HAω + FP proves ∃αA(α), then for some term t, it proves A(t).
(iii)HAω+FP is closed under Church’s rule. Explicitly: ifHAω+FP proves

∀n∃mA(n,m), then for some numeral ē, it proves ∀n∃k(T (ē, n, k) ∧A(n, U (k)).

Remark. Since the terms of HAω denote primitive recursive functionals, (ii) im-
plies that HAω + FP is closed under Church’s rule: if it proves a function with
property A exists, then it proves there is a recursive function with property A.
In particular, HAω +FP cannot prove the existence of a non-recursive function,
in spite of the fact that it does prove not all functions are recursive.
Proof. We use modified q-realizability, written e mq A. See [14], especially p.
259, Theorem 3.72. In view of that theorem it suffices to show that HAω + FP
proves that FP is mq-realized. Let us review the syntactic form of FP:

∀α[∀β∃k(β ∈ α(k)) ∧ ∀m(
m∑

i=0

2−lh(α(i)) ≤ t) → t ≥ 1].

This has the form ∀α[Q(α, t) → t ≥ 1]. To prove this is mq-realized: let α be
given and suppose j mq Q(α, t)∧Q(α, t). In particular Q(α, t), so by FP we have
t ≥ 1. The formula t ≥ 1 is a Π1

0 formula and will be realized by the identically
zero function of the correct type, if true. Hence t ≥ 1 is realized by the identically
zero function of the type to realize t ≥ 1. Hence λαz mq FP . That completes
the proof.

Conservativity over HA

In this section we use intuitionistic forcing to prove the conservativity over HA of
some of the principles considered in this paper. We begin with some preliminaries.
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Next, regarding the exact formulation ofHAω: we can either formulateHAω

with λ-terms, in which case we take s to be λxyz.xz(yz), or we can formulate
it using combinatory logic, in which case s is primitive and λx.t denotes a term
built up using k and s. We follow [14] and use the combinatory-logic formulation.
We assume that the variables of type σ are vσ

n for n = 0, 1, 2, . . .; letters x,y, and
so on are meta-variables ranging over these actual object variables.

Regarding notation for substitution: We sometimes write A[x := t] to mean
the result of substituting t for x in A; more often we write A(x) and A(t), the
former indicating that x may occur free in A and the latter indicating A[x := t].

Let T be HAω, or some other suitable constructive formal theory. Aug-
ment T by a constant α and an axiom that says that α defines a sequence of
neighborhoods giving the complement of an infinite binary tree.

∀k∃t(lh(t) ≥ k ∧ ∀j¬(α(j) ⊆ t))

That is, there are arbitrarily long sequence numbers that are not contained in any
neighborhood α(j). As remarked before, the condition that the set of sequence
numbers not contained in any α(j) is closed under subsequence is automatic.
This augmented theory we call Tα.

Lemma 3 Tα is conservative over T .

Proof. Let Q(β) be the axiom for α, with the constant α replaced by a variable
β. Let A(α := β) be the result of replacing α by β in formula A. Define, for each
formula A of Tα, the formula A∗ of T as follows:

A∗ is ∀β(Q(β) → A(α := β),

where β is a variable that does not occur in A. By induction on the length of
proofs in Tα we have: If Tα proves A then T proves A∗. When A does not contain
α then A∗ is provably equivalent to A; that completes the proof.

In Tα we can formulate WKL this way:

∃β∀k, j¬(α(j) ⊆ β̄(k)) (WKLα)

In other words, any proof in Tα plus this axiom can be syntactically transformed
into a proof in T from WKL.

We will use forcing to prove our conservative extension result. Let Tb be
the theory Tα augmented by another constant b for a function from integers to
integers. We will define forcing for Tα in Tb. The definition presupposes that
we possess a formula of Tα, say C(p), that defines the forcing conditions p to
be used. Specifically we define p ‖−A for each formula A of Tb; the resulting
formula p ‖−A is a formula of Tα. The atomic clauses in the definition of forcing
are arranged so that

p ‖−b(n) = m is C(p) ∧ n < lh(p) ∧ (p)n = m

p ‖−A is A for A atomic not involving B
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but since there can be atomic clauses involving higher-type terms mentioning b,
this does not suffice as a definition. To give the correct definition, we will assign
a term t̂ to each term t of HAω, of type (1, σ) where σ is the type of t, and then
define

p ‖−t = s := ∀β(p ⊂ β → t̂β = ŝβ).

The definition of the terms t̂ is as follows. In this definition, variables p,q,r are
implicitly relativized to the formula C defining the forcing conditions.

b̂ := λβ.β

t̂ := λβ.t for t a constant
v̂σ

k := vσ,1
k

t̂q := st̂q̂

so that t̂q(β) = (t̂β)(q̂β). The remaining clauses in the definition of forcing, as
given in [1], Chapter XV, are as follows:

p ‖−∀xA is ∀x̂∀q ⊇ p∃r ⊇ q(r ‖−A(x))
p ‖−(A→ B) is ∀q ⊇ p(q ‖−A→ ∃r ⊇ q(r ‖−B))

p ‖−∃xA is ∃x̂(p ‖−A)
p ‖−A ∧B is (p ‖−A) ∧ (p ‖−B)
p ‖−A ∨B is (p ‖−A) ∨ (p ‖−B)

p ‖−⊥ is ⊥

The free variables of the formula p ‖−A are p, together with the x̂ such that x
is free in A; hence the use of x̂ instead of x in the clauses above for ∃ and ∀. A
clause for negation is not needed since we treat ¬A as A → ⊥.

The following lemma is what makes forcing useful for conservative extension
results:

Lemma 4 Tα proves (p ‖−A) ↔ A for arithmetic formulae A.

Proof. A straightforward induction on the complexity of A, using the lemma that,
when A has free variables, (p ‖−A)[x̂ := t̂] ↔ p ‖−A[x := t].

If φ is a formula of Tα, then “φ is generically valid” is the formula ∀p∃q ⊇
pq ‖−φ. The soundness theorem for forcing ([1], Ch. XV, p. 348), says that if
Tα proves φ, and all the axioms of Tα are provably generically valid in T , then
all theorems of Tα are provably generically valid in T . It follows from Lemma
4 that if some formula or schema S is provably generically valid in T then S is
conservative over T for arithmetic theorems.

As a warmup exercise, we reprove a known result of Simpson:

Theorem 5 WKL is conservative over Peano arithmetic PA.

18



Proof. The tree defined by α will be used to define a set of forcing conditions,
which we will use to add a generic path b through the tree. The set C of forcing
conditions is the set of sequence numbers p that do not have only finitely many
extensions in the tree determined by α. Formally, write T (p) for ¬∃n(α(n) ⊆ p).
Then T is the tree whose complement consists of the neighborhoods enumerated
by α, and we define

C(p) := T (p) ∧ ¬∃n∀q(q ⊇ p ∧ T (q) → lh(q) ≤ n).

Since we are working with classical logic, this is the same as the set of p with
infinitely many extensions in T . With classical logic then, we can prove that for
each n there is a p of length n with C(p), from which it follows that

p ‖−∀n(T (b̄(n)) = 0),

i.e., b̄ is a path through T . Formalizing this argument we see that PAωb proves
that WKL is generically valid; and as remarked before the theorem, that is
sufficient for the conservativity of WKL over PA for arithmetic theorems.

To prove the conservativity of IWKL over HA, we will not be able to im-
itate the above proof directly; indeed WKL is not conservative over HA, so we
cannot just add a generic path through the tree T determined by α. Our proof is
more complicated; forcing will be combined with the model of HAω in Kleene’s
“countable functionals”. This notion is introduced in [11], and described in [1],
p. 135. We review the relevant features of the definition to establish notation.
Kleene defines the concept of a type 1 function being an associate of a type σ
function. This definition can be given inHAω by means of formulas Assσ(fσ , γ1).
A notion of application is defined on type 1 functions by

α|β = λn.(α(µk.α(β̄(k)) > 0) − 1)),

where − is cutoff subtraction. Terms of type 1 are defined to interpret the con-
stants k and s of type σ as well as the recursion constants. The functions of type
σ will all be interpreted in the model as functions of type 1.7 The functions that
will interpret type σ are defined by a formula T σ(γ), given by

T (σ,τ)(β) := ∀x(T σ(x) → T τ (β|x).

Here x is a type 1 variable. Of course this starts with T 0(x) := x = x and
Ass0(α, n) := α(0) = n+ 1.

The “model”, expressed as a syntactical interpretation, assigns to each term
t ofHAω a corresponding term t∗ and to each formulaA ofHAω a corresponding
formula A∗, expressing that A holds in the model, in such a way that

7It is not necessary that the interpretations of distinct types be disjoint, although this is not
difficult to arrange, say by using the first value of each function as a type label, and modifying
α|β to ignore (or type-check) those first values.
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(i) (tq)∗ = t∗|q∗
(ii) (vσ

k )∗ = v1
(k,σ) where vσ

k is the k-th variable of type σ
(iii) (∀xσA)∗ is ∀β(T σ (x∗) → A∗)
(iv) (∃xσA)∗ is ∃β(T σ (x∗) → A∗)
(v) ⊥∗ is ⊥
and the map ∗ commutes with the propositional connectives. Then the

soundness of the model is expressed by: if A is a closed theorem of HAω then
A∗ is a theorem of HAω. To prove this we have to prove a more general theorem
applicable to formulas A with free variables x of types σj in which the conclusion
has the variables x∗ relativized to T σ

j .

Assσ,τ)(t, θ) ∧Assσ(q, γ) → Assτ (tq, θ|γ),

which is provable in HAω for each fixed pair of types (σ, τ ).
In order to use forcing, we need a variation of IWKL that asserts the ex-

istence of something, so that we can use forcing to add a generic “something”.
To construct such a variation, we turn to the Gödel Dialectica interpretation of
IWKL for inspiration, although the Dialectica interpretation is not used in the
proof. Namely, let us define PathEnder (e, α) to express that e of type (1,0) is a
witness to the fact that the sequence α of neighborhoods defines the complement
of a well-founded tree:

∀γ(α(e(γ)0) ⊆ γ̄(e(γ)1)).

That is, e(γ) is a pair (n, k) such that the initial segment γ̄(k) of γ witnesses that
γ belongs to the neighborhood (consisting of all all extensions of) α(n). Now, the
formula we need is the following formula “No Path Ender” (NPE) of Tα:

∃F∀e¬(α(e(F (e))0) ⊆ F (e)(e(F (e))1)) (NPE)

In words: F (e) is a γ which serves as a counterexample to PathEnder (e, α).

Lemma 5 HAω + AC1,0 proves NPE implies IWKL.

Proof. Suppose NPE; in order to derive IWKL, suppose α is a sequence of neigh-
borhoods defining the complement of a well-founded infinite binary tree. We must
derive a contradiction. Since the tree is well-founded we have

∀β ∈ 2N∃n, k(β̄(k) ⊇ α(n)).

Applying AC1,0 we have some e such that e(β) is the pair (n, k):

∀β ∈ 2N (β̄(e(β)1) ⊇ α(e(β)0).

That is, PathEnder (e, α). But using NPE, we can construct a member γ = F (e)
of 2N such that γ is a counterexample to PathEnder (e, α). This contradiction
completes the proof of the lemma.
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Theorem 6 NPE is conservative over HA.

Proof. We will use forcing to add a generic function (of type 1) f which will serve
as an associate of a function F as in NPE. The forcing conditions will be sequence
numbers which might be initial segments of such an associate. An associate of
such a function would operate on initial segments of an associate of a pathender
e for the tree given by α. An initial segment of an associate of some function e
of type (1,0) can be visualized as a finite tree, the leaves of which are labeled
with values 1 + z where z = e(β) for every β extending that leaf. Therefore, an
initial segment of a pathender e for a tree given by a sequence of neighborhoods
α is essentially a finite tree whose leaves are all covered by the neighborhoods
in the range of α. Initial segments of f must assign values to such finite labeled
trees; the values must be zero if the information in the finite tree is not enough
to determine F (e), or 1 + F (e) if it is enough.

A forcing condition will be a sequence number that could serve as an initial
segment of an associate f of F . It thus codes a finite set X of pairs (T, v) where
T is a finite labeled tree and v the associated value, and where if v is nonzero,
then v − 1 is a pair (n, k) showing that no function γ could be an associate of a
pathender e with an initial segment of γ corresponding to the finite labeled tree
T . Specifically:

Given a sequence number q specifying a finite set X of pairs (T, v) where T
is a finite labeled tree, consider the labels on the tree leaves as pairs (n, k) (every
number is a pair), and take the maximum value K of these k over all the trees T
with (T, v) in X; and take the maximum value N of these n. The first N of the
neighborhoods α(n) determine a finite cover; since α determines the complement
of an infinite tree, there is a binary sequence t of length max(N,K+1) that does
not extend any α(n) with n ≤ N . Any such sequence t will be said to be “ok
with respect to X”. The set C of forcing conditions is defined as the set of p such
that, for q < lh(p), if q specifies a set X as above, then pq = 1 + t where t is ok
with respect to X; and if q does not specify such a set X, then pq = 0. Forcing
is defined as usual, so that p ‖−f (q) = (p)q for all q < lh(p).

As just shown, in Tα we can prove there are arbitrarily long forcing con-
ditions. We now claim that NPE∗ (the intepretation of NPE in the Kleene
countable-functional model) is generically valid. Suppose p ‖−PathEnder ∗(e, α)
and p forces α determines an infinite tree. We must show that some extension of
p forces a contradiction. Since p ‖−PathEnder ∗(e, α), if β is any type-1 function
then every condition extending p has a further extension forcing, for some m, n,
and k, e ∗ (β̄(m)) = 1 + (n, k) and β̄(k) ⊇ α(n). Replacing m by max(m, k) we
still have e ∗ (β̄(m)) = 1 + (n, k), and now we have p ‖−β̄(m) ⊇ α(n).

Let M be the length of p, and consider those q < M such that q specifies
a finite set X of pairs (T, v), where T is a finite labeled tree. Then for each such
q, pq = 1 + t where t is ok with respect to X. Consider, as above, the maximum
values N and K of the n and k such that (n, k) is a label on one of the trees T
such that (T, v) belongs to X. As above, we can choose a sequence t of length
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at least max(N,K + 1) that does not extend any α(n) with n ≤ N . Let β be
any type 1 function with initial segment t. Choose m and n as above so that
p ‖−β̄(m) ⊇ α(n). Then in fact β(m) ⊇ α(n); in particular β extends α(n). Since
t does not extend any α(n) with n ≤ N , but t is longer than all α(n) with n ≤ N ,
β also not extend any α(n) with n ≤ N . This is a contradiction, and completes
the proof that NPE is generically valid. Since for arithmetic formulae φ, we have
p ‖−φ∗ equivalent to φ, the conservative extension result for NPE follows from
the soundness of forcing.

IWKL (and hence FP), when added to HAω + AC, are conservative over
HA.

Since IWKL implies NPE using AC1,0, it would suffice to show that if ψ is
an instance of AC1,0 then ψ∗ is generically valid. That would incidentally give
yet another proof of Goodman’s theorem on the conservativity of AC over HA.

The interpretation of AC1,0 in Kleene’s countable functionals is equivalent
to the following principle of “continuous choice”:

∀β∃nφ(β, n) → ∃g[∀β∃kg(β̄(k)) > 0∧∀t(g(t) > 0 → ∀γ ⊃ t(φ(γ, g(t)− 1)))] CC

CC in turn can be decomposed: it is equivalent to the conjunction of AC1,0 and
“Brouwer’s principle”:

∀β∃mφ(β,m) → ∀β∃m, k∀γ(γ̄ (k) = β̄(k) → φ(m)) BP0

Theorem 7 HAω +CC is conservative over HA.

Proof. We use the technique of [1], Chapter XV, namely, the composition of
realizability and forcing. Let Tb be HAω with a constant b for a type-1 function.
The realizability interpretation e r A of A goes from HAω to Tb. It can be
taken as modified realizability in the countable functionals recursive in b. It is
straightforward to show that CC is realized. Let φ be an arithmetic sentence;
then in the cited chapter (p. 356)8 it is shown how to construct a notion of forcing
such that

∀p∃q ⊇ p(q ‖−((e r φ) → φ)).

Suppose HAω +CC proves φ. Then by the soundness of realizability, for some e
we have HAω proves e r φ. By the soundness of forcing,HAω proves that e r φ is
generically valid. By the property of this particular notion of forcing, e r φ → φ
is provable; hence HAω proves φ. But HAω is conservative over HA, so HA
proves φ.

Theorem 8 HAω+AC1,0+IWKL+FP is conservative for arithmetic theorems
over HA.

8In the cited reference ⊃ is used where we now are using ⊇, and on the cited page there are
two typographical errors in which ⊂ is used for ⊃.
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Proof. Since IWKL implies FP inHAω, and IWKL implies NPE inHAω +AC1,0,
it suffices to show that NPE is conservative for arithmetic theorems over HAω +
CC. Suppose NPE proves an arithmetic statement φ in HAω + AC1,0. Then,
using the notion of forcing in the previous proof, HAω +CC proves ∀p∃q ⊇ p(q ‖
−φ). Since φ is arithmetic, q ‖−φ is provably equivalent to φ, by Lemma 4, so
HAω + CC proves φ. Then by the previous theorem, HAω proves φ.

Physics and the Continuum

The theme of this paper is to explore our geometrical intuitions about the con-
tinuum. In this section we show that the source of those intuitions is definitely
not the nature of physical space. Around 1880 the idea that our geometric in-
tuitions were about physical space was widely accepted. Recall the quote from
Freudenthal given earlier about geometric axioms:

Whether one believed with Kant that axioms arose out of pure contemplation, or

with Helmholtz that they were idealizations of experience, or with Riemann that

they were hypothetical judgements about reality, in any event nobody doubted

that axioms expressed truths about the properties of actual space and were to be

used for the investigation of properties of actual space.

The developments of non-Euclidean and Riemannian geometry, and their
subsequent application to the general theory of relativity by Einstein, dealt a
death blow to this idea.9 This took place in the early twentieth century, and
showed that on very large scales Euclidean geometry breaks down. Later it was
also shown that Euclidean geometry must break down on small scales; how far
physics has progressed towards the utter destruction of Kantian ideas about
space deserves to be more widely appreciated by mathematicians and logicians.
What follows is an explanation of the “Planck length” and its implications for
the nature of space.

Apparently Planck was the first to note that
√
Gh̄/c3 has the dimensions

of length, but he offered no explanation. What follows is a simple calculation
showing that distances smaller than this length cannot exist in the usual sense;
i.e., spacetime cannot be considered to be smooth at that scale. The calcula-
tion uses two fundamental equations: The uncertainty principle from quantum
mechanics, and the Schwarzschild radius for the formation of a black hole, from
general relativity. It is often stated that “general relativity and quantum mechan-
ics are not consistent”, but seems not to be so well known to non-physicists that
the inconsistency can be derived in one paragraph. (No claim of originality is
made here; the argument is well-known to physicists and was shown to me by my
friend Bob Piccioni.) These two equations will be combined to show that there

9Supposedly Gauss already attempted much earlier to verify empirically that the angle sum
of a physical triangle formed by mountaintops is the Euclidean 180◦. This shows that he didn’t
think physical space had to be Euclidean.
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is a minimum radius given by the Planck formula just mentioned, below which
spacetime cannot be regarded as smooth. The smoothness of spacetime (possi-
bly except at isolated singularities) is a fundamental starting point for general
relativity, so this calculation shows the inconsistency of general relativity and
quantum mechanics.10

The uncertainty principle is ∆E∆t ≥ h̄, where ∆E is the uncertainty in
energy and ∆t the uncertainty in time. Quantum mechanics allows the sponta-
neous creation of a particle-antiparticle pair of total mass M , which can travel a
distance r and back to annihilate each other, provided that the uncertainty prin-
ciple is respected when we take the uncertainty ∆E to be the whole energy E
of the particles and ∆t to be their lifetimes. Using Einstein’s equation E = mc2,
and taking for the lifetime ∆t the time it takes light to travel the distance r and
back, namely 2r/c, we have

[Mc2][2r/c] ≥ h̄

or
2Mrc ≥ h̄ (1)

Now the Schwarzschild solution of Einstein’s equations, expressed in units where
c = G = 1, is

ds2 = −(1 − 2M/r)dt2 +
dr2

1 − 2M/r
+ r2ψ(θ, φ)

for some function ψ of the angular coordinates θ and φ. This is valid in the exterior
of a spherical body of mass M . The value r = 2M gives a zero denominator;
what this means is that whenever a mass is compressed within its “Schwarzschild
radius” r = 2M , the mass will collapse into a black hole.11 Putting the factors
of c and G into the equation r = 2M , we get rc2 = 2MG. Solving for M we
getM = rc2/(2G). Putting that into equation (1) we have

r2c3/G ≥ h̄

Solving for the smallest permissible value of r, the Planck length comes out:

r ≥
√
h̄G/c3

Evaluating this numerically we have

r ≥ 1.616× 10−33cm
10There are books about “relativistic quantum mechanics”, but they are about special rela-

tivity and quantum mechanics, e.g. the Dirac equation.
11The Schwarszchild radius is, curiously, what you get if you use the classical Newtonian

equation for the escape velocity v2 = 2GM/r and set the escape velocity equal to the speed
of light c. However, for establishing its connection to black holes, we need the Schwarszchild
solution of Einstein’s equations.
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Now we’ll go over the argument again without equations. The uncertainty
principle allows spontaneous creation of sufficient energy to momentarily (for
Planck times on on the order of 10−43 seconds) collapse spacetime, i.e. creating
a small temporary black hole. Thus the topology of spacetime itself may be
uncertain at these dimensions; it may be multiply connected or have more than
three spatial dimensions. Wheeler called this situation Quantum Foam. It is worth
pointing out that since the argument derives a contradiction, we haven’t really
proved the existence of quantum foam or of tiny black holes at the Planck scale.
All we have proved is that something happens at that scale that we cannot
understand with our present collection of equations of physics.

The contradiction between quantum mechanics and relativity implies that
our intuition of the continuum does not correspond to physical reality at lengths
smaller than the Planck length. The contradiction depends on general relativity,
and a fundamental assumption of general relativity is that space can be assigned
coordinates; or in other words, numbers can be assigned to points on a line in such
a way that to every point there corresponds a number and vice-versa. In other
words, the geometric completeness principle is assumed by general relativity. But
as we just derived, this cannot continue to be the case for distances smaller than
the Planck length.12

The Source of Intuition about the Continuum

Philosophers have argued over whether our intuition of the continuum is derived
from physical reality, from our experience of physical reality, from the nature
of our minds, or from some “mathematical reality” that we experience with our
minds. It has now been clearly shown that it is not derived from physical reality.

In the past people thought that physical space was Euclidean. Since Einstein
we have known that our intuition about lines does not correspond to the physical
“lines” determined by light paths in a vacuum. This we can call the “failure
of (Euclidean) geometry in the large.” The Planck-length argument we can call
the “failure of geometry in the small.” It might be argued that these failures
imply that our intuition of the continuum has a non-physical source, which must
therefore be either our minds, or a mathematical but non-physical reality that can
be apprehended by the mind. For example, Gödel suggested that our minds can

12The Planck length can be “discovered” in various ways, the simplest of which is to ask
for an expression in G and c that has dimension length. Another way is to use the equation
E = hν = hcλ for the energy of a photon of frequency ν and wavelength λ. This photon
would distort space in the same way as a mass given by mc2 = E = hc/λ, so it would have
a Schwarzschild radius of 2mG/c2 = 2hG/(c3λ). Now observe that for λ small enough, λ
will be less than the Schwarzschild radius, so the Schwarzschild solution should apply in the
exterior of the photon, and the photon would be sealed into the black hole of its own creation,
and hence unobservable by us. The critical wavelength is obtained by setting λ equal to the

Schwarzschild radius 2hG/c3λ. Solving, we find λ =
√

2hG/c3 , approximately the Planck
length. This argument, though interesting and strange, is not apparently contradictory, unlike
the argument given in the text.
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serve as sense organs to apprehend the non-physical reality of the continuum. We
argue against this implication, instead supporting Helmholtz’s view (as quoted
by Freudenthal) that intuition is derived from our experience of physical reality.
Specifically, part of our intuition about the continuum is derived as an abstraction
from a simple physical process. The process is familiar from computer graphics:
zooming in and zooming out. While viewing a finite interval that is part of a
longer line, we can double the length of the viewed interval (zooming out) or
halve the length of the interval (zooming in). Then we can adjust the size of the
display so that the new selected interval appears congruent to the previous one.
The abstraction involved here is abstracting from the finite thickness of the line
and the small but possibly nonzero deviation from being perfectly straight. After
the zoom, the thickness and straightness of the (view of) the line will be adjusted
to be as before.

We can imagine this process, say zooming in, going on indefinitely. Specif-
ically, as many times as there are positive integers. We can define I0 to be [0, 1]
and In+1 to be the middle half of In. The Planck length argument shows that
this is not physically the case–after about 100 zooms, space itself is no longer
coordinatizable, and the zooming-in process breaks down. The exact manner of
its failure is unknown! But nevertheless, the zooming-in process itself is easily
intuited, and we can distinguish two parts of this intuition:

• Intuition of zooming in and zooming out (once)

• Intuition of iterating a process any number of times

The intuition of iterating a process is reducible to the concept of natural
number, once the process to be iterated is understood.

This argument in support of Helmholtz’s view (and against Gödel’s) is not
definitive, since the zooming processes do not account entirely for our intuition
of the continuum. Here are some aspects not accounted for: linearity, composi-
tion, continuity, and fullness. By linearity, we mean the quality Euclid had in
mind when he wrote that a line is that which has length but not breadth. We
can zoom in on a plane or even on a self-similar fractal set. By composition
we mean the question whether the continuum is composed of (infinitely many)
points, each of which has zero length, but whose aggregation can make intervals
of nonzero length. The alternative conception is that somehow these points need
to be actively created “at run time”, as a computer scientist might say; per-
haps by Brouwer’s “free choices” or by some sort of quantum-mechanical device.
The zooming processes also do not address the continuity of the continuum, the
property that Dedekind addressed with his definition of completeness (every cut
determines a real) and Cauchy with his definition of completeness (Cauchy se-
quences converge). By specifying that there are no visible gaps, we rule out the
possibility that we are zooming in on some kind of fractal set rather than the true
continuum. But, there are also invisible gaps to worry about: while zooming, how
can we tell whether we are seeing the whole continuum or only, say, the rational
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numbers? No matter how many times we zoom in on
√

2, the gap in the rationals
never becomes visible. We can call attention to it by placing a right isosceles
triangle with its hypotenus on the number line. We can similarly call attention
to any recursive real number; but how about the gap in the recursive reals at
the limit of a Specker sequence? Can you visualize that gap? As the predicates
used to define a Dedekind cut increase more and more in logical complexity, the
existence of a point filling that cut seems less and less closely related to a fun-
damental geometric intuition. Finally, the property of fullness of the continuum,
as axiomatized in this paper using the fullness principle FP, seems similar to
continuity, but distinct, since the recursive reals satisfy continuity (in the sense
that recursively Cauchy sequences of recursive reals converge to recursive reals),
but they do not satisfy FP. Fullness does not require reference to specific “gaps”,
since it is defined by coverings. Perhaps the formulation of the fullness property
and the recognition that it is not the same as continuity may help in future efforts
to elicidate our intuitions about the continuum.

Conclusions

Our intuitions point to two principles:

(Church’s thesis) Every real number can be computed to any desired ap-
proximation by an algorithm.

(Geometric Completeness) The points on a geometric line segment cor-
respond to real numbers in an interval.

These seem to be contradictory in view of Kleene’s singular tree and La-
combe’s singular cover. We have formalized this feeling by exhibiting the prin-
ciple FP, which is justified by geometric completeness, and contradicts CT. On
the other hand FP is otherwise constructive, since

• FP has the numerical existence and disjunction properties.

• FP satisfies Church’s rule; in particular it does not prove the existence of
a non-recursive function

• FP is conservative for arithmetic theorems when added to HAω or other
constructive theories.

The geometric continuum is “filled” with non-recursive members, even though
we cannot prove their individual existence. Perhaps we should say, the continuum
is not-not filled with non-recursive members. These unspecifiable points corre-
spond, perhaps, to “generic” reals; or perhaps, to Brouwer’s choice sequences;
or perhaps, some of them can be generated by quantum-mechanical processes;
or perhaps, they are figments of our mathematical imagination. This conclusion,
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however, does not necessarily destroy the basic premises of constructive mathe-
matics, nor does it even necessitate accepting classically false axioms as Brouwer
did. The principle FP , for example, is an example of a system expressing some of
our intuition about the non-recursive ”gap-fillers” in the continuum, and still pos-
sessing the usual properties of constructive systems. There may be other, stronger
axiom systems that capture yet more of our intuition about the continuum.

In searching for such additional principles, it may be fruitful to examine the
source of our intuitions about the continuum. At any rate, our intuition about the
continuum is not related to the physical space we inhabit, but only to our mental
conceptions about a possible idealization of that space, since modern physics tells
us that physical space cannot be coordinatizable and indefinitely divisible.
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