
Lambda Logic

Michael Beeson ∗

July 23, 2006

Abstract

Lambda logic is the union of first order logic and lambda calculus.
The purpose of this note is to give a complete and precise definition of
the syntax of lambda logic, and explain its relations to first order logic
and to simple type theory. This is a revised and expanded version of [6].

1 Introduction

The twentieth century saw the flowering of first order logic, and the invention
and development of the lambda calculus. When the lambda calculus was first
developed, its creator (Alonzo Church) intended it as a foundational system,
i.e., one in which mathematics could be developed and with the aid of which
the foundations of mathematics could be studied. His first theories were incon-
sistent, just as the first set theories had been at the opening of the twentieth
century. Modifications of these inconsistent theories never achieved the fame
that modifications of the inconsistent set theories did. Instead, first order logic
came to be the tool of choice for formalizing mathematics, and lambda calculus
is now considered as one of several tools for analyzing the notion of algorithm.

The point of view underlying lambda logic is that lambda calculus is a good
tool for representing the notion of function, not only the notion of computable
function. First-order logic can treat functions by introducing function symbols
for particular functions, but then there is no way to construct other functions by
abstraction or recursion. Of course, one can consider set theory as a special case
of first order logic, and define functions in set theory as univalent functions, but
this requires building up a lot of formal machinery, and has other disadvantages
as well. It is natural to consider combining lambda calculus with logic. That was
done long ago in the case of typed logics; for example Gödel’s theory T had what
amounted to the ability to define functions by lambda-abstraction. But typed
lambda calculus lacks the full power of the untyped (ordinary) lambda calculus,
as there is no fixed-point theorem to support arbitrary recursive definitions.

In this paper, we combine ordinary first order lambda calculus with ordinary
first order logic to obtain systems we collectively refer to as lambda logic. We

∗Research supported by NSF grant number CCR-0204362.

1

are not the first to define or study similar systems.1 The applicative theories
proposed by Feferman in [7] are similar in concept. They are, however, differ-
ent in some technical details that are important for the theorems proved here.
Lambda logic is also related to the systems of illative combinatory logic studied
in [2], [3], but these are stronger than lambda logic. As far as we know, the
systems defined in this paper have not been studied before.

Both ordinary and lambda logic can be modified to allow “undefined terms”.
In the context of ordinary logic this has been studied in [9], [5], [4]. In the
context of applicative theories, [4] defined and studied “partial combinatory
algebras”; but application in the λ-calculus is always total. Moggi [8] was
apparently the first to publish a definition of partial lambda calculus; see [8] for
a thorough discussion of different versions of partial lambda calculus and partial
combinatory logic.

2 Syntax

As is usual in formalizing first-order logic, we suppose given an infinite list of
variables. We also suppose given an infinite list of predicate symbols and an
infinite list of function symbols. Unlike in first-order logic we require that every
predicate symbol is also a function symbol. We do not require that the predicate
and function symbols come with a prescribed arity (although semantically, if f
occurs with different arities, the occurrences with different arities will be treated
as if they were different symbols). We suppose given an infinite list of constant
symbols, disjoint from the list of variables. The particular symbol lambda is
not a function or predicate symbol, and the list of function symbols contains a
distinguished element Ap.

If someone wishes a more precise specification of this basic apparatus, we
could take the following completely precise definition:

digit:= 0-9.
variable:= [U-Z]digit* | [u-z]digit*.
constant:= [A-T]digit* | [a-t]digit* | true | false.
logicalSymbol := and | or | implies | neg | =.
functionSymbol:- Ap | [a-t]digit* | [A-T]digit* | logicalSymbol.
predicateSymbol:- Ap | [A-T]digit* | logicalSymbol.

Here is a grammar defining the syntax of lambda logic.

binder:= lambda | forall | exists.
functionTerm:= functionSymbol(term {,term}*).
term:= variable | constant | functionTerm | binder(variable, term).
atomicFormula:= predicateSymbol(term {, term}*) | true | false.
formula:= atomicFormula | compoundFormula.

1For example, John McCarthy told me that he lectured on such systems years ago, but
never published anything.

2

compoundFormula:- connective(formula,formula) |
neg(formula) |
quantifier(variable,formula).

connective:- and, or, implies.
quantifier:- forall | exists.

Note that because predicate symbols are also function symbols (here just
called “symbols”), and true and false are constants, every formula is also a
term. Thus, for example, lambda(x, x+y = y+x) is a term, since x+y = y+x
is a term, since = is a function symbol. Hence Ap(lambda(x, x+ y = y + x), z)
is a formula, since Ap is a predicate symbol and lambda(x, x+ y = y + x) is a
term. There will also be formulas that would not occur in first-order logic, such
as f(forall(x, a)) = b (where a and b are constants).

On the other hand, not every term is a formula. For example, a variable is
not a formula. Note that for c a constant, Ap(lambda(x, t), c) is a formula, since
Ap is a symbol and λ(x, t) is a term. As a term, this expression β-reduces to t,
but that does not make t a formula. Indeed, when we get to the axioms, we will
see that β-reduction applies to formulas, but only if both sides are formulas.
Another difference between terms and formulas is that lambda terms do not
count as formulas. In other words, we do not allow predicate abstraction, for
example forming a new predicate λx.P (x, y) from the predicate P . This can
be done indirectly in case P has a characteristic function, but is not allowed in
general.

As is customary in logic textbooks, we regard infix notation as an abbrevi-
ation at the meta-level, so that (x + y) really means +(x, y). Similarly A ∧ B
is really ∧(A,B). T is regarded as a syntactic variant of true. That means
that ‘T’ and true are two different names for the same symbol. Similarly, F
is a syntactic variant of false. The term lambda(x, t) can also be written as
λx. t; the latter notation is just an informal abbreviation for the offical nota-
tion lambda(x, t). The notations ∀xA and (∀x)A are meta-level abbreviations
for forall(x,A), and similarly for ∃. The symbols ∧,∨, →, and ¬ are syntac-
tic variants of and, or, implies, and neg, respectively. Other typographically
convenient symbols, such as < or ≤, can similarly be regarded as meta-level
abbreviations for certain legal predicate symbols.

Each formula has two representations: as a string and as a labeled tree. One
and only one tree representation corresponds to each string representation, and
vice-versa. An occurrence of a variable in a formula is represented by a single
leaf node in the tree representation. In that case there is a unique path from
that node to the root of the tree representation. The binding operators are ∀, ∃,
and λ. An occurrence of binding operator in a term or formula has a variable
as its first argument (child in the tree). The concepts that a certain occurrence
of a variable in a term or formula A is free in A or bound in A, and the concept
that an occurrence of a binding operator binds certain occurrences of variables,
are defined mutually by recursion as follows. “Bound” is a synonym for “not
free”.

In a formula ∀xA, this occurrence of ∀ binds all occurrences of x that are

3

free in A. Those occurrences of x are bound in ∀xA. In a formula ∃xA, this
occurrence of ∃ binds all occurrences of x that are free in A. Those occurrences
of x are bound in ∃xA. In a term lambda(x, t), this occurrence of lambda binds
all occurrences of x that are free in t. Those occurrences of x are bound in
lambda(x, t). Occurrences of variables in compound terms and formulas con-
structed by the syntax rules not involving binding operators retain the free or
bound status that they had in the component formulas. Note that the same
variable can have both free occurrences and bound occurrences in a given for-
mula.

Renaming bound variables. If z is a variable that does not occur in ∀xA,
then the formula obtained by replacing all occurrences of x that are bound
by this binding operator by z is said to be α-convertible to ∀xA; similarly
for ∃xA and lambda(x, t). The relation of α-equivalence is the least reflexive
and transitive relation containing α-convertibility and satisfying in addition the
conditions that

(i) if t is α-equivalent to s then f(t) is α-equivalent to f(s), and similarly
f(r, t) is α-equivalent to f(r, s), and similarly for each argument position of a
term of any arity.

(ii) if t is α-equivalent to s then lambda(x, t) is α-equivalent to lambda(x, s).
If x is any variable, and A is any term or formula, then we can find a term or

formula B such that B is α-equivalent to A and B does not contain any bound
occurrences of x. We say such a B is “free for x”. Specifically, an algorithm
freeFor(A, x) is defined by recursion on the term-or-formula A. The crucial
clause is when the main symbol of A is a binding operator and the variable
it binds is x. In that case, the algorithm is called recursively on the second
argument of the term-or-formula and then, (i) a “fresh” variable y is chosen
(the lexicographically least one beginning with the same letter as x and not
occurring in the result of the recursive call), and then (ii) each occurrence of x
bound by this occurrence of the binding operator is replaced by y.

Substitution. By A[x := t] we mean the result of the following algorithm:
Initialize P to A. Then for each variable z having at least one free occurrence in
t, replace P by freeFor(P, z). The final value of P has no bound occurrences
of any variables free in t, and is α-equivalent to A. Then replace each free
occurrence of x in P by t. That is the value of A[x := t]. In other words, we
first rename bound variables in A to avoid capture of the free variables of t, and
then replace x by t in A.

β reduction. The term Ap(lambda(x, t), q) is said to β-reduce immediately
to t[x := q]. The relation “t β-reduces to s” is defined as the least reflexive and
transitive relation containing immediate β-reduction and satisfying:

(i) if t β-reduces to s then f(t) reduces to f(s), and similarly f(r, t) reduces
to f(r, s), and similarly for each argument position of a term of any arity.

(ii) if t β-reduces to s then lambda(x, t) β-reduces to lambda(x, s).
Example: in first order logic we can formulate the theory of groups, using a
constant e for the identity, and function symbols for the group operation and
inverse. The use of infix notation x · y can either be regarded as official or as
an informal abbreviation for m(x, y), just as it can in first order logic. If we

4

formulate the same theory in lambda logic, we use a unary predicate G for the
group, and relativize the group axioms to that predicate, just as we would do in
first order logic if we needed to study a group and a subgroup. Then in lambda
logic we can define the commutator c := λx, y.((i(x) · i(y)) · x) · y, and derive
the following:

G(x) ∧G(y) → c(x, y) = ((i(x) · i(y)) · x) · y

The hypothesis G(x)∧G(y) is needed because we relativized the group axioms
to G. We want to formulate the theory of groups, not the theory of models of
the lambda calculus that can be turned into groups. Alternately, we can replace
G(x) by Ap(G, x) = T, and x · y by Ap(Ap(·, x), y).

If we want to discuss more than one group at a time, then instead of using a
constant e for the identity, we can a variable; and we can even use a variable for
the group operation (although then we can no longer write x ·y in infix notation;
we must write Ap(Ap(o, x), y). Unofficially we could abbreviate that as (xoy)
for readability in the context of group theory.

That formulation allows us to discuss subgroups, homomorphisms, etc. quite
naturally.

Specifically, a homomorphism from a group (G, e,×) to (H, 1,+), where here
× and + are variables being used for the two group operations, would be an
object u such that

Ap(G, x) → (H(Ap(u, x))

Ap(G, x)∧Ap(G, y) → Ap(u, x) + Ap(u, y) = Ap(u, x · y)

Now one can quantify over homomorphisms, for example to state that a
homomorphism from G to H is one-to-one if and only if its kernel is the identity.

Note that we could also have used two predicate symbols G and H instead
of variables. Then we would have written G(x) instead of Ap(G, x). These are
not the same. Using predicate symbols, we would not be able to quantify over
groups.

Example: Peano’s axioms. Peano’s axioms for number theory say that the
natural numbers N constitute the least set containing 0 and closed under suc-
cessor, where successor is a one-to-one function from N to N that takes every
value except 0. It is common to consider the recursive definitions of addition
and multiplication as part of Peano’s axioms, too. An equivalent formulation
is that mathematical induction holds for all sets X of integers: if 0 ∈ X and
∀n(n ∈ X → s(n) ∈ X) then ∀n(n ∈ X). The first-order theory PA is obtained
by taking the induction schema, in which n ∈ X is replaced by any first-order
formula φ(n). In lambda logic we can replace n ∈ X by Ap(X,n) = T, where
X is a variable. Specifically, the induction schema in lambda logic is

Ap(X, 0) ∧ ∀x (N (x) ∧Ap(X,x) → Ap(X, s(x))) → ∀z (N (x) → Ap(X, z)).

Here N is a unary predicate symbol; the other Peano axioms would be relativized
to N . In making proofs by induction, we would want to instantiate X to a term

5

such as λ(z, x+ z = z+ x). To construct such a term, we use the grammar rule
term := formula.

This is somewhat analogous to a “weak second-order theory” in which there
are two sorts of first-order variables. The proof-theoretic strength of such theo-
ries depends on what comprehension axioms are included to allow the definition
of sets to use in inductive proofs. The same presumably is true in lambda logic;
without axioms even to define the characteristic functions of arithmetic predi-
cates, this form of Peano’s axioms will be weak, probably only as strong as Π0

0

induction in the language of PA.

3 Axioms and inference rules

Lambda logic can be formulated using any of the usual approaches to pred-
icate calculus. We distinguish the sequent-calculus formulation, the Hilbert-
style formulation, and the resolution formulation. For definiteness we choose
the Hilbert-style formulation as the definition (say as formulated in [10], p. 20),
for the standard version.

(Prop) propositional axioms (see [10], p. 20)
(Q) standard quantifier axioms and rules (see [10], p. 20)
(α) t = s if t and s are alpha-equivalent terms.
(α) A → B if A and B are alpha-equivalent formulas.
(β) Ap(λx. t, s) = t[x := s] where t is any term.
(β) Ap(λx.A, s) ↔ A[x := s] where A is any formula.
(ξ) (weak extensionality) ∀x(Ap(t, x) = Ap(s, x)) → λx.Ap(t, x) = λx.Ap(s, x)

(true and false) T = λxλy. x and F = λxλy. y

(non-triviality) T 6= F

4 Semantics

There is a standard definition of λ-model that is used in the semantics of the
lambda calculus (see [1], p. 86, with details on p. 93). There is also a well-
known notion of a model of a first order theory. In this section our goal is to
define the concept M is a model of the theory T in lambda logic in such a way
that it will imply that, neglecting λ, M is a first order model of T , and also,
neglecting the function symbols other than Ap, M is a λ-model.

The cited definition of λ-model involves the notion of terms, which we shall
call M -terms, built up from Ap and constants ca for each element a of the
model. It requires the existence, for each term t of this kind, and each variable
x, of another M -term λ∗(x, t) such that M will satisfy

Ap(λ∗(x, t), x) = t.

6

Note that this does not yet make sense, as we must first define the notion of
“the interpretation of a term t in M”. We cannot simply refer to [1] for the
definition, since we need to extend this definition to the situation in which we
have a theory T with more function symbols than just Ap, although the required
generalization is not difficult.

We first define a λ-structure. As usual in first order logic we sometimes use
“M” to denote the carrier set of the structure M ; and we use fM or f̄ for the
function in the structure M that serves as the interpretation of the function
symbol f , but we sometimes omit the bar if confusion is unlikely. (M,λ∗) is
a λ-structure for T if (1) M is a structure with a signature containing all the
function symbols and constants occurring in T , and another binary function
ApM to serve as the interpretation of Ap, and (2) there is an operation λ∗ on
pairs (x, t), where t is an M -term and x is a variable, producing an element
λ∗(x, t) of M .

If (M,λ∗) is a λ-structure for T , then by a valuation we mean a map g
from the set of variables to (the carrier set of) M . If g is a valuation, and v =
v1, . . . , vn is a list (vector) of variables, then by g(v) we mean g(v1), . . . , g(vn).
If t is a term, then by t[v := g(v)] we mean the M -term resulting from replacing
each variable vi by the constant cg(vi) for the element g(vi) of M . If g is a
valuation, then we can then extend g to the set of terms by defining

g[f(t1, . . . , tn)] = f̄(g(t1), . . . , g(tn))
g[λx.t] = λ∗(x, t[v := g(v)])

Now we have made sense of the notion “the interpretation of term t under
valuation g”. If φ is a formula, we recursively define M |=g φ as follows:

M |=g ∀xA iff M |=h A whenever h extends g and is defined on x
M |=g ∃xA iff M |=h A for some h that extends g and is defined on x
M |=g ¬A iff it is not the case that M |=g A

M |=g A ∧B iff M |=g A and M |=g B

M |=g A ∨B iff M |=g A or M |=g B

M |=g t = s iff g(t) and g(s) are the same element of M
M |=g P (t1, . . . , tn) iff PM(g(t1, . . . , g(tn)) where P is not Ap
M |=g Ap(lambda(x,B), t) iff B is a formula and M |= B[x := t]
M |=g Ap(t, s) iff ApM (g(t), g(s)) when the previous clause does not apply

Note that in all cases except the next to last one, the complexity of the
formula has clearly decreased. The question may arise whether the last clause
is well-founded. We now prove it is. Let the “skeleton” of a formula A be
the term obtained by replacing each atomic subformula by a constant c. By
induction on the complexity of A, the skeleton of every formula A has a normal
form. The clause defining M |=g Ap(lambda(x,B), t) reduces the length of

7

the outermost reduction of the skeleton of A. The other clauses reduce the
complexity without increasing the length of the outermost reduction. Hence
the definition of satisfaction can be regarded as a definition by induction on the
pair (length of outermost reduction of the skeleton of A, complexity of A).

We define M |= A if for all valuations g, M |=g A. Note that for formulae
not involving λ, the definition agrees with the usual definition of satisfaction in
first order logic.

We are now in a position to define λ-model. This definition coincides with
that in [1] in case T has no other function symbols than Ap.

Definition 1 (λ-model) (M,λ∗) is a λ-model of a theory T in lambda logic if
(M,λ∗) satisfies the axioms α, β, and ξ, and M satisfies the axioms of T .

5 Consistency of lambda logic

Define the relation t ≡ s on terms of T to mean that t and s have a common
reduct (using β and α reductions). The Church-Rosser theorem for λ calculus
([1], p. 62) implies that this is an equivalence relation, when the language
includes only Ap and λ. The following theorem says that adding additional
function symbols does not destroy the Church-Rosser property.

Theorem 1 The Church-Rosser theorem is valid for lambda logic.

Proof. For each function symbol f we introduce a constant f̄ . We can then
eliminate f in favor of f̄ as follows. For each term t we define the term t◦ as
follows:

x◦ = x for variables x
c◦ = c for variables c

f(t)◦ = Ap(f̄ , t◦)
f(t, r)◦ = Ap(Ap(f̄ , t◦), r◦))

Ap(t, r)◦ = Ap(t◦, r◦)
(λx. t)◦ = λx. t◦

and similarly for functions of more than two arguments. Since there are no
reduction rules involving the new constants, t reduces to q if and only if t◦

reduces to q◦. Moreover, if t◦ reduces to v, then v has the form u◦ for some
u. (Both assertions are proved by induction on the length of the reduction.)
Suppose t reduces to q and also to r. Then t◦ reduces to q◦ and to r◦. By the
Church-Rosser theorem, q◦ and r◦ have a common reduct v, and v is u◦ for
some u, so q and r both reduce to u. That completes the proof.

Theorem 2 Lambda logic is consistent, i.e. does not derive T = F.

8

Proof. We define a model (M,ApM) for lambda logic. The elements of M are
the equivalence classes [t] of terms t under the relation t ≡ s defined above. We
define ApM ([t], [s]) := [Ap(t, s)].

One proves that, for valuations g with values in M , and x in the domain of
g, and r any term in the equivalence class g(x), we have

M |=g A if and only if M |= A[x := r]. (1)

The β axiom for terms is satisfied since [Ap(lambda(x, t), r)] is [t[x := r]]. The
β axiom for formulas is automatically satisfied by the definition of M |= A. The
axiom T 6= F is satisfied since T and F are distinct normal terms.

The weak extensionality axiom (ξ) is satisfied, as follows: Suppose M sat-
isfies ∀x (Ap(t, x) = Ap(s, x)). Let g be the valuation assigning x the value
[x]. Then by (1), M satisfies Ap(t, x) = Ap(s, x). Hence M also satisfies
lambda(x,Ap(t, x)) = lambda(x,Ap(s, x)), the conclusion of (ξ). That com-
pletes the proof.

6 Some consequences of the fixed point theorem

The fixed point theorem of lambda calculus says that for every F , there is
an Ω such that FΩ = Ω. Namely, we can take Ω = Ap(ω, ω), where ω =
lambda(x,Ap(F,Ap(x, x)). Another form of the fixed point theorem says that
for every term H, we can find a term f such that Ap(f, x) = H(f, x). (To
prove this, apply the first theorem with F = λx.H(f, x), and take f to be the
Ω produced by the first theorem.)

Russell’s paradox as a fixed point. Since every F has a fixed point, there
cannot be (in lambda calculus or in lambda logic) any term not such that for all
x, not(x) 6= x. This is the essence of Russell’s paradox: Suppose there was such
a 6. If, following Church, we identify x ∈ y with Ap(y, x) = T, then following the
proof of the fixed-point theorem we would set ω = λx.Ap(not, Ap(x, x)), which
we recognize as the Russell set R = {x : x 6∈ x}, since ω(x) = T if and only if
Ap(x, x) 6= T. Then considering the value of Ω = Ap(ω, ω) amounts to Russell’s
famous question whether R ∈ R or not, and the fixed-point argument shows
6 (Ω) = Ω, which in Russell’s terms says R ∈ R if and only if R 6∈ R. Of course
in lambda logic, this is not a paradox, since no such term 6 exists. Although
one may find it counterintuitive that no such term exists, this is not new with
lambda logic, but is a feature of lambda calculus known for over seventy years
now.

Inconsistency of AC. Consider the following version of the axiom of choice:
(AC) (Axiom of Choice) ∀x ∃y P (x, y) → ∃f ∀xP (x,Ap(f, x)).

AC is inconsistent with lambda logic: Simply take P (x, y) to be x 6= y. Then
by the non-triviality axiom of lambda logic, we can prove ∀x∃y x 6= y (take y to
be T if x 6= T, and F if x = T). But then any choice function f would satisfy
the equation for not, and hence there is no such f .

In [6], the last theorem is only vacuously true, since its conclusion says that
something is provable in lambda logic plus AC.

9

Failure of Skolemization. The same example shows that Skolemization does
not work in lambda logic. That is, in first order logic, ∀x ∃y A(x, y) is satisfiable
if and only if ∀xA(x, f(x)) is satisfiable. But if we take x 6= y for A(x, y), the
former is satisfiable in lambda logic, but the latter is not, since then λx f(x)
must have a fixed point. We show in the next section that this is not a serious
problem–we just have to not allow lambda-abstraction when it would capture
free variables in Skolem terms. That extended version of lambda logic can be
used to prove a completeness theorem.

An example in group theory. Here is a more mathematical example using the
fixed point theorem. Consider the theory in which we have a binary function
· (written in infix notation), a constant e, and the axioms saying that · is a
group operation identity e. Take H(f, x) = c · Ap(f, x), where c is anything.
Applying the second form of the fixed point theorem we get Ap(f, x) = c ·
Ap(f, x). It follows from the axioms of group theory that c is the group identity.
Since c was anything, we could have taken c to be T or F, but this implies
T = F, contradicting the non-triviality axiom of lambda logic. This theory is
inconsistent.

Looked at semantically, this is not a surprising result: it only means that
it is impossible, given a lambda model M , to define a binary operation on M
and an identity element of M that make M into a group. If we use a unary
predicate G, and put in axioms saying that · is a group operation on G with
identity e, then the above argument only shows that Ap(f, x) is not in G, i.e.
¬G(Ap(f, x)).

Extensionality. The following additional formula is sometimes added to
lambda calculus.

(η) (extensionality) λx.Ap(t, x) = t.
It is not an axiom of lambda logic. It is, however, consistent with lambda

logic since in the consistency proof in the previous section, we could have used
η-reduction as well as β-reduction, appealing to the Church-Rosser theorem for
η-reduction in lambda calculus.

Terms and formulas. Suppose we have deduced ¬A for some formulaA. The
rules of lambda logic do not allow us to deduce A = F as a term. Similarly, just
because we have proved A does not entitle us to deduce A = T. Indeed, making
A equivalent to A = T and ¬A equivalent toA = F would lead to contradictions.
Freek Wiedijk gave the following example: let A be Ap(λw λxλy.T, w). Then
A is a formula, so we have A ∨ ¬A. If we were able to deduce from this,
A = T ∨ A = F, we could obtain a contradiction, as follows: As a term, A
reduces to λxλy.T. Hence λxλy.T = T∨λxλy.T = F. But each disjunct can
be refuted, since Ap(Ap(T,F),F) = F and Ap(Ap(F,F),F) = F according to
the lambda-calculus definitions of T and F, but Ap(Ap(λxλy.T,F),F) = T,
and one of the axioms of lambda logic is T 6= F.

Note that λxλy.T is not a formula, so we are not able to β-reduce A as a
formula, and the contradiction cannot be carried out in lambda logic. A formula
only β-reduces if it reduces to another formula.

10

7 Completeness of lambda logic

The following theorem is to lambda logic as Gödel’s completeness theorem is
to first order logic. As in first order logic, a theory T in lambda logic is called
consistent if it does not derive any contradiction. In this section, we will prove
the lambda completeness theorem: any consistent theory has a λ-model. First,
we need some preliminaries.

Theorem 3 (Lambda Completeness Theorem) Let T be a consistent the-
ory in lambda logic. Then T has a λ-model.

Remark. There is a known “first order equivalent” of the notion of λ-model,
namely Scott domain. See [1](section 5.4). However, we could not use Scott
domains to reduce the lambda completeness theorem to Gödel’s first order com-
pleteness theorem, because there is no syntactic interpretation of the theory of
Scott domains in lambda logic.
Proof of the completeness theorem. Our plan is to imitate the usual proof
(Henkin’s method) of the completeness theorem, as set out for example in [10]
pp. 43-48, can be imitated for lambda logic. However, the first step in the
classical proof is Skolemization, which we have seen is problematic in lambda
logic. The reason why it is problematic is that lambda logic permits lambda
abstraction to be used on any function symbol, so for example we cannot con-
struct a model with a Skolem function for ∀x∃y x 6= y. The remedy is to enlarge
lambda logic to allow “Skolem function symbols” with a restriction on their
use in lambda terms. This enlarged logic presumes a list of “Skolem symbols”
disjoint from the list of function symbols of lambda logic. A “Skolem term” is
a term whose main symbol is a Skolem symbol. The restriction is that the term
lambda(x,t) can only be formed when t does not contain a Skolem term with
x free. Otherwise Skolem symbols are used just like ordinary function symbols
and constants in forming terms.

Example. If f(x) is a Skolem term with the associated axiom f(x) 6= x,
then we cannot form λ(x, f(x)) (so we cannot derive a contradiction from the
existence of a fixed point of that term).

The axioms of Skolem lambda logic are the same as those of lambda logic,
except (of course) that in the (β) and (ξ) axiom schemata, only those instances
are taken that are legal formulas in Skolem lambda logic.

We refer to this more elaborate system as “Skolem lambda logic”. We will
use it only in the proof of the completeness theorem. The semantics of Skolem
lambda logic generalizes the semantics of lambda logic defined above, by in-
terpreting the Skolem terms as they would be interpreted in first order logic.
That is, the model must specify a function f̄ from M to M to serve as the
interpretation of each Skolem function symbol f . (If the same symbol occurs
with different arities, it is interpreted by a different function for each arity.) The
function λ∗, which takes a variable x and an M -term t as arguments, does not
need to be defined on terms t containing Skolem terms with x free.

We show that a single quantifier can be eliminated. Consider a theorem
T containing an axiom ∀x∃y A(x, y), and consider the theory T ∗ containing a

11

new a Skolem function symbol f and the axiom ∀xA(x, f(x)) instead of the
axiom ∀x∃y A(x, y). Note that this axiom is a formula of Skolem lambda logic
since A(x, f(x)) means A[y := f(x)] and any bound variables that occur free in
f(x) are renamed as part of the substitution process, so no free variables of the
Skolem term f(x) are captured by a lambda-binding.

We claim T has a model if and only if T ∗ has a model. A model of T ∗

already satisfies T , so only one direction requires proof. Suppose M satisfies T .
Then for every x ∈M there is a y ∈M such that M satisfies A(x, y). Using the
axiom of choice (at the meta-level) there is a function f̄ : M → M such that
M satisfies A(x, f̄(x)) for every x. We take f̄ as the interpretation of f . Then
the axiom ∀xA(x, f(x)) is satisfied. We have to extend the function λ∗ of M
(which takes a variable and an M -term and produces an M -term) to be defined
on M -terms in the language of T ∗. We also have to define the interpretations
r̄ of terms in Skolem lambda logic in M . These two tasks are accomplished
simultaneously by mutual recursion; the function λ∗ is used just as for lambda
calculus to define the interpretation of lambda-terms, and now we show how to
extend λ∗ to those lambda terms that are legal in Skolem lambda logic. Let t
be an M -term of T ∗, and x a variable, and suppose that t contains some Skolem
M -subterms, but does not contain any Skolem subterms with x free. Then t
can be written as t′[u := r], where u stands for several variables and r for the
list of all Skolem subterms of t, and t′ does not contain any Skolem terms. Since
the terms r do not contain x free, the variable x does not get renamed when we
substitute r for u in lambda(x, t′). Thus

λ(x, t′)[u := r] = λ(x, t′[u := r]) = λ(x, t)

We define
λ∗(x, t) := lambda∗(x, t′[u := cr̄

where r̄ is the interpretation in M of the Skolem term r and cr̄ is the constant
denoting that element of M .

Now we check the validity of axiom (β). Let r be a list of all Skolem terms
occurring in t and u a corresponding list of variables not occurring in t. Let t′

be a term such that t = t′[u := r], and t′ contains no Skolem terms. In M we
have

Ap(lambda(x, t), q) = Ap(λ∗(x, t), q)
= Ap(λ∗(x, t′[u := cr̄], barq) by definition of λ∗(x, t)
= Ap(λ(x, t′)[u := cr̄]), q̄) since x does not occur free in r̄
= Ap(λ(x, t′), q̄)[u := cr̄] since cr̄ is a constant term
= t′[x : q̄][u := cr̄ since axiom (β) holds in M
= t[x := q̄]

Finally we check the validity of the weak extensionality axiom (ξ). Recall
that the axiom in question says that if for all x, Ap(t, x) = Ap(s, x), then
λ(x,Ap(t, x)) = λ(x,Ap(s, x)). This is an axiom of Skolem lambda logic only

12

in case t does not contain any Skolem subterms with x free. In that case, let t′

and s′ be terms without Skolem subterms, and r a list of Skolem terms, such
that λ∗(x, t) = λ∗(x, t′[u := cr̄]) and λ∗(x, s) = λ∗(x, s′[u := cr̄]) Then in M ,
by hypothesis we have Ap(t, x) = Ap(s, x) for all x, so also Ap(t′[u := r], x) =
Ap(s′[u := r], x). Since the interpretation in M of t′[u := r] is the same as that
of the M -term t′[u := cr̄], we also have

Ap(t′[u := cr̄], x) = Ap(s′[u := cr̄], x).

But these terms contain no Skolem subterms. Hence, applying axiom (ξ) in M ,
we have

lambda(x, t′[u := cr̄]) = lambda(x, s′[u := cr̄]).

Therefore M satisfies

λ(x, t′[u := r]) = λ(x, s′[u := r]),

which is the same as to say M satisfies λ(x, t) = λ(x, s). That completes the
verification of axiom (ξ).

Now, as usual in first-order logic, we can eliminate quantifiers one by one
in favor of Skolem functions, so that to every theory T in lambda logic, we can
construct a theory T ∗ in Skolem lambda logic with quantifier-free axioms, such
that T has a model if and only if T ∗ has a model. Hence it suffices to prove the
completeness theorem for quantifier-free Skolem lambda logic.

If T does not contain infinitely many constant symbols, we begin by adding
them; this does not destroy the consistency of T since in any proof of contra-
diction, we could replace the new constants by variables not occurring elswhere
in the proof. We construct the “canonical structure” M for a theory T . The
elements of M are equivalence classes of closed terms of T under the equivalence
relation of provable equality: t ∼ r iff T ` t = r. Let [t] be the equivalence class
of t. We define the interpretations of constants, function symbols, and predicate
symbols in M as follows:

cM = [c]
fM ([t1], . . . , [tn]) = [f(t1, . . . , tn)]
PM([t1], . . . , [tn)] = [P (t1, . . . , tn)]

In this definition, the right sides depend only on the equivalence classes [ti] (as
shown in [10], p. 44).

Exactly as in [10] one then verifies that M is a first order model of T . To
turn M into a λ-model, we must define λ∗(x, [t]), where x is a variable and
t is an M -term, i.e. a closed term with parameters from M , and t does not
contain Skolem subterms in which x occurs free. The “parameters from M” are
constants c[q] for closed terms q of T . If t is an M -term t, let [t]◦ be the closed
term of T obtained from t by replacing each constant c[q] by a closed term q in
the equivalence class [q]. Then [t]◦ is well-defined. Define λ∗(x, [t]) = [λx. [t]◦].
By axiom (ξ), this is a well-defined operation on equivalence classes: if T proves
t = s then T proves [t]◦ = [s]◦ and hence λx. [t]◦ = λx. [s]◦.

13

We verify that the axioms of lambda logic hold in M . First, the (β) axiom:
Ap(λx. t, r) = t[x := r]. It suffices to consider the case when t has only x free.
The interpretation of the left side in M is the equivalence class of Ap(λx. t, r).
The interpretation of the right side is the class of t[x := r]. Since these two terms
are provably equal, their equivalence classes are the same, verifying axiom (β).
Now for axiom (ξ). Suppose t and s are closed terms and Ap(t, x) = Ap(s, x) is
valid in M . Then for each closed term r, we have tr provably equal to sr. Since
T contains infinitely many constant symbols, we can select a constant c that
does not occur in t or s, so tc = sc is provable. Replacing the constant c by a
variable in the proof, tx = sx is provable. Hence by axiom (ξ), λx. t = λx. s is
probable, and hence that equation holds in M . In verifying axiom (ξ), it suffices
to consider the case when s and t are closed terms. The axiom (α) holds in M
since it simply asserts the equality of pairs of provably equal terms. The axiom
T 6= F holds since T does not prove T = F, because T is consistent. That
completes the proof.

8 The first order fragment of lambda logic

Theorem 4 (Axiomatization of first-order theorems) Let T be a first or-
der theory, and let A be a first order sentence. Then T proves A in lambda logic
if and only if for some positive integer n, T plus “there exist n distinct things”
proves A in first order logic.

Proof. First suppose A is provable from T plus “there exist n distinct things”.
We show A is provable in lambda logic, by induction on the length of the proof
of A. Since lambda logic includes first order logic, the induction step is rivial.
For the basis case we must show that lambda logic proves “there exist n distinct
things” for each positive integer n. The classical constructions of numerals in
lambda calculus produce infinitely many distinct things. However, it must be
checked that their distinctness is provable in lambda logic. Defining numerals
as on p. 130 of [1] we verify by induction on n that for all m < n, dme 6= dne
is provable in lambda logic. If m < n+ 1 then either m = n, in which case we
are done by the induction hypothesis, or m = n. So what has to be proved is
that for each n, lambda logic proves dne 6= dn+ 1e. This in turn is verifiable by
induction on n.

Conversely, suppose that A is not provable in T plus “there exist n distinct
things” for any n. Then by the completeness theorem for first order logic, there
is an infinite model M of ¬A; indeed we may assume that M has infinitely
many elements not denoted by closed terms of T . We will show that M can
be expanded to a lambda model M̂ satisfying the same first order formulas, by
defining arbitrarily the required operation λ∗ on M -terms, and then inductively
defining relations E(x, y) and ApM to serve as the interpretations of equality
and Ap in M̂ .

To do this we define the relation ApM and a binary relation E on M by
simultaneous induction. ApM will serve as the interpretation of Ap and E will

14

serve as the interpretation of equality.2 Since M is infinite we can define an
element 0 and a pairing function 〈a, b〉 on M in such a way that the interpre-
tations of the losed terms of T are never pairs, and 0 is not a pair. Define
< a, b, c >=< a,< b, c >>, etc. Define the successor of x to be s(x) =< 0, x >,
and define the “numeral” m̄ inductively by 0̄ = 0 and ¯m + 1 = s(m̄). Hence-
forth we drop the bars, writing for example 〈1, k〉 instead of 〈1̄, k̄〉. An element
of the form < 1, j, k > will be used as an “index” of the k-th function symbol
of arity j in T , which we denote by fj

k .
Tuples are defined from pairs by 〈x1, . . . , xn+1〉 = 〈〈x1, . . . , xn〉, xn+1〉. The

members of a tuple 〈x1, . . . , xn are the xi for i = 1, . . . , n. When y and w are
two tuples of length at least m we write Em(y, w) for the conjunction of the
formulas E(yi, wi) for i ≤ m.

To produce a λ-model we must define an operation λ∗, which takes a variable
and an M -term. An M -term (as explained in [1], p. 86 ff.), is a term with
“parameters from M”; more precisely, a closed term in a language containing a
constant ca for each element a of M . A convenient notation for M -terms is t[y],
where y is a tuple of elements of M whose length is the number of free variables
of t. This means the following: if x1, . . . , xn are the free variables of t, in order
of their occurrence, then t[y] is t[xi := cyi]. We also need the following notation:
t[y, x] where x is a variable, and y is a tuple of elements of M whose length is the
number of free variables of t different from x, means the following: if x1, . . . , xn

are the free variables of t different from x, in order of their occurrence, then t[y]
is t[xi := cyi]. Note that x may or may not occur free in t.

The operation λ∗ is given by

λ∗(x, t[y, x]) :=< 2, j, dte, y >

where y is a tuple whose length is the number of free variables of λx. t, and x is
the j-th variable, and dte is the (numeral for the) Gödel number of the closed
term t. The definitions of Ap, E, and the interpretation t[y]M of each M -term
t[y] are given in one simultaneous inductive definition. The inductive conditions
are as follows. In (iii) and (iv), m is the number of free variables of t.

(i) E(x, y) if x = y.
(ii) E(λ∗(x, t[y, x]), λ∗(z, t[x := z][y])).
(iii) ApM (λ∗(x, t[y, x]), rM) = t[x := r][y]M .
(iv) E(λ∗(x, t[y, x]), λ∗(x, s[w, x]) if E(t[x := a][y]M , s[x := a][wM), and

Em(y, w) where a is a the first constant not occurring in t or s.
(v) E(ApM (a, b), ApM(c, d)) if E(a, c) and E(b, d).
(vi) Ap(a, b)M = ApM (aM , bM).
(vii)E(f(t[y])M , f(s[w])M) ifE(t[y]M , s[w]M), and similarly for several vari-

ables x.
(viii) (λx. t[y, x])M = λ∗(x, t[y, x]).
(ix) f(x)M = fM (xM) and similarly for several variables x.

2If one insists on interpreting equality as identity instead of by an equivalence relation, one
may use the equivalence classes of E as the elements of the model.

15

(x) (ca)M = a where ca is the constant for a.
(xi) E(a, c) if E(a, b) and E(b, c).

Since E and Ap occur only positively in these clauses, this is a legitimate
inductive definition. We interpret equality in M as the relation E. For each
predicate P of arity n in the language of T , we define a relation P̂ on M by

P̂ (x1, . . . , xn) := M |= P (y1, . . . , yn) ∧En(x, y)

and we define M̂ |= P (x1, . . . , xn) if and only if P̂ (x1, . . . , xn).
We start with the following lemma: if E(r, q) then E(t[x := r], t[x := q]) for

terms t, q, and r. This is proved by induction on the complexity of the M -term
t. When t begins with λ or Ap, the corresponding induction step follows from
(iv) and (v). When t begins with a function symbol f , we use (vii). When t
is atomic, either it is a constant ca for an element a = y1 of M , in which case
there is nothing to prove, or else it is a variable, in which case we have to prove
that E(r, q) from the assumption E(r, q), which is immediate.

We next verify the substitutivity of equality, namely: if E(r, s) and M̂ |=
A[x := r] then M̂ |= A[x := s], where A is a formula of lambda logic with
constants for elements of M . We prove this by induction on the complexity of
A. Since substitution for free variables commutes with the logical connectives
and quantifiers, only the case of atomic A needs a proof. IfA is an equality t = q,
then A[x := r] is t[x := r] = q[x := r] and A[x := s] is t[x := s] = q[x := s].
By the lemma we have t[x := r] = t[x := s] in M , and q[x := r] = q[x := s].
Assume M̂ |= A[x := r]. Then by (xi) we have M̂ |= t[x := s] = q[x := s]. The
remaining case is when A is an atomic formula P (x) (x can be several variables.)
This is taken care of by the definition of P̂ above.

Because of (ii) and (iii), axioms (α) and (β) are satisfied. Now to verify
axioms (ξ). Let t[y] be an M -term, i.e. a term with constants for elements y of
M substituted for its free variables. Suppose M̂ |= ∀x(t[y]x = s[y]x). Then let c
be the first constant not occurring in t or s; we have M̂ |= t[x := c] = s[x := c].
Then by (iv), we have M̂ |= λx. t[y] = λx. s[y]. Hence (ξ) holds in M .

We have now proved that M̂ is a model of lambda logic. We still must prove
it satisfies the theory T in first order logic. This follows from the following
lemma: For each M -formula A(x1, . . . , xn) with n parameters from M , we have
M̂ |= A(x) if and only if there exists y with En(x, y) and M |= A(y). To prove
the lemma: The case when A is an atomic formulaP (x) is true by definition of P̂ .
The case of an atomic formula t = q follows from what has been proved above.
The proof is completed by induction on the complexity of A; the quantifiers do
not offer any difficulty since the carrier sets of M and M̂ are the same. That
completes the proof of the theorem.

9 Lambda Unification

Above we defined t[x := s] as the result of substituting term s for free variable
x in t, after renaming bound variables in t to avoid capture of free variables of

16

s. At that time we did not extend this definition to simultaneous (or “parallel”)
substitution for several variables x1, . . . , xn, but this can be done as usual. The
free variables of t are renamed to avoid clashes with free variables in s1, . . . , sn,
and then each variable xi is replaced by si at the same time (rather than se-
quentially).

A substitution is a function σ from a set of variables to the set of terms.
It is traditional to write xσ instead of σ(x). A substitution σ has a natural
extension to a function from terms to terms, which we also denote by σ, given
by tσ = t[x := xσ], where x stands for the list of all free variables in t, and
t[x := xσ] denotes a simultaneous substitution.

In first order logic, a substitution σ is said to be a unifier of terms t and
s if tσ = sσ. Two terms in first order logic (with equality) are provably equal
if and only if they are identical, so it doesn’t matter if we interpret this to
mean that tσ = sσ is provable in first order logic with equality or just that the
terms tσ and sσ are identical. When we go to generalize this to lambda logic, it
does matter, since terms can be syntactically different but provably equal (for
example if one β-reduces to the other).

We define σ to be a lambda unifier of terms t and s if tσ = sσ is provable in
lambda logic. Similarly, σ is defined to be a lambda unifier of formulas A and
B if A↔ B is provable in lambda logic.

Our aim here is to give another axiomatization of lambda logic, based on
resolution, factoring, and paramodulation. The usual formulation of these rules
involves unifiers. We extend these rules to lambda unification as follows:

Paramodulation
α = β P [x := γ] ασ = γσ

paramodulation
P [x := βσ].

provided that the free variables of βσ either occur in γ or are not bound in
P . This differs from the first order version of paramodulation only in the extra
condition about the free variables of βσ. Note that inferences by β-reduction
are included in the paramodulation rule, taking α = β to be the axiom of
β-reduction and γ to be α.

Binary Resolution

Aσ ↔ Bσ A | U −B | V
binary resolution

Uσ | V σ
Here U and V are sets of literals and U | V is their union; −B is a negative
literal, i.e. a negated atom; A | U means the union of {A} with U ; and Uσ
means {Pσ : P ∈ U}.

Factoring

Aσ ↔ Bσ A |B | U
factoring

Aσ | Uσ

17

We identify a clause with the formula of λ-logic which is the disjunction of
the literals of the clause. If Γ is a set of clauses, then Γ can also be considered
as a set of formulas in λ-logic.

Theorem 5 (Soundness of lambda unification) (i) Suppose there is a proof
of clause C from a set of clauses Γ using binary resolution, factoring, and
paramodulation, and the clause x = x. Then there is a proof of C from Γ in
lambda logic.

Remark. In [6], “demodulation” is mentioned, but it is not necessary to consider
demodulation as a separate rule of inference—from the purely logical viewpoint,
demodulation is a special case of paramodulation.
Proof. We proceed by induction on the lengths of proofs, In the base case, if we
have a proof of length 0, the clause C must already be present Γ, in which case
certainly Γ ` C in lambda logic.

For the induction step, we first suppose the last inference is by paramodula-
tion. Then one of the parents of the inference is an equation α = β (or β = α)
where the other parent φ has the form ψ[x := γ] where for some substitution
σ we have γσ = ασ, and the free variables of βσ either occur in γ or are not
bound in ψ, according to the definition of paramodulation. Then the newly
deduced formula is ψ[x := βσ]. We have to show that this formula is derivable
in lambda logic from the parents φ and α = β. Apply the substitution σ to the
derived formula φ. We get

φσ = ψ[x := γ]σ
= (ψσ)[x := γσ]
= (ψσ)[x := ασ]

Now using the other deduced equation α = β, we can deduce ασ = βσ and
hence we can, according to the rules of lambda logic, substitute βσ for ασ,
provided the free variables in βσ either occur already in ασ or are not bound
in ψσ. Since γ = ασ, this is exactly the condition on the variables that makes
the application of paramodulation legal. That completes the induction step in
the case of a paramodulation inference.

If the last inference is by factoring, it has the form of applying a substitution
σ to a previous clause. This can be done in lambda logic. (In the factoring rule,
as in lambda logic, substitution must be defined so as to not permit capture of
free variables by a binding context.)

If the last inference is by binary resolution, then the parent clauses have
the form P |R and −Q|S (using R and S to stand for the remaining literals in
the clauses), and substitution σ unifies P and Q. The newly deduced clause
is then Rσ|Sσ. Since the unification steps are sound, Pσ = Qσ is provable
in λ-logic. By induction hypothesis, λ-logic proves both P |R and −Q|S from
assumptions Γ, and since the substitution rule is valid in λ-logic, it proves Pσ|Rσ
and −Qσ|Sσ. But since Pσ = Qσ is provable, λ-logic proves Rσ|Sσ from Γ.
This completes the induction step, and hence the proof.

18

10 The Logic of Partial Terms

In the group theory example, it is natural to ask whether x · y needs to be
defined if x or y does not satisfy G(x). In first order logic, · is a function symbol
and hence in any model of our theory in the usual sense of first order logic, ·
will be interpreted as a function defined for all values of x and y in the model.
The usual way of handling this is to say that the values of x · y for x and y not
satisfying G(x) or G(y) are defined but irrelevant. For example, in first order
field theory, 1/0 is defined, but no axiom says anything about its value. As this
example shows, the problem of “undefined terms” is already of interest in first
order logic, and two different (but related) logics of undefined terms have been
developed. We explain here one way to do this, known as the Logic of Partial
Terms (LPT). See [5] or [4], pp. 97-99.

LPT has a term-formation operator ↓, and the rule that if t is a term,
then t ↓ is an atomic formula. One might, for example, formulate field theory
with the axiom y 6= 0 → x/y ↓ (using infix notation for the quotient term).
Thereby one would avoid the (sometimes) inconvenient fiction that 1/0 is some
real number, but it doesn’t matter which one because we can’t prove anything
about it anyway; many computerized mathematical systems make use of this
fiction. Taking this approach, one must then modify the quantifier axioms. The
two modified axioms are as follows:

∀xA ∧ t ↓→ A[x := t]
A[x := t]∧ t ↓→ ∃xA

Thus from “all men are mortal”, we are not able to infer “the king of France is
mortal” until we show that there is a king of France. The other two quantifier
axioms, and the propositional axioms, of first order logic are not modified. We
also add the axioms x ↓ for every variable x, and c ↓ for each constant c.

In LPT, we do not assert anything involving undefined terms, not even that
the king of France is equal to the king of France. The word “strict” is applied
here to indicate that subterms of defined terms are always defined. LPT has the
following “strictness axioms”, for every atomic formula R and function symbol
f . In these axioms, the xi are variables and the ti are terms.

R(t1, . . . , tn) → t1 ↓ ∧ . . .∧ tn ↓
f(t1, . . . , tn) ↓→ t1 ↓ ∧ . . .∧ tn ↓
t1 ↓ ∧ . . .∧ tn ↓ ∧f(x1, . . . , xn) ↓→ f(t1, . . . , tn) ↓

Remark. In LPT, while terms can be undefined, formulas have truth values just
as in ordinary logic, so one never writes R(t) ↓ for a relation symbol R. That is
not legal syntax.

For example, one of the strictness axioms is

t = r → t ↓ ∧r ↓ .

19

We write t ∼= r to abbreviate t ↓ ∨r ↓→ t = r. It follows from the strictness
axiom just stated that t ∼= r really means “t and r are both defined and equal,
or both undefined.”

The equality axioms of LPT are as follows (in addition to the one just
mentioned):

x = x

x = y → y = x

t ∼= r ∧ φ[x := t] → φ[x := r]

11 Partial Lambda Calculus

In lambda calculus, the issue of undefined terms arises perhaps even more nat-
urally than in first order logic, as it is natural to consider partial recursive
functions, which are sometimes undefined.3

Partial lambda calculus is a system similar to lambda calculus, but in which
Ap is not necessarily total. There can then be “undefined terms.” Since lambda
calculus is a system for deducing (only) equations, the system has to be modified.
We now permit two forms of statements to be deduced: t ∼= r and t ↓. The
axioms (α), (β), and (ξ) are modified by changing = to ∼=, and the rules for
deducing t ↓ are specified as follows: First, we can always infer (without premise)
x ↓ when x is a variable. Second, we can apply the inference rules

t ∼= s t ↓
s ↓

t ∼= s s ↓
t ↓

t ↓ r ↓
t[x := r] ↓

λx. t ↓

Note that we do not have strictness ofAp. As an example, we have Ap(λy. a, b) ∼=
a, whether or not b ↓. We could have formulated a rule “strict (β)” that would
require deducing r ↓ before concluding Ap(λx. t, r) ∼= t[x := r], but not requir-
ing strictness corresponds better to the way functional programming languages
evaluate conditional statements. Note also that λx. t is defined, whether or not
t is defined.

12 Partial Lambda Logic

Partial lambda logic results if we make similar modifications to lambda logic
instead of to first order logic or lambda calculus. In particular we modify the

3There is, of course, an alternative to λ-calculus known as combinatory logic. Application
in combinatory logic is also total, but in [4], the notion of a partial combinatory algebra is
introduced and studied, following Feferman, who in [7] first introduced partial applicative
theories. See [8] for some relationships between partial combinatory logic and partial lambda
calculus

20

rules of logic and the equality axioms as in LPT, add the strictness axiom (except
for Ap), and modify the axioms (α), (β), and (ξ) by replacing = with ∼=. In
LPT, ∼= is an abbreviation, not an official symbol; in partial lambda calculus it
is an official symbol; in partial lambda logic we could make either choice, but
for definiteness we choose to make it an official symbol, so that partial lambda
logic literally extends both LPT and partial lambda calculus. The first three
rules of inference listed above for partial lambda calculus are superfluous in the
presence of LPT. The fourth one (actually an axiom, not a rule) is included in
partial lambda logic.

Here for reference are the axioms of partial lambda logic:

(λ terms always defined) λx. t ↓ for each term t.
(Prop) propositional axioms (see [10], p. 20)
(Q) quantifier axioms for LPT as given above
(Strictness)

R(t1, . . . , tn) → t1 ↓ ∧ . . .∧ tn ↓
f(t1, . . . , tn) ↓→ t1 ↓ ∧ . . .∧ tn ↓ if f is not Ap
t1 ↓ ∧ . . .∧ tn ↓ ∧f(x1, . . . , xn) ↓→ f(t1, . . . , tn) ↓

(α) t ∼= s if t and s are alpha-equivalent.
(β) Ap(λx. t, s) ∼= t[x := s]
(β) Ap(λx.B, s) ↔ B[x := s] when B is a formula.
(ξ) (weak extensionality) ∀x(Ap(t, x) ∼= Ap(s, x)) → λx.Ap(t, x) ∼= λx.Ap(s, x)

(true and false) T = λxλy. x and F = λxλy. y

(non-triviality) T 6= F

We review the semantics of LPT as given in [5], [4]. A model consists of a set
and relations on that set to interpret the predicate symbols; the function symbols
are interpreted by partial functions instead of total functions. Given such a
partial structure one defines simultaneously, by induction on the complexity of
terms t, the two notions M |= t ↓ and tM , the element of M that is denoted by
t.

We now discuss the semantics of partial lambda logic. The definition of
partial λ-model is similar to that of λ-model, except that now Ap and the
other function symbols can be interpreted by partial functions instead of total
functions. The function λ∗ in the definition of λ-model (which takes a variable
and an M -term as arguments) is required to be total, so that the axiom λx. t ↓
will be satisfied.

Definition 2 (Partial lambda model) (M,λ∗) is a partial λ-model of a the-
ory T in partial lambda logic if (M,λ∗) satisfies the axioms (α), (ξ), and (β),
and M satisfies all the axioms of T and LPT , except that Ap need not be strict.

21

The following theorem generalizes the completeness theorem for LPT to
partial lambda logic.4

Theorem 6 (Lambda Completeness Theorem for LPT) Let T be a con-
sistent theory in partial lambda logic. Then T has a partial lambda model.

Proof. As for (total) lambda logic, we have to extend partial lambda logic
to allow Skolem functions, not allowing the construction of lambda terms that
capture free variables in Skolem terms. Exactly as for lambda logic, every theory
T in partial lambda logic has a Skolemized version T ∗ in Skolem partial lambda
logic, such that T has a model if and only if T ∗ has a model. It therefore suffices
to prove the completeness of quantifier-free Skolem partial lambda logic.

To do that, we again imitate the Henkin proof of completeness for first order
logic. If T does not contain infinitely many constant symbols, we begin by
adding them; this does not destroy the consistency of T since in any proof of
contradiction, we could replace the new constants by variables not occurring
elswhere in the proof. We construct the “canonical structure” M for a theory
T . The elements of M are equivalence classes of closed terms of T under the
equivalence relation of provable equality: t ∼ r iff T ` t = r. But now, we take
only those closed terms t for which T proves t ↓; that ensures the validity of the
axiom x = x, and of the axioms x ↓ for variables x and of the axioms c ↓ for
constants c. Let [t] be the equivalence class of t. We define the interpretations
of constants, function symbols, and predicate symbols in M as follows:

cM = [c]
fM ([t1], . . . , [tn]) = [f(t1, . . . , tn)]
PM([t1], . . . , [tn)] = [P (t1, . . . , tn)]

In this definition, the right sides depend only on the equivalence classes [ti] (as
shown in [10], p. 44). The atomic formula t ↓ is satisfied in M if and only if
T proves t ↓. It follows by induction on the complexity of the closed first-order
term t that if T proves t ↓ then the interpretation tM of t inM is the equivalence
class [t] of t. The strictness axiom for first order function symbols is used in the
induction step, so this does not apply to terms containing Ap unless we have
strictness for Ap.

Exactly as in [10] one then verifies that M is a first order model of T in
the sense of LPT. Thus the completeness theorem for first order LPT (with
strictness) is proved (again–it was first proved in [5]).

To turn M into a λ-model, we must define λ∗(x, t), where t is an M -term,
i.e. a closed term with parameters from M . The “parameters from M” are
constants c[q], where [q] is the equivalence class of a closed term q of T . If [t]
is the equivalence class of an M -term t, let [t]◦ be a closed term of T obtained
from t by replacing each constant c[q] by some closed term q in the equivalence

4In [5] there is a completeness theorem for LPT, generalizingGödel’s completeness theorem.
The strictness axiom is important in the proof.

22

class [q]. Which closed term we select does not affect the equivalence class [t]◦.
In other words, [t]◦ is a well-defined operation on equivalence classes.

We define λ∗(x, t) = [λx. [t]◦]. Because of the axiom λx. t ↓, λ∗(x, t) is
indeed defined for M -terms t. We must show that the value depends only on
the equivalence class [t]. Suppose T proves t = s. Then by axiom (xi), T proves
λx. [t] = λx. [s].

We verify that the axioms of partial lambda logic hold in M . First, the beta
axiom: Ap(λx. t, r) ∼= t[x := r]. It suffices to consider the case when t has only
x free. Suppose that the left hand side is defined in M . Its interpretation is
the equivalence class of Ap(λx. t, r). By axiom (β), the right side is provably
equal to the left side, so it is defined in M , and its interpretation is the class of
t[x := r]. On the other hand if the right hand side is defined in M , then it is
provably equal to the left side and so both are defined and equal in M . This
verifies axiom (β).

Now for axiom (ξ). Suppose t and s are closed terms defined in M , and
Ap(t, x) ∼= Ap(s, x) is valid in M . Then for each closed term r such that T
proves r ↓, we have tr provably equal to sr. Since T contains infinitely many
constant symbols, we can select a constant c that does not occur in t or s,
so tc = sc is provable. Replacing the constant c by a variable in the proof,
tx = sx is provable. Hence by axiom (ξ), λx. t = λx. s is probable, and hence
that equation holds in M . In verifying axiom (ξ), it suffices to consider the case
when s and t are closed terms. The axiom (α) holds in M since it simply asserts
the equality of pairs of provably equal terms. The axiom T 6= F holds since T
does not prove T = F, because T is consistent. That completes the proof.

13 Partial lambda logic in terms of resolution

and paramodulation

In the resolution and paramodulation axiomatization of lambda logic (and first
order logic for that matter) we use the axiom x = x, since paramodulation does
not include reflexivity. In partial lambda logic, we replace the axiom x = x
by the clause −E(x)|x = x, where E(t) is a syntactic variant of t ↓. We also
add the clause x 6= x|E(x), thus expressing that t ↓ is equivalent to t = t. The
soundness theorem takes the following form:

Theorem 7 (Soundness of lambda unification for LPT)
Suppose there is a proof of clause C from a set of clauses Γ using binary res-

olution, factoring, demodulation (including β-reduction), and paramodulation,
the clauses x = x| − E(x) and −E(x)|x = x, and clauses expressing the strict-
ness axioms, allowing second order unification in place of first order unification.
Then there is a proof of C from Γ in partial lambda logic.

Proof. The proof is similar to the proof for lambda logic, except for the treat-
ment of β-reduction steps. When β-reduction is applied, we only know that ∼=
holds in partial lambda logic. But since in partial lambda logic, we have the

23

substitutivity axioms for ∼= as well as for =, it is still the case in partial lambda
logic that if P [x := Ap(λz. t, r)] is used to deduce P [x := t[z := r]], and if (by
induction hypothesis) the former is derivable in partial lambda logic plus AC,
then so is the latter. For example if Ap(λz. a,Ω) = a is derivable, then a = a is
derivable. Each of these formulas is in fact equivalent to a ↓.

References

[1] Barendregt, H., The Lambda Calculus: Its Syntax and Semantics, Studies
in Logic and the Foundations of Mathematics 103, Elsevier Science Ltd.
Revised edition (October 1984).

[2] Barendregt, H., Bunder, M., and Dekkers, W., Systems of illative combi-
natory logic complete for first order propositional and predicate calculus
Journal of Symbolic Logic 58 (3), 89-108, 1993.

[3] Barendregt, H., Bunder, M., and Dekkers, W., Completeness of two sys-
tems of illative combinatory logic for first order propositional and predicate
calculus Archive für Mathematische Logik 37, 327–341, 1998.

[4] Beeson, M., Foundations of Constructive Mathematics, Springer-Verlag,
Berlin Heidelberg New York (1985).

[5] Beeson, M., Proving programs and programming proofs, in: Barcan, Mar-
cus, Dorn, and Weingartner (eds.), Logic, Methodology, and Philosophy of
Science VII, proceedings of the International Congress, Salzburg, 1983, pp.
51-81, North-Holland, Amsterdam (1986).

[6] Beeson, M., Lambda logic, in Basin, David; Rusinowitch, Michael (eds.) Au-
tomated Reasoning: Second International Joint Conference, IJCAR 2004,
Cork, Ireland, July 4-8, 2004, Proceedings. Lecture Notes in Artificial Intel-
ligence 3097, pp. 460-474, Springer (2004).

[7] S. Feferman, Constructive theories of functions and classes, pp. 159-224 in:
M. Boffa, D. van Dalen, and K. McAloon (eds.), Logic Colloquium ’78:
Proceedings of the Logic Colloquium at Mons, North-Holland, Amsterdam
(1979).

[8] E. Moggi. The Partial Lambda-Calculus. PhD thesis, University of Edin-
burgh, 1988. http://citeseer.nj.nec.com/moggi88partial.html

[9] Scott, D., Identity and existence in intuitionistic logic, in: Fourman, M. P.,
Mulvey, C. J., and Scott, D. S. (eds.), Applications of Sheaves, Lecture Notes
in Mathematics 753 660-696, Springer–Verlag, Berlin Heidelberg New York
(1979).

[10] Shoenfield, J. R., Mathematical Logic, Addison-Wesley, Reading, Mass.
(1967).

24

