Proof Checking 1

Running Head: PROOF CHECKING

Case Studies in Proof Checking
Robert C. Kam

San José State University

Proof Checking 2

Introduction

The aim of computer proof checking is not to find proofs, bwietrify them. This is different
from automated deduction, which is the use of computeradgfioofs that humans have not
devised first. Currently, checking a proof by computer issdmntaking a known mathematical
proof and entering it into the special language recognizedobydd verifier program, and then
running the verifier to hopefully obtain no errors. ©ticse, if the proof checker approves the
proof, there are considerations of whether or not thefgrhecker is correct, and this has been
complicated by the fact that so many systems have sprtogeing.

Dr. Freek Wiedijk made a list in 2006 of all systems tiat been “seriously used for this
purpose” of proof checking and that had at least one attrtbat distinguished them from the
rest. It contains seventeen proof systems: HOL, MR¥IS, Coq, Otter/lvy, Isabelle/Isar,
Alfa/Agda, ACL2, PhoX, IMPS, Metamath, Theorema, Lei§aprl, Qmega, B method, and
Minlog (Wenzel & Wiedijk, 2002, p. 8).

The Flyspeck Project by Dr. Thomas Hales was onesofitst required applications of the proof
checker idea. Hales’ proof of Kepler's conjecture in 1988statement that the “grocery store”
stacking of spheres is the optimal way to conserkgnve, required computer verification in
parts of the proof. The referee committee checked ratittby hand, but due to the nature of
the proof, it was time-consuming. After five years (nicdaciual checking, but overall time), the
leader, G. Fejes Téth, would only say that he was “99%icéthat the proof was correct
(Hales, 2005, p. 1). In this instance, having a computeméefentire proof instead would
have produced quicker, more satisfactory results.

The two main challenges in using a proof checker todatharBme needed to learn the syntax
and general usage of the system and the time needeatn@ife a proof in the system even
when the user is already proficient with it. As nestfaticians are not yet using proof checkers
regularly, we wanted to evaluate the validity of thisetance by analyzing these main
obstacles. Judging by Dr. Wiedijkrmalizing 100 Theorenlst, which gives an overview of
the headway various proof systems have made in matlsm@aq and Mizar are two of the
most successful systems in use today (Wiedijk, 2007).

Mizar has been around longer than Coq, having had its/éirston appear in 1975, but Coq
currently has a larger active user base (Wiedijk, 1999, p.\\4) used Mizar version 7.6.02,
with version 4.60 of the Mizar Mathematical Library (MMland Coq version 8.1.

| simultaneously formalized two fairly involved theoreimshese two systems while | was at
approximately the same level of familiarity with eadtkept track of my experiences with
learning the systems and analyzed their comparativegstieand weaknesses. The analysis and
summary of experiences should also give a general idba ourrent state of computer-aided
proof checking.

Proof Checking 3

1. The orbit-stabilizer theorem in Coq

When | embarked upon this first formalization, | would hdescribed my skill level with Coq
as “novice.” | had proved a few simple things in Cog/jongsly, so | had some experience with
basic syntax. | knew the basactics the interactive commands that one types into Coq to
gradually reduce the goal (in Coq, a synonym for the custatement one is trying to prove) to
completion:elim , inversion , auto , simpl ,red , split ,intro ,induction . Butthere were
many deeper facets of Coq which this formalization woulthbantroduction to: the various
forms of the axiom of choice in the Coq standard Ilygreve difference betweesiyT and

exists , and the importance @paque and separating out sublemmas to deal with huge
expressions in a goal, to name a few.

| took careful notes to chart my progress at learningptttief system. Afterwards, to analyze in
some way the time and effort spent learning, | triedasstfy the time spent into categories. |
tried to separate out the basic tasks one engages iig @umoderately complex formalization.
Being a computer science major with a moderate matleahbackground, | had experience
with programming and university level mathematics, whidpéd but | lacked knowledge in
the theory and background of proof checker systems.

One aim of the analysis was to look at the system fite perspective of an ideal user. That is,
if this particular proof checker became the standard fohenaaticians, well known and
regularly used, about how much time and effort would matheiaas expect to spend to
formalize a theorem? We want to distinguish the tineesystem requires for the actual
formalization from the time spent by a new user infeay the system. The analogy would be
that no matter how experienced a C programmer is téh@gst name her variables, allocate
her data structures, and work out the logic of howansiate her human idea of processing the
data into official C commands and syntax. However, urdik@vice programmer who is just
learning C, she does not have to spend time flipping thraughédls and books; she is past that
point thanks to her previous experience. She also dadwmue to write, for example, a
quicksort function, as programming libraries will providels a standard piece of code.

This programming analogy gave me my first few categor@se category would try to
encompass just the rote, laborious work of convertingsomathematical ideas into the proper
syntax that the Coq interpreter understands. Anotbkarlgldifferent category would be related
to learning the system itself, figuring out the syntaxt afether would try to capture the
portion of time that | spent finding and learning how toparly make use of the work of others
before me. Instead of a quicksort algorithm, | woulddsching for and trying to comprehend
theorems and definitions upon which | would build my owsopiof the orbit-stabilizer theorem.

1.1. Categorization explanation

We describe the seven categories which capture thetiessasks a new user of Coq faces in
more detail. Much of the explanation applies to thealkicategorization also; we will note the
differences.

Proof Checking 4

1.1.1. Rote work

This is the simplest category and also the largesheiisense that it takes up the largest
proportion of total time in the formalization. As niemed above, this category is meant to
contain any busy, tedious work that does not involve nioeiight on the user’s part.
Translating human mathematical statements into Co@sys one part of this. For example, to
state that a set is countable, to a person we miglgssaething like “there is a surjection from
the natural numbers onto this set,” but in Coq we s8ign specific names to all variables,
convert loose English phrases into exact keywords:likkes , ->, andEnsemble , and fix

simple syntax errors.

Definition cntabl(U:Type)(C:Ensemble(Ensemble U)):=
exists f:nat->Ensemble U,forall c,C c->exists i:nat Ji=c.

Figure 1.1.1.1. A definition of countability in Coq.

At first, this kind of work might seem to the reader &fairly complex, not really falling under
the category of “rote” or mindless work. The readeuld be correct for the initial stages. It
certainly takes thought to write statements in Coq, esalhediebugging the errors that arise
when trying new syntax for the first time. Howewance one has used a piece of syntax several
times and figured out all the nuances, just as in a pmognag language, the translation of
human thought to Coq statement (when the syntax igidams really second nature. At a
certain point, it is only fair to start putting mosttbis formulation and translation work into the
rote work category. So, throughout this categorizatioegss, | made judgment calls as time
progressed as to what kind of work went where. Thetfire | tried writing functions with
Cog’sfun syntax, | ran into hosts of problems and it was gdytdard to figure them all out.
But months later, writing &un expression was like usingintt in C, and | viewed it as busy
work, with more difficult things to worry about.

Another major subcategory of rote work is the portion eomag Coq tactics themselves. Again,
Coq tactics are the interactive commands that ones typ® reduce goals of the proof to simpler
and simpler forms until they are completely satishgknown facts or assumptions. At first,

my use of tactics consisted of blindly flailing at treabwith them, trying random commands in
the hope they would miraculously solve the probleneaired a few simple scenarios where
this tactic worked or that one, and eventually | builknpwledge of the commonly used tactics
to the point where | had mastered them. So the samarse@lays out; during this first major
proof of the orbit-stabilizer theorem, it seemed as iirkerminable time was spent grappling
with these tactics, but as time passed, they becaselginting and more like busy work: just
typing them in and doing away with goals as quickly asuldchammer out the tactics sequence.
The first portion of time would go into a categorytioie spent learning tactics; the second
belongs in this rote catch-all category.

Fixing common errors, formulating human reasoning in §otax, and doing away with easier
lemmas using tactics one is proficient with — thosetaemain types of rote work one does in
Coq.

Proof Checking 5

In Mizar, the analog to typing out the tactics as qyield one can in easy Coq proofs would be
the writing out of simple logical chains of statenseand citing all the proper theorems. It is not
hard work, but it is slow. One segment of rote work ag €hat has no Mizar analog is the act of,
having completed typing out a definition or a statemeat lefmma, sitting back and verifying

that the written Coq syntax actually is what | intendedeeded to write. This is because Coq
syntax is simply more complex and deep than Mizaftenchaving the writer delve deep into
several layers of definitions in the middle of a staet, then rise back up and reaffirm himself
with the bigger picture. This does not occur in Mizarstatements are more flat and concise,
dealing with one concept at a time, and the syntax issstructured more similarly to English
sentences, or at least logical statements, than Ggntax.

1.1.2. Learning Coq syntax

The category of learning Coq syntax is fairly broad.nttcanpasses the main ways | generally
learn syntax, which is looking for an existing modeling to adapt that model to my own uses
(in other words, copying it but replacing the variables tofitown situation), and finally fixing
errors, trying tweaks, and just basically learning throughdnd error how the syntax works.
Again there is a difference in this category between&uagMizar. In Coq, we also include
browsing the internet for helpful information peopkeve written about using particular pieces of
syntax, as this information exists for many construstim Coq. | have used papers, tutorials,
read others’ forum posts and mailing list threads, andas &ut invaluable resort, asked people
personally for help with Coq syntax. Mizar, howeves very little documentation beyond a
handful of tutorials, the most helpful of which werates from an introductory lecture in
Dagstuhl by Piotr Rudnicki in 1997 and the two tutorMigar: an ImpressiorandWriting a

Mizar article in nine easy stefy Dr. Freek Wiedijk.

Note that this category is restricted to Gyqtax user-defined terms, user-defined libraries, and
the tactics are not included here.

For certain parts of the Coq system, determining whethaot they fell into this category was
tricky. The result is that | define Coq syntax asséeof Coq primitives that one is likely to
encounter in every user-defined library as well asyepavof one sets out to formalize. They are
essential and used often. We are getting a littletmganitty-gritty of Coq here, but, for example,
| consider the terrsigT part of Coqg syntax, as well as the many formulat@friibe axiom of
choice set out in the Coq standard library. Technichfyh of these terms are user-defined;
they are defined by members of the official Coq commttiaedesigned and approved the Coq
standard library. However, they are so basic teatlthem having more in common with, say,
the proper way to structureFipoint definition, than with learning how to use the group
theory lemmas in Dr. Loic Pottier and Jasper Steinfstsoed Algebra and Linear Algebra
library. (That is the user-contributed library on whiduilt the orbit-stabilizer theorem; it
contains a lot of results of group theory and a preelidefinition of subsets. From now on, |

will refer to it as Pottier-Stein.)

Proof Checking 6

On the other hand, terms likasembles , Union , andComplement , fundamental pieces of set
theory defined in the Coq standard library, do not in my vainnto the category of syntax.
While they are primitive, and integral to any theoremtlmrilthe set theory foundations defined
in the Coq standard library, they are still set-themmiy terms, and unique to the Coq standard
library. A user library that is formalizing some typemathematics not based on ZF set theory,
or that wishes to define its own formalization df tbeory (as Pottier-Stein and the Constructive
Cog Repository at Nijmegen, known as C-CoRN, librarylabd, predating this version of the
Coq standard library), will not use these terms or hagtems associated with them. Also, the
Cog committee has a history of revamping their stanlitanay. Overall, learning these basic
set theory notions has more in common with learnmgadher user-defined library’s definitions
and theorems than it does with figuring out basic sylitaxixpoint definitions andsigT .

The main purpose of clarifying the distinction betweemdp® time learning Coq syntax and
spending time learning user-defined Coq libraries is to sepamatbe work that an experienced
Coqg user would have to do (the latter category) fromwiik a novice Coq user would have to
do (both categories).

1.1.3. Experimenting with Coq tactics

The interactive portion of Coq is best understood throaginalogy with programming. While
most proof verifiers, including Mizar, are like structuprdgramming in that the user prepares
as much input as she wishes before running the Mizar canpiint out errors, a Coq user
enters commands, the tactics, into an interpretégitas feedback after every command in real-
time. As touched on before, the main ways | learnedtaatics work are simply trying all of
them until one worked (only in the cases where thexenartoo many options for arguments to
pass), reading documentation on the internet, and segrchihints and ideas in others’ usage
of them.

| also include in this category any portion of the hashimgoba proof that did not strike me as
rote and second nature, as this kind of extra-tacticalittgrstill centered around how to lay out
the logical argument in terms of tactics. For exi@miplearned how to use a theorem called
NNPPto do proof by contradiction in CoaqNNPPstates that for a propositi@n (not nota) implies
A. While NNPPis not a Coq tactic per se, it required a new way ioguhe interactive
interpreter to accomplish a goal. | knew the idea obfbgy contradiction before Coq, but the
process of replacing the current goal with a go&datske to signify trying to prove a
contradiction, and then applying theorems that im#igst (negative statements) was a new
way of looking at this old concept.

1.1.4. Browsing the user-supplied library

We now get to one of the main parts of formalizing@ofrbuilding upon others’ previous work.
For example, in formalizing the orbit-stabilizer thexor, we first sought out a user-defined

Proof Checking 7

library that defined groups and basic results of group theboydo this, we had to browse the
current repository of Coq user submissions, figure outlwbies dealt with groups, and review
them to select the best one.

This category distinguishes determining whether a branafetfiematics or a particular theorem
has been formalized at all from the process of learmavg to use such user-defined terms and
theorems. It is meant to gauge the proportion of tim#oing a formalization that one spends
just browsing and interpreting others’ work. How hard ie search the global repository of
Cog knowledge, at the moment?

In contrast to Mizar, searching the user-defined librdaedefinitions in Coq employs reading
what others have written in articles, mailing listsd dorums on the internet. In Mizar, to find
out if a definition or theorem exists, we do textrskas on the actual Mizar code of the entire
database of user-submitted Mizar formalizations (thell))Mecause there is little human-
language documentation written about Mizar on the ietesnelsewhere. Though this is not the
most user-friendly way of locating things, Mizar synisustill more readable than Coq and lends
itself better to straight text searching (suclyras in Unix andfindstr ~ on Windows).

Browsing Coq user libraries is difficult, and any infotioa that other people have written
explaining what a library contains is invaluable.

1.1.5. Familiarizing with user-defined library

This category takes care of the act of learning how totes’ definitions, theorems, and
lemmas for the first time. That means interpretirgjrthiariable names and choice of data
structures, which may entail sitting and staring at cempkpressions for several minutes, as
well as, for tactile learners, loading in their fad instantiating the definitions and terms and
experimenting with them. A useful technique is to stateesvery basic results that should be
true about the terms if one’s interpretation is adtrand doing a quick throwaway proof to
verify one’s intuition — “Is this supposed to be the d&én of integral? Let me see if | can
quickly prove that the integral of the zero functiozéso.”

If one were completely familiar with a particuldoriary, from long experience or if one were the
original author, this section would be completely emphpwing the advantage of experienced
users and heavily-used standardized libraries.

1.1.6. Planning out proof strategy

The final category is sort of a rogue. For this orbibiizzer theorem as well as Markov's
inequality later, | wrote a pencil-and-paper version ofpiteef beforehand, based on an example
of the proof | found online. Carefully going over eaclpstebe sure | fully understood the
reasoning took time. But as | meant to simulate a @magtician who was already familiar with
the proof she was trying to formalize, it would not be taiconfuse the time and work | spent

Proof Checking 8

formalizing the proof in Coq with the time | spent learnihg proof | was already supposed to
know. With that in mind, | did not expect to spend mugteton this kind of “human
mathematical reasoning” at all once beginning the acbuaidlization. It turned out that | did,
not for the details of the human reasoning proof, butferdetails of the human reasoning proof
properly processed into a form that could be entereddotp

To better explain what | mean, one example of this wiaen | had to define simple functions to
create the notion of a limited Lebesgue integral to $tekov’s inequality. In normal
mathematics, the definition of a simple functionhsrs: it is just a function with a finite number
of values in its range. However, to put this notido iBoq, | had to define all the intermediate
data structures involved. That means, since the simp&ion is essentially a partition of its
domain into a finite number of pieces, each piece mmgp a specific single range value (real
number), | had to create a finite list mapping some itieation tag (natural number) to each
partition piece, and a finite list linking those tagsheirt respective range values. Then | had to
come up with the logic, the restrictive facts abouséhiests, that would make them actually
represent simple functions.

So there was a significant amount of actual mathemeglased thinking involved, the fleshing
out and filling in minute details of the conceptual prootten down on paper. Since the part
relating to these data structures, and the associatédofvplanning out proofs involving them,
was a direct result of the necessity of having to beeply detailed and precise when
formulating ideas to a computer, | considered this worttpemg included in an analysis of the
work one has to do to formalize a proof in Coq, and thue gats own category. This also
seems to me to be a category of work which does not depetihe aiser’'s expertise with Coq or
any other proof system, at least in the sense thatati@mninow well-versed one is with the
system, one will still have to do this kind of detailethfalating of and thinking about data
structures for any proof one wishes to check.

1.1.7. Housekeeping

The final category is a miscellaneous category to catehuglogistics of setting up and
running the Coq computer program itself. Installing and ganfig Cog on one’s personal
computer, updating it, and downloading user-defined libraridgpeoperly installing them
comprise most of this category.

1.2. Breakdown of formalization time

For our first analyzed formalization, we chose a medsized theorem, the orbit-stabilizer
theorem of group theory. When talking abolgfaactionof a groupG on a sef§ a function

Proof Checking 9

from G x Sto Sthat satisfies certain properties, group theoristmideéwo sets for an elememt
of S The orbit ofp is the set of all possible results of the left@ctivhen it is applied to an
element ofG andp. The stabilizer op is the set of elements Gfthat when applied with the left
action top, producep again. The orbit-stabilizer theorem states that

|G| = |the orbit ofp|e|the stabilizer o).

(I borrow the notation used by Rahbar Virk in his lecturesipt This is actually the statement of
the theorem whe@ is finite, which is the version we formalized, oe issumption that
restricting to finite groups was simpler (an idea thisnlization cured me of).

We kept an approximate log of the time spent in variods tdgring the formalization; the
consolidation of it into several broad categoridssted below. The entire formalization process
took about seven and a half weeks, working on average th four hours a day.

Category of work Approximate work Percentage of total
(hrs.) work
Learning Coq syntax 18 9%
Experimenting with Coq tactics 27 14%
Browsing the user-supplied library 22 11%
Familiarizing with new structures, terms pf 60 31%
library
Actual formalizing 48 25%
Planning out actual proof strategy 14 7%
Housekeeping (installing and setting up 3 1%
Coq)

Table 1.2.1. Breakdown of Coq formalization time.

We can consolidate these categories into the three cagegories with which a new Coq user

would be concerned. How much time is spent on learning &ogplibrary (the kind of work a

professional user of Coq would have to do also) versusiteathe syntax and user interface of
the Coq software itself? Do these two areas takbeipulk of the time to complete the proof,

with the actual formalization being a negligible amowirtime?

Proof Checking10

451
401
351
301
251
201
15

104

SSSS N

Learning Coq Learning Library Formalization
Figure 1.2.1. Simplified breakdown of Coq formalizatiione.

At this stage of Coq experience, formalization remaisig@aificant part of the time invested,
almost a third according to the record. However, fdimaton seems to go faster and faster the
more tactics of Coq one becomes familiar with. Lileaygetting used to CoqQ’s style or
paradigm of operation, the “learning Coq” portion, is @aip a one-time cost. An advanced
user probably spends the bulk of his time in a new fazet@n with browsing the new user-
supplied library, getting used to its structure, new teamd,just what lemmas are available.
After getting up to speed with the new library (usually dathé@c, by experimenting with
sections of the library as they become necessagch step of the proof), the actual
formalization process goes by quickly. In fact, not dhytime is divided in this way, but often
the actual thinking is mostly concentrated in figuringtbetlibrary too. Formalization becomes
mechanical after a while — kind of like the differenceasen writing a computer program and
debugging it.

While this formalization did take longer than expected {taman-readable proof, jotted down,
took up about a page), afterward, | felt that my comése! with Coqg had increased from
“novice” to “intermediate.” | felt that this one,ifly sized proof contained enough aspects of
Coqg formalization that the next proof would go by with éevaurdles.

1.3. Estimation of amount of work done by the library

To estimate what percentage of the work was done for tlsebyottier-Stein library, we
separate the theorem into its component lemmas arsifgli®em according to difficulty. An
“A” lemma is basically trivial to prove, “B” is of ntdum difficulty, and a “C” lemma is arduous
to prove; we would really like as many of those to betixgjgarts of the library as possible.

Proof Checkingl1

We also ask of each lemma if it “should be in” thediy. This is a fairly optimistic definition
of shouldness. We approach answering the question f@petispective: “If the library were
comprehensive and 100% ideal, this lemma would exist for usat i$, it ispossiblethat a
library creator would have thought that this lemma mightiseful and general enough to be
worth including in a library. That does not mean thad real-world library the creator should
really have included it for reasons of clutter or tirddso note that if the lemma is of size A or
B, it can be reasonable to expect a competent Coq userable to construct it on the fly.

Likewise, an answer to “should be in” of “no” meand tlva expected when embarking on the
formalization that this would have to be proven by us Wduld be very surprised if it actually
were already included by a general-library-writing authm.example would be the definition
of “left action of a group on a set,” one of the founatz of the orbit-stabilizer theorem. This
kind of map has applications beyond the orbit-stabilizeorem, but it is obscure enough that
we expect it not to be defined, especially as the foctiseoPottier-Stein library is linear algebra,
not group theory.

The point is to get a gauge of how many holes in the pvediad to fill in ourselves. Naturally,
we expect to have to fill isomeholes; otherwise there would be no theorem to fam®@alThe
amount of holes is not to say the library writer id ba in error. As mentioned, size
considerations prevent any library from having the answewéry step at every time. The point
of this exercise is simply to gauge or evaluate the “det@pess” of a real-world library applied
to a real-world problem. For anyone approaching the idearwidizing a particular theorem in
Coqg, what amount of help can he expect?

The italicized portions indicate the holes we had tarfill A lemma is italicized if it were
category B or C (had a significant impact on the fdization), and if it “should have been”
included.

Proof Checking12

Name Category Should be In library?
in?
Axiom of excluded-middle A yes yes
Axiom of choice A yes yes
Definition of union A yes yes
Definition of subset A yes yes
Definition of power set A yes yes
Membership is compatiblén(part_comp_|) A yes yes
A [JB and B[/A impliesA =B B yes yes
Subset of empty set is empty A yes no
Nonempty iff contains an element B yes no
Set equality is transitiverfans) A yes yes
Natural number addition is commutative A yes yes
Natural number addition is associative A yes yes
Natural number addition is compatible A yes no
Natural number is positive implies predecessor A yes yes
Conversion of type (full) B yes yes
(seq_set_n_element_subset)
Conversion of type (full) for finite set B yes no
Table 1.3.1. Lemmas of basic set theory.
Name Category Should be in? |n library?
Cardinality definition B yes yes
Cardinality is zero iff empty B yes yes
Cardinality is uniqguetas_n_elements_inj) C yes yes
Cardinality is same implies bijection B yes no
Cardinality decremented by removing an element B yes no
Cardinality of subset is not greater C yes yes
Map constructed from function definition C yes yes
(Build_Map)
Map restricted to subset of domain B yes yes
Map is injective implies it has inverse B yes no
Map composition definition B yes yes
Map exists of set onto subset C yes no
Inclusion-exclusion principle C yes no
Sum of a sequence definition B yes no
Sum of a sequence is compatible B yes yes
Sum of a constant sequence equals multiplication B no O n
Sum of a sequence with one element changed B yes no*
Sum of a sequence ignores zeroes B yes yes
(sum_omit_zeroes)
Pairwise disjoint definition A yes no
Pairwise disjoint implies cardinality of unionis summ B yes no

Proof Checkingl3

Name

Partition definition

Partition union incremented by adding element
Sequence element has an index

Sequence elements have index after a removal
Conversion of type (range of sequence) (set)
Conversion of type (same length)
(cast_doesn't_change)

Change an element of a sequence definition
(modify_seq)

Change an element is compatible

Change an element can be undone

Change an element affects headdify_hd_hd)
Change an element affects tailogify_hd_tl)
Change an element affects only that index
(modify_seq_modifies_one_elt)

Head tail definition

Head of a sequence in range of sequence

Head not equal to and injective means element in
Remove an element maintains injectivity
(omit_preserves_distinct)

Remove an element and injective means entirely
removed

Remove head leaves sequersegt(to_seq)
Remove head means elements that remain are in
Remove an element means range is subset
(omit_seq_in_seq_set)

Finite-domain map has finite range

Finite set has bijection with some natural number

Category
B
B
A
C

B
C
C

A

B
A
B
B

B
A
tail B
C
C
B
tal B
B
C
C

Should be in?

yes
no
yes
yes
yes
yes

yes

yes
yes

yes

yes

yes

yes
yes
yes
yes

yes
yes
yes

yes

yes
yes

In library?

no
no
yes
yes
yes
yes

yes

yes
yes

yes

yes

yes

yes
no
no

yes

yes
yes
no

yes

no
no

Table 1.3.2. Lemmas related to sequences and caiginal

*How changing one element of a sequence of natural nurd@ngied the sum of the sequence was proved as
sum_modify , but since it was defined to work on elementstaflian_Group
we had to write a simpler version specifically for seqasrofNat .

, and cardinality was defined dtat ,

Proof Checkingl4

Name Category Should be in? |n library?
Left action definition A no no
Left action compatible A no no
Left action regular B no no
Group operation definition C yes yes
Group operation associative A yes yes
Group operation identity A yes yes
Group inverse property A yes yes
Definition of orbit A no no
Definition of stabilizer A no no
Definition of H(x) A no no
Union of H(X)s O G B no no

G O union ofH(X)s B no no
H(x) « stabilizer in stabilizer B no no

Table 1.3.3. Lemmas directly related to the orlab#izer theorem.

Category of lemma Total number Number already Percentage already
done done
B 26 15 58%
C 13 9 69%

Table 1.3.4. Estimate of amount of work done by theuibr

100%-
90%-+
80%-+
70%-+
60%-
50%-+
40%-
30%-+
20%-+
10%-+

0%-

NN N

Medium difficulty

High difficulty

Figure 1.3.1. Percentage of lemmas already completdtebiptary.

My personal impression was that | was very satisfigl the Pottier-Stein library in terms of
which lemmas were provided to me, especially dealing witjusnces. The slightly lower
percentage of medium difficulty lemmas which had beenpdeted for me reflects the toolbox

philosophy of library construction, where a minimumerhmas are actually completed, making

Proof Checkingl5

it easier for a new user to browse the library ancagggneral feel for the material it covers.
Lemmas are building blocks of theorems, rather thaabdates meant to instantly satisfy many
similar cases. The analogy would be a library ofdbsiix file commands likéopen() ,

fseek() ,fread() ,fwrite() , and such, rather th&ompress() |, freadfirsthalf() , Or
fseparatefileintopieces()

Again, real-world considerations mean that one canrmdiyrexpect a library to satisfy over 90%
of the “high difficulty” lemmas of a proof immediatelgr even provide a good percentage of the
building blocks that would make this high difficulty lemmeg| more like a medium difficulty

one. Ifit did, it might mean that one’s theorenmswaarly already proven, and as proof
formalizers we naturally direct our attention towdrddrems which have not been addressed yet.
The only theorem which | was a little disappointed hadoeen included was the inclusion-
exclusion principle, or a simplified version of it (weed the simplification of only working on
partitions). However, again | note that this libravgudsed on linear algebra.

1.4. One difficulty for a new user of Coq: inability tolook at old proofs for
hints

A large portion of the work for a new Coq user is learnimgldasic strategies of attack to a goal.
Some of these come very quickly, for example, figudngthatelim is the proper tactic to use
to “instantiate” a variable locked up in exists hypothesis. This is a basic tool and would
appear in Chapter 1 or 2 of a Coq textbook. However,nergé the process of finding these
basic strategies of attack is usually through trial arat erfrom essentially copying and pasting
the strategies used by other proof authors in published work.

One example is when | was trying to define the orb# pdintp in a setS | had invoked
Build_Predicate (the operator for defining nemredicate s) and now the goal was reduced to
“pred_compatible [something].” | did not know what that term meant owtio prove it. But |
was well-versed enough in Coq to know about the usefutfesgold . So that was my first
idea, and Linfold edpred_compatible . That produced a new goal of the forewists g,
[something].” At the time I did not know how to solvestigioal either. | knew | wanted to
explain to Coq, “Yes, | have an elemgrthat satisfies what you want,” but did not know the
command to say that. So what was | left with? The-mnored strategy of going to others’
work for hints.

In the end, | found the proper tactic by manually typingtbe proofs of some other simple
Predicate S,empty andfull , defined by Dr. Pottier himself in the very Algebra lilyraf his |
was learning how to use. But this was after some brgni.v files and more or less random
selection of existing proofs to try and manually typefoumyself: a clumsy way of looking for
help. The problem is that there is no way, from biogvany number ok files, to know when
in a particular proof the user was actually faced wigoa of the form éxists [something]”!

Proof Checkingl6

This is unique to Coq, because Coq proofs have the goal “inVisibédl times. A proof in Coq

is a sequence of commands to the interpreter, with nomafdon about what the environment
looks like at each step in the sequence (Wiedijk, 1999, p.M&gar, on the other hand, does not
use this interactive style. Statements are assereetlyoane, each a refinement of the previous
one, until the final statement which is the theoresalft It is thus easy to do a text search of
Mizar files to find a similar quandary to one’s currsittiation, and then see exactly what a more
experienced user did in that situation.

One solution would be to have a command-line utility tlwgs whatogc (the command-line

Coqg compiler) does, but even more. It would compileptio®fs in av file, but at each step,
save a snapshot of what the goal looked like at that tiileen it would simply output all this
data to another text file. Of course, the result woelthdge, but if it is feasible to have an entire
library, or useful section of library, snapshottedhis way, one would be able to text search the
result a 1a Mizar.

Instead of text search, it may be possible to autoaiBtipattern-match one’s current goal
against one of these huge text files. ae tactic itself is a pattern-matcher, so this would be
more or less an extensionaio applied to a very large “library” of goals to match agains
However, this has the same concern as any otherpatiching algorithm: exponential
running speed.

Rather than get too fancy, why not let the human wetanrsome of the work. If the text search
adopted the simple criterion of “match two keywords jnguoal in any order,” the text search
would return perhaps a few hundred results, but the uset filbed out the useful results by
inspection fairly quickly. For example, if the usecdd the goal af_part (subtype_elt a)

A, she could search on the two keyworrdsart andsubtype_elt . She would mentally toss
out results such asibtype eltx ="y Ain_part b B and zero in on a true match. This
kind of search is already possible withp and similar utilities.

1.5. Strict typing in Coq leads to library incompatibility

As | surveyed the database of user-supplied libraries angared them with the growing
“standard library” produced by the official Coq designerstriick me that most user-supplied
Coq libraries were already obsolete in the senseiafjlcompatible with the Coq standard
library.

Coq has a centralized standard library overseen by tigndes of Coq itself. Throughout
Coqg’s history, each revision has added significant portmmisis standard library. For example,
the most recent revision from 8.0 to 8.1 added finiteamddists. The Pottier-Stein library is
now incompatible with the current standard library. firdel its own concepts @fedicate s,

Proof Checkingl7

Setoid S, andseqs as a necessary foundation. The Coq standard libndyyecently added
Ensemble s and sequencebSetList S) to serve essentially the same purpose.

For another example, the extensive C-CoRN (the Qariste Coq Repository at Nijmegen)
library, which includes a formalization of the Fundata¢iheorem of Calculus, built its own
notion of setoids¢Setoid s, from the ground up. A user wishing to use C-CoRN'’s s&ienf
the Fundamental Theorem of Calculus in verifying andtfteorem would either have to rewrite
C-CoRN'’s work in terms afnsemble s or avoid using other user-supplied libraries not already
based on C-CoRN’'ssetoid foundations. Because most Coq formalizations, navérsion
8.1 has been released, will now be based on theEnsamble s, in some sense C-CoRN’s
formalization has been made obsolete.

All proof verification programs face this issue, but @sgecially so. Coq is fundamentally
abstract, being based on the Calculus of Inductive Cotistnac The building blocks areop s
andsets. One can build practically anything from these buildilogks; set theory is merely
one use of this foundation. Since a proof in Coq is éisdigrequating a very complex type with
the typeTrue , equality must be defined for many, many differéypes. For example, in Pottier-
Stein, there is the concept of a set®@nd the setoigull S) . (full S) is the “full” subset

of S, the entire ses. However, they have different, incompatible types (Wwhatever typs
happens to be in the current context, mand has typepart_setS , or “subset o8”), and

one cannot even pose the question “Ddegual (ull S)?” because of that. The C-CoRN
developers noticed a similar problem when defining them @undations, and as a result
bounced between defining their set theory foundationseirrbp domain, then defining them in
theset domain, and finally settling on a hybrid (Karrmann, 2005, p8ra.

Another example | personally encountered was the twodlizations of the cardinality concept:
cardinal in Dr. Loic Pottier’'s Algebra section ands_n_elements in Jasper Stein’s Linear
Algebra section. Although Mr. Stein built his LineaigAbra section on top of the Algebra
section, he found Dr. Pottiertardinal definition inadequate, being a resident of bhep
domain with no connection to concretet s. He definedhas_n_elements to contain arexists
statement from which one could “instantiate” a bijectietween the natural numbeand the
set with cardinalityn. Because his definition required the definition ofratdi ordinal {in n),
which did not exist in the Algebra library, the lemmeferring tocardinal could not be used
with statements involvingas_n_elements . | had formalized some work using a lemma from
the Algebra library calledardinal_image_injective . When | later switched over to
has_n_elements , to make use of some of Mr. Stein’s lemmas theradlth write a new version
of cardinal_image_injective , as well as adapt all the work | had done that had
cardinal_image_injective as a basis.

Mizar, in contrast, assumes from the start thaisexs are only interested in ZF set theory with
the axiom of choice (Wiedijk, 1999, p. 8). Since itstfirelease in 1975, the Mizar designers
have not changed this assumption (Matuszewski & Rudnicki, 20@j, It permits only
specific avenues of defining new terms or capabilitdefitions and clusters, primarily.

This restriction of viewpoint allows a simpler typimarmework (only one notion of equality)
and promotes interlibrary compatibility.

Proof Checkingl8

In closing, the writer of a Coq library must stay abted the latest news in the Coq community
to know which libraries to use as his foundation. Just becatiseorem has been proved using
somelibrary does not mean that theorem is conquered fowkimde proof verification
community: it will only be useful as long as the libesrused to prove it remain in use.

1.6. Interface concerns

We describe issues we faced with the Coq interfacenasvaiser.

1.6.1. Quotations

One small issue that nonetheless led to the losgobd deal of work was when at one point |
thought | had actually crashed the Coq interpreter.elnsd to be “dead” and would not execute
commands or print error messages no matter what | typleasically saw:

proof_name <

proof name < aaa
proof name <a
proof_name <.
proof name <. a. a.

Figure 1.6.1.1. Dead interpreter?

Eventually | resigned myself to restarting the Coq in&tear losing my work for this session
(Cog work is not saved until a proof is completely closi°ther by “giving up” by admitting
it as an axiom or successfully completing it). It vi@en that Coq printeSyntax error:
Unterminated string as | returned to DOS. Perhaps Coq could display a primmpflect that
one is currently inside a quote, especially as | waswatethat Coq recognized quotation
marks and used them for anything.

1.6.2. Refolding‘>False ”

unfold is @ common and useful tactic, el is more mysterious. Sometimes it undoes an
unfold and sometimes it does nothing. One of the cases imltig caused trouble was when

| defined a lemma with the notatienthe shorthand for-*False .” When faced with a goal of
False (proof by contradiction), one can only apply a hypothéwsis énds in->False ,” SO most
lemmas must have their™ unfold ed before they can be used. Unfortunately, the process do

Proof Checking19

not work in reverse, so | had to rewrite my lemmarifolded form. Had | been a library writer,
this might have meant breaking the work of previous usemsy library.

1.6.3. Operator precedence

When usingmin, the keyword for taking thgoup_inverse of an element, | was surprised to
find that it had a lower precedence than the group operatiéhile this is an issue for the library
writer, not the designers of Coq, it nonetheless canetb have to back up and redo the
simplification of a long expression because | couldatt@mpt to apply the group inverse
property ‘miny +'y =' (monoid_unit G) " (more commonlyy™ ¢y = 1) until | had reduced
the lengthy expressiditouple y(f (couple(min y +' subtype_elt h")p))) =

f(couple y p) down to this final fact. This is a consequence of tbefdoy-reduction style of
formalization in Coq, where the user reduces the fo@hplex goal to trivial statements, rather
than introducing many simple statements and tying theetier to build up to a complex goal
(Wiedijk, 1999, p. 14). At any rate, only at the very erad Wable to see that | was trying to
prove a false facty(sy) * = 1, thus the need to restart.

This is fundamental to the design of Coq, however, atairot think it is worth adding a new
feature just to deal with this. A user simply shouldaby@re of this fact and check the
precedence of operators in his expressions before embanksighplifying a complex
expression. However, one feature worth adding to Cdoubald lower the chances of running
into this pitfall (among others) is the idea of a spomt.

1.6.4. Save points

If there were one single user-interface feature Iccadd to Coq, it would be the ability to create
a save point. A save point would be the current locatiothe Coq command stack plus a
snapshot of the current Coq global environment (exteenahs andAxiom s temporarily added
to the environment). It might be a surprise to a hon-Cogthaethe command-line interpreter
does not have this ability, but in fact the usual modepefation is to complete the entire proof
of a lemma before Coq will return the entire “sourcde’ of the proof, the list of commands to
the interpreter that make up the proof, at which poinuti®e can copy and paste that output to
a.v file for saving. A save point would give the user the pedeeind to experiment, by for
example assuming facts temporarily to jump ahead tteagaint in the proof, to test whether
the current path one is thinking of really does lead taltmate goal. After verifying this, the
user could then undo everything back to that save poinfa@ndorry about erroneously
assumed facts or temporary variables floating around.

This feature would also avoid the problem of formalizatibas are too large for the window
buffer. There were times | had to redo entire sestwf proof because the top portion of my
work scrolled off the edge of the DOS window when | wase. (Coq’s formatting of user
commands adds many carriage returns.)

Proof Checking20

It would also help in situations like the following. @we time | was working on a lemma
dealing with removing an element from a sequence. Tharetwe nested excluded-middle
cases, so | had to prove a certain fact for four iiffecases:

k =i 0 K #i

(F(v K)=F(v 1)) O (F(v k)#F(v i)) (F(v K)=F(v i) 0O (F(v
k) #F(v 1))
proof proof | proof | proof

Figure 1.5.4.1. Four similar cases as part of one proof

However, it turned out that two of these four casedsdaaitally identical proofs! Unfortunately,
since | had no way to look at previous work, | had to fegay through the argument from
scratch again.

One may ask why not simply keep a record of one’s wirk the beginning of the proof in a
separate text editor as one works simultaneously in tiee Giig window. The problem is that
using CoqQ’s interactive commands is often exploratamng one types a rapid succession of
commands just to see if a particular branch of arguméinivork. Frequently one goes down
several paths and musitdo away wrong paths before finding one that actually worked.
makes it tedious to keep a copy of the current stack by hand.

2. The orbit-stabilizer theorem in Mizar

| undertook this formalization simultaneously with theg@ormalization, by interleaving my
work on this theorem in the two systems.

2.1. Breakdown of formalization time

We do a breakdown of the total time spent on formaliznegatrbit-stabilizer theorem in Mizar
similar to the previous Coq analysis. This formalizatiook about four and a half weeks,
working two to three hours on average a day. As with Cbgg had some experience with

Proof Checking21

Mizar already before starting on the finite orbit-stiabr theorem. | had formalized the
statement that the limit o$iy X)/x asx approaches 0 is equal to 1. From that exercise,riddar
how to write a basic Mizar file, compile it, and indé files from the Mizar library, the MML.
(Because Mizar user-defined libraries, although writteditigrent authors, usually are good
about building off the same foundations, one comes to theWwIML as a single unit.) | learned
the systematic, step-by-step style of Mizar formaitirest, but none of the advanced features like
defining one’s own terms, or even how to do proofs by indaair contradiction.

The categories are mostly the same as those for thpdo@ualization. In any case, the intent is
the same: to distinguish the time spent on learning Mirmdrthe time spent on necessary work
that even expert Mizar users must do (familiarizing dhesgh new theorems and terminology,
and the actual typing out of all the proof steps). Ttegories have similar general intents and
meanings to the Coq categories. The “actual formaliziagggory is the rote work of typing in
steps and fixing common syntax errors. As in Coqr aftehile this work does not need much
real thought, and has the potential for computer optimzaior automation. “Learning syntax
by trial and error” in large part refers to the procdassong an example from a user-defined
library as a guide for the first time one has to useva piece of Mizar syntax, for example, how
to define a new term referring to the left action of augron a set and its properties of identity
and associativity.

2.1.1. The environment category

One difference from the Coq division of labor, as rieerdd before, is the lack of a category
related to learning the Coq tactics. Another is thetmxidof a category specifically related to
the Mizar environment.

Although fixing errors related to the Mizar environment —idwbularies , notations
constructors , registrations , requirements , definitions , theorems , andschemes lists at
the top of every Mizar file — could be grouped under rote &timation time, or seen as part of
learning new user libraries, | feel it deserves its oategory. Even after working with the
environment for a long time, | still do not know how it weF | simply know some strategies
for fixing the errors that appear whenever | import netindens. In Dr. Wiedijk’s Mizar
tutorial Writing a Mizar article in nine easy stephe section on the environment is the second
longest section, taking ten of the paper’s fifty-four pages

2.1.2. Judgment calls and categorization

Although I took careful notes as | proceeded with the &ization, going back and classifying
all my work as falling into one category or another atathé required some judgment calls.
Suppose | go to use a new term from the MMtegral (the Lebesgue integral defined on
simple measurable functions), and get the familie@ typing error. {103 means Mizar did not
recognize the functor, which often means one is suppth@gvrong types of arguments to a

Proof Checking22

functor keyword.) | solve the error without too muchidifity by carefully testing the types of
each argument to thetegral term to narrow down which argument causes the errorthemnd
finding out what type ishouldhave (by checking the original definition) and adding stegsst
that argument to the needed type. Do | classify thedtadormalization, or as part of learning
the newintegral term (which would then contribute to the time tallied doavlearning the
MML)? | actually decided to classify these sorts oivétads as rote formalization and not
related to the MML, and here is why. The above p®uess arrived at through experience.
With the additional step of, if the types of all argutsenirn out to be correct, merging the
relevant MML file’'s environment with my own to ensuratkhe proper MML files are named in
the proper places for use of this term, the processs8B8% of103 and*102 errorsin a
reliable and systematic way.

So for the purposes of differentiating between rote wdr&re | do not learn anything new about

Mizar and exercises and experiences that force marno #mmething new that | have never
encountered before, the aforementioned process cfalislyn the first category.

2.1.3. Results

Now let us look at the observed time breakdown foiothé-stabilizer theorem in Mizar.

Category of work Approximate work Percentage of total

(hrs.) work

Learning Mizar syntax by trial and error 14 16%

Searching libraries for examples of new 8 8%

syntax

Familiarizing with user-defined libraries 16 18%

Searching for existence of terms or 11 13%

theorems

Actual formalizing 26 30%

Fixing the Mizar environment 4 4%

Logically planning out the proof itself 10 12%

Table 2.1.3.1. Breakdown of formalization time in Miza

One interesting point is that | spent a significant ama@f time (13%) simply searching the
MML to see if a term or theorem is defined already. Agsince searching the internet for hints
on what has been defined in the MML does not yield munehbést method gep search with

a dash of creativity, done over the whole MML (Wiedii®99, p. 33). In searching for a
theorem that says “the subset of a finite setnisefi” one might search the whole MML for the
stringA c=Bimplies , and if that fails, check if there is an actual keyavoite that an

author may have used to write his theorems about fieige As a last resort, one can simply
scroll through the entire MML file list, pick out goedndidate files based on their eight-digit

Proof Checking23

DOS name (hereARD_FINseems good), and browse them from top to bottom, lo@kiagd
interpreting theorem statements and definitions manually

Searching for examples of Mizar syntax, on the othed heam be a bit trickier. When | was
looking for an example of how to define a new operatiba left action of a group on a set, there
was not an exact Mizar keyword | could search for dié@e_binary_operator . Eventually |
realized that the normal binary operation on groupd igalild be a good model: a binary
operator from a group to itself, with the properties ofitigan identity element and associativity,
was pretty similar. For ideas on how to make the djperéake operands of two different sets
(as the left action does, while the group operation doBd could go to a familiar operation that
works on two different sets: raising a real number tataral number power. (In this case, as
often, a definition | had seen in passing while lookingstameother definition or theorem many
days ago would come to mind, and be of use, later.)

Now we take a simplified look at the division betweles three categories of work, that is, the
work to learn Mizar itself, the work to familiarizemeself with a new section of the MML, and
the rote formalization work:

50

45

40

35+

30+

25 4
20+
15 +
10 +

SN N

Learning Mizar Learning Library Formalization
Figure 2.1.3.1. Simplified breakdown of Mizar formaliaattime.

This is a relative graph, of course, and does not mednhé pure formalization aspect is more
time-consuming in Mizar than in Coqg. This graph simeljects that Mizar has a more limited,
simpler syntax than Coqg. The number of “general categ’ of syntax and techniques one
needs to learn to use Mizar feels more limited and geatfsle. Besides very basic syntax like
ending statements with semicolons, surrounding all pre@fsproof andend brackets, and the
mizar_file theorem_numbesyntax for citing a theorem, the major techniques opdsto learn
are few. Important ones are thgfunc keyword for defining an “out of the set theory”
function, theFunction keyword for defining a function “in the underlying set thediWiedijk,
1999, p. 4), and the proper structuring of proofs by induction antadiction (mostly getting
one’sends to line up with one’per cases andlet blocks). Coq, by contrast, has the feeling of
great depth. After struggling with a new concept in Caxyylsl gaining a working

understanding of it, and finally applying it, it often seentet that only opened a new door to a

Proof Checking24

new, equally difficult, concept, that | could not evenibeg work with until mastering the
previous layer.

Although this is a subjective criterion, it speaks todlfieculty of learning Coq on one’s own
that | sought help from real users of the Coq systeseoaral occasions: seven to be exact, by
requesting help through email, mailing lists, and forumisept this a last resort to keep my
experience of the two systems as uniform as possibléepetl had no choice. In each of these
cases, | literally felt that | could not progress onawmyn without external human help in
answering a particularly confusing error message or roadbdtetied to the underlying theory of
Cog. At least, | could not figure it out without spendamgindeterminate amount of time. With
Mizar, although there were several tricky problems invgj\syntax and the environment, the
available papers, internet searches, and trial anderenmtually produced a solution.

A further way the simplicity of Mizar syntax helpsthew user is shown in my experience of
one of the most tricky parts of Coq, thethen construction. Unable to find information about
others’ experience with this piece of syntax, and unabligure it out on my own, | had to start
emailing people for help. The problem was that evereifethvere some help online for this
construction, | would not find it because of the commayali the words “if* and “then.” With
Mizar, although | would too have difficulty trying to find pdbr theif -otherwise

construction fodeffunc , Mizar syntax is deducible enough that | would eventualglble to
figure it out by trial and error and deduction. This is austicrocosm of the continual difference
in syntax difficulty | find in Coq and Mizar, and itsrtgequences.

Perhaps the highest-level comparison of interest welgas the total time spent on each
formalization of this same theorem. We can look &tbim the perspective of a new user, who
takes into account time spent on learning the Coq and Byastems themselves, and from an
expert user with and without the benefit of being familéh the relevant user-defined libraries.

2001

150+

1001 O Hours

B Days

50

Coq Mizar

Figure 2.1.3.2. Formalization time in Coq and Mizar (ueer).

Proof Checking25

200 200
150+ 150+
100¢] [@Hours] 1001 [@Hours |
il So.jll
0+ 0+
Coq Mizar Coq Mizar
Without knowledge of external library With knowledge of external library

Figure 2.1.3.3. Formalization time in Coq and Mizar (exqmeréd user).

When we attempt to separate out just the formalizatspect, the time difference between Coq
and Mizar narrows. The experience of the rote forraatin portion is again very different
between the two, and the perceived difficulty in Colgjgder, but in the end the two systems are
comparable.

2.2. Estimation of amount of work done by the Mizar MML

We estimate the proportion of work done by the MMML in the same way we did for the Coq
user-supplied libraries, with the same general classific of lemma difficulty. However, what
made a particular lemma difficult was slightly ditet in the Coq world than in the Mizar one.

In Coq, difficulty usually stemmed from the extremehyweldy and complex expressions that
would unfold, and some rather art-like tactics of dealing tiem. In Mizar, most of the

difficulty was due to learning the syntax, as many proeésred to go down to the nuts and

bolts of the definition, no matter how many help&rimas were applied to simplify the task.

Yet the exercise of sorting out all the details tessage one’s hypothesis and assumed variables
into the exact form desired by the Mizar theorem wagsertime-consuming than mentally

taxing; proving a difficult Coq lemma was more the othay around.

Proof Checking26

Name Category Should be in? |n library?
Definition of union A yes yes
Definition of subsetTARSKI:def 2) A yes yes
Definition of power settool) A yes yes
Definition of family of subsets A yes yes
Function exists for any coherent operation C yes yes
(BINOP_1:sch 3)

Function composed with identity function is the | A yes yes
function FUNCT_1:38)

Set has zero elements iff empKBOOLE_0:def1) | A yes yes
Set defined by a function; all elements have B yes no
preimage

A [7B and B/7A implies A = BXBOOLE_0:def B yes yes
10)

Subset of a finite set is finitRINSET_1:13) C yes yes
Natural number is greater than or equal to zero A yes s ye
Natural number exponentiation definition B yes yes
Natural number raised to zero power is one A yes yes
Real number inequality preserved by addition | A yes yes
(XREAL_1:8,10)

Real number multiplied by zero is zero A yes yes

Table 2.2.1. Lemmas of basic set theory.

Proof Checking27

Name Category Should be in? |n library?
Equipotent definition A yes yes
Equipotent sets have a bijection between them | B yes no*
(WELLORD2:def 4)

Identity map is bijection B yes yes
Cardinality definition B yes yes
Cardinality of set and the set are equipotent B yes yes
Cardinality of finite cardinal is the cardinal B yes no
Cardinality is natural number for finite set B yes yes
(CARD_4:4)

Cardinality of natural number is the natural B yes yes
number

Cardinality finite for natural number B yes yes
Cardinality is positive iff nonempty A yes no
Cardinality greater than one implies two distinct | C no no
elements

Sequence definition B yes yes
Sequence length equivalent to doma&@oLER_1:1) | B yes yes
Sequence length greater than natural number | B yes yes
implies in domainAFINSQ_1:1)

Sequence implies exists function with domain its| B yes yes
cardinality RLVECT _1:def12)

Sequence exists consisting of +/- C yes yes
Card_lIntersection(k)

Finite number of finite sets’ union is finite C yes yes
Sum definition C yes yes
Sum of sequence of zeroes is zero B yes no*
Sum of constant sequence equals multiplication A yes s ye
Sum of sequence consisting of +/- C yes yes
Card_Intersection(k) equals cardinality of the

union CARD_FIN:67)

Pairwise disjoint definition A yes yes
Pairwise disjoint implies cardinality of intersectionC yes no

is zero

Table 2.2.2. Lemmas relating to cardinality, sums|, pairwise disjointness.

*These theorems were proved in the MML, but in a sigaifity different format. Massaging the variables oncha
and the statement of the existing theorem until thetgimeal was time-consuming enough to be classified as a
difficult lemma.

Proof Checking28

Name Category Should be in? In library?
Left action definition B no no
Left action associativity B no no
Left action identity property B no no
Group operation definition C yes yes
Group operation associative B yes yes
Group operation identity B yes yes
Group inverse property B yes yes
Definition of orbit B no no
Definition of stabilizer B no no
Definition of H(x) B no no
Union of H(x)sO G B no no

G O union of H(x)s B no no
Stabilizerdd G A no no
H(x)s and orbit are equipotent B no no
H(x)s are pairwise disjoint C no no

Table 2.2.3. Lemmas directly related to the orlabiizer theorem.

Again, the italicized lemmas are the ones that coule baen reasonably included in the MML
given that a Mizar article devoted to that area ofhmaiatics exists. We see that Mizar indeed
has a fairly comprehensive database of theorems awikttleast for proving this finite version
of the orbit-stabilizer theorem.

A difference from Coq was that some of the mosidliff portions of a Mizar proof (which were
done for us) were the definitions of new terms, agdesl by the complexity of the code in the
MML. In Coq, the most difficult portions were lemmas.

Category of lemma Total number Number already Percentage already
done done
B 19 15 79%
C 8 7 88%

Table 2.2.4. Estimate of amount of work already comglbtethe MML.

Proof Checking29

100%r
90%-
80%-
70%-
60%-
50%-
40%-
30%-
20%-
10%-

0%-

NN NN N NN

Medium difficulty High difficulty

Figure 2.2.1. Percentage of lemmas already completdelyiML.

It is well-known that Mizar (partially due to being ookthe first theorem verifiers in existence)
has an extensive database of work already compiled iWé stress, however, that this particular
metric, the analysis of the raw number of lemmasaaly proved for us, does have a Mizar bias.
The lack of theorem names or descriptions shifts a fitithe work towardinding the theorem

as opposed to using it, so simply having every theorencaue possibly want is not the end-all.
Also, although it sounds odd to say it, even the longestast difficult of Mizar proofs were

not as mentally taxing as learning the syntax itselfe mbst difficult parts of the entire proof,
subjectively, were learning how to use taeeme functionality (how to create a function object
from a declaration of the computation of that functiandl comprehending the statement of the
inclusion-exclusion principle. So for a novice Mizaeysat least, perhaps having almost all of
the smaller lemmas already proved to him is not his biggesern.

2.3. Analysis
2.3.1. Issues of the Mizar environment

Dr. Wiedijk suggested that “if you are completely mystifby a Mizar typing error, start
thinking ‘cluster’!” (1999, p. 16). Indeed2: Unknown predicate and103: Unknown

functor , two of the most common Mizar compilation errorg aearly always environment-
related. The most effective way to handle these isse théindvoc command-line program to
locate the originating file of that term or keyword @hen simply add that file’s name to various
categories of the environment. If that solves theregreat. Otherwise a more painful merge of
the environment is necessary, which consists of transpy the entire environment — all eight
lists of MML references — of the originating file, rewing duplicates, and seeing if that fixes the

Proof Checking30

problem. Usually it does, and then it is a good idea tovfollp by removing excess
unnecessary files that were added. This is becauseandé@nclusion matters in some
environment directives, especiafiytatons (Wiedijk, 1999, p. 18). | did encounter cases
where | had to reorder or remove extraneous referdrm@senvironment directives to fix errors.

One wonders why Mizar does not adopt the simple packagelmbmodern programming
languages such as Java. Perhaps the complicated envir@systent is needed to keep some
consistencies with the underlying theory of Mizar. Hegreone aspect of the package model
that would benefit Mizar is the concept of prefixing pagkaames.

The issue here is that Mizar supports operator overigadn actual mathematics, one pays little
attention to the “types” of variables, but in Mizas, in most programming languages, types are
paramount. For example, the usual notation for powktizar is|* , and is defined in different
files for natural numbers, real numbers, and complenb@urs. In mathematics one does not
need to worry as much about making sure one’s variablébeaproper types when using the
power operation with them, but in Mizar, of course, bas to have all the types match up for a
proof to compile. This can cause subtle difficultiees Mizar does not identify “which* it is
using in a compilation. Is mynknown functor error occurring because | have not imported the
power operation properly or is it because the typesyofamables are wrong? It would be nice
to be able to writ@eal.|* in a Mizar formalization, and perhaps this should éaforced

upon Mizar proof writers for their own good.

| encountered this problem when trying to appARD_FIN:67, a statement of the inclusion-
exclusion principle by Karol Pak.

theorem Th67:
for Fy be finite-yielding Function,X st dom Fy=X
for XFS be XFinSequence of INT st

dom XFS=card X &
for n st nin dom XFS holds XFS.n=
((-D)|*n)*Card_Intersection(Fy,n+1)

holds

Card union rng Fy= SumXFS

Figure 2.3.1.1. The inclusion-exclusion principléCARD_FIN.MIZ .

In originally attacking the problem, | browsed the MMUearn about this new keywosiim
referred to in the last line of the theorem statemeRt.CY_1.MIZ (a Mizar article by Dr.
Dariusz Surowik about cyclic groups) defines a keyw&andon a structure known as
FinSequence of INT

Proof Checking31

definition let F be FinSequence of INT;
func Sum(F) -> Integer equals

addint $$ F;

coherence;
end;

Figure 2.3.1.2. Definition dbumin GR_CY_1.MIZ.

There are many redefinitions &dmin the MML, so when | saw this oneinSequence looked
close enough t&FinSequence that I did not press on and try to find an exact matssuming
XFinSequence was a subtype ¢finSequence (the statement afARD_FIN:67 indicates that the
argument tcsumis a variable of typ&FinSequence). The two types are not actually related as
far as Mizar is concerned. | spent several hoursviatig this wrong track, delving into the
definitions ofFinSequence and thes$ operator referred to IBR_CY_1s definition ofSum

before | finally came back and tried to apply my reswitghe original theorem, which is when |
found the typing error. If the author OARD_FINhad been able to notataRD_FIN.Sum or
XFinSequence.Sum , to indicate that he was using his own redefinitiothefkeyword, | would
have avoided that red herring.

2.3.2. Theorem location systems

Clearly, agrep search is not the best way to go about finding catlifeorem or definition has
already been proved for us, in either Mizar or Coq.r&lhas already been research into more
sophisticated systems of theorem searching. The Alsgstast for Mizar uses a latent semantic
indexing (LSI) algorithm and has been fairly successfuhidig theorems using a kind of
fuzzy logic. Alcor’s search algorithm returns multipésults based on the structure of the
theorem query, instead of a simple yes or no answearf@xact match (Cairns & Gow, 2006, p.
9). This would be helpful in locating theorems or dé&bms whose name is not universally
agreed on. For example, when searching to see ifwereea Mizar article treating pairwise
disjoint sets, | had to try multiple iterations ottteearch: “empty” cross-referenced with
“intersection,” “pairwise-disjoint,” and “pairwise” dri'disjoint” separately, which eventually
found that Mariusz Giero had defined the concepiwasally-disjoint in TAXONOM2.MIZ

Another example | encountered was when trying to findritheator functions referenced by
Wikipedia in the proof of Markov’s inequality. | looked fgixtensively for the definition of
this concept and did not find it. Later, after having defitree term myself, | was looking for
some other definitions when | happened across a starngeyword, which | realized was
characteristic function, the term that MML writeachused to define the concept of indicator
functions. Characteristic function is a well-knoalternate name for the idea and | should have
known to search for it, but for some reason it did mouo to me during the original search.

A final example wasetSequence S. In this case, there is not even an agreed-upon flaarties
concept, that of numbering the collection of partitioecps of a simple function. | did not think
the concept would have its own term, and the keywostnple_func_in , through which |
found most of the material related to simple fundjadid not reference it. | again found the

Proof Checking32

term by accident while searching for something else, alteady writing the definition of the
concept myself and proving results about it. The idgaafing that a function has a finite
number of possible values by actuafigtantiatingthe finite list of partition pieces themselves is
beyond the interest of normal mathematicians. How, ldsary writer, am | to indicate to
potential users that | have created such a thing, sinceael#ng comments will not help as they
will have no clue how to begin searching for it?

Dr. Michael Beeson suggests a solution based on theektatica® scientific computing
software. Mathematica®’s Help Browser is a menu systerocating theorems (or definitions)
with an intuitive tree structure. Most mathematiciasiilsagree what category a particular
theorem or definition falls in even if they do not agos what to name it, or how exactly to
word its statement. This would help in the cassetdequence or characteristic functions,
because even if the name were unfamiliar to the SE@raser, Help Browser would present the
concept to them incidentally since they are in the nifgnte to see it. The category for
SetSequence S would be simple functions, for example. This kindystem also separates a
library writer from the problem of not being able to pat theorem, definition, or lemma in the
expected MML file because that file is already finadize because she was not the author. That
does happen in Mizar, and as Dr. Wiedijk says, theofeamsbe in unexpected places” as a
result (Wiedijk, 2006b, 33).

E Help Browser H=]

1Integrate Back 1 Hide Categories]

E Built-in Functions Add-ons The Mathematica Book

Getting Started/Demas Other Infarmation Master Index

Formula Manipulstion *
Eqjuation Solving

Integrate j

m Integrate[f, x] ghes the indefinite integral ff dx.
m Integrate[f, {x, s, xmex}] gives the definite integral fm‘”f dx.

wmein

=
=
3
@
=
o
@
[}
o
=
=
5
4= E3
=]
-
»
m
@
7]
o
=
=
@
o
=
o
-

w Integrate[f, {x, mm, mmaxl, {p, ymm, pmar}] gives the noltiple integral
e ax
S 87 fywin 43

o [v 4
Figure 2.3.2.1. Mathematica® Help Browser.

2.3.3. Mizar file documentation

Most Mizar files restrict their comments to littleone than a one line description of the contents
of the file. For exampleREAL_0.MIZ, an invaluable file for any proof involving real numbers,
has the titlentroduction to Arithmetic of Real Numbers at the top, and a single
comment labeling where in the file begin the defimti@fmin & max .

Proof Checking33

Assuming the lack of a more intelligent system for {ogpa particular theorem or definition, a
short title for each theorem and definition would goraglway to both helping a new user get up
to speed on the contents of a file and facilitating segrches. The “central” theorem of a file,
or very well known ones, actually do often have alivepof this sort. For example, Karol Pak
labeled his statement of the inclusion-exclusion priacip

:: The principle of inclusions and the disconnectio ns

theorem Th67:
for Fy be finite-yielding Function,X st dom Fy=X
for XFS be XFinSequence of INT st

dom XFS= card X &
for n st nin dom XFS holds XFS.n=
((-D)|*n)*Card_Intersection(Fy,n+1)

holds

Card union rng Fy=Sum XFS

Figure 2.3.3.1. The inclusion-exclusion principle.

Even a more readable statement hke& B & B is finite implies A is finite
(FINSET_1:13) could benefit from having the descriptidie subset of a finite set is
finte above it.

For complex statements like the inclusion-exclugionciple, once located, the task becomes
then to understand what each part of the statemegfielsing to. A significant part of the
“familiarizing with new terms and theorems” portiontbé work in Table 2.1.3.1 was decoding
the statement of this theorem and learning what eack pieant. The Mizar statement of a
theorem is usually more detailed than the colloquialiweysnd yet each variable usually has a
one or two letter name, due to the need to keep expressiogson one or two lines. | spent
several hours drawing pictures to represent all thedayiijections between cardinalities and
subsets, before | could begin writing any Mizar code involig theorem.

In fact, there were several instances where | guebséa ttertain lemma had already been

proved in the MML, but because proving it myself would beyfagtraightforward, | preferred to
reinvent the wheel instead of assembling text searcltesa@mprehending lemma statements.

3. Formalizing Markov’s inequality in Coq

The other major theorem | formalized in Coq and MizasWarkov’s inequality, which
provides a loose bound on the probability of a randomblartaking on values greater than or

Proof Checking34

equal to some fixed constant. If For a nonnegative randomablef and a real numbex,
Markov’s inequality states that

the probability thaf > @ < _the expected value &f .

a
We do the same analysis of categories for this foraudia.
Category of work Approximate work Percentage of total

(hrs.) work

Learning Coq syntax 8 9%

Experimenting with Coq tactics 10 11%

Browsing the user-supplied library 12 13%

Familiarizing with new structures, terms pf 6 7%

library

Actual formalizing 43 48%

Planning out actual proof strategy 11 12%

Housekeeping (installing and setting up <1 negligible

Coq)

Table 3.1. Breakdown of Coq formalization time.

The major difference from the proof of the orbit-stakeil theorem is the cutting down of time
spent on learning the new library | needed for this proefChq standard library. Although |
was using it for the first time, | used only a small @ort mainly the axioms of and results about
real numbers, and tlEnsemble s section. | used the standard library more oftennasckel for
learning how to write definitions, or ideas for how torkvavith functions and sequences, than a
place from which to take definitions of needed termbis 15 because a large part of the proof of
Markov’s inequalitywaswriting the definitions of the basic terms of Lebesguegrals like
sigma-algebras and simple functions, as the Coq stifideary does not include these.

3.1. Coq file documentation

Coq libraries mostly try to label their theorems wdiscriptive names, and the authors of the C-
CoRN, Paottier-Stein, and Coq standard libraries includeck dwipful comments as well.

Overall, Coq user libraries seem to have a little ndm@imentation in-file than Mizar MML
contributions. This is especially useful for concepthwanonical names. For example, what is
a goodgrep search to find a Mizar lemma stating “for reals x, ¥ and ¥z implies xz,”
knowing that variable names and whitespace may be diffexed the Mizar author may have

Proof Checking35

used thenolds keyword instead afmplies ? In Coq this theorem can be located instantly by
searching for “trans” and picking out the one relatect&isiRIe_trans

For concepts without canonical names, the descriptigrehetitles still help. What | think of
as injective the Pottier-Stein library terdistinct , but when searching the Pottier-Stein library,
all theorems relating to injectivity hadatinct ~ somewhere in the name.

3.2. Library incompatibility

The reason we moved to the Coq standard library fokddés inequality, abandoning the
previous two libraries we learned, was a current problemmtwé& Coq contribution repository.
Even though the C-CoRN library | knew had deep support foneeabers, and the Pottier-Stein
library had definitions and support for the basic conceptsuld use to build measure theory
and Lebesgue integrals, including sequences, functions, aridgpectlieatment of subsets, |
ultimately could not use any portion of either in myrkvo

To do measure theory, | needed a formulation of therwgabers (usually measure theory is
defined using the extended reals; however, since we wasideoing Markov's inequality as it
applied to probability spaces, the normal reals would 8oj}tier-Stein does not treat reals at all.
On the other hand, C-CoRN lacks the notion of predisabsets, which allows one to define
countably infinite collections of sets, a concept neddeatkfine sigma-algebras, in a natural way.
(In a predicate subset foundation, a subset is impldéfined by a predicate that acts like a
filter; the sets that pass through the filter, from dhiginal set, comprise the intended subset.) |
could not see a clean way to do this with C-CoRD&stoid -based class hierarchy. In other
words, both libraries lacked one essential piece. Twestandard library has good support for
predicate subsets in iEsemble s files as well as a treatment of reals. | alsticed that it has

the Riemann integral defined, which would be useful as a Ifmdeow to define the Lebesgue
integral later. But this would still mean learning atirety new library.

The unfortunate part was that | could not simply pulltbatpredicate subset portion of Pottier-
Stein and the real number portion of C-CoRN. | needdthveonelibrary which had support

for both concepts, because of the incompatibility ahddrary’s foundations. As mentioned
before, each of these three libraries build their d@afions for set theory (setoids and how to
create subsets) from the ground 8gtoid versusCSetoid versusEnsemble . Trying to

combine theorems from different ones would be like tryingrite a program in C and asking if

| could pick a few of my favorite functions from a Jgpackage, and a few from a Visual Basic
library. It just does not work; I have to start in @hwvhat support there is for what | need to do,
and write the whole program based on that.

Proof Checking36

3.3. Finding out which axioms we’ve used

One of the main strengths of Coq, and one of its inapbdifferences from Mizar, is its abstract
foundation. Mizar has a broad scope in starting frénsét theory, but Coq goes one level more
abstract by beginning with only the most fundamental ruidéissb-order logic, set theory being
just one application of this foundation. An advantaggnisfis being able to do things like either
assume the axiom of choice or not. One simply chdosesoke the axiom of choice in one’s
proofs or not, through a variety of formulations ldteice , constructive_choice , and
constructive_definite_description . The only issue is that it is not easy to figure olémv
looking at others’ results and theorems, whether othegtused the axiom of choice. To know
for sure, one would have to recursively backtrace evergnker theorem used in a particular
proof, searching for any use of one of the axiom of cheigeny formulations.

This problem, from the standpoint of the design of Cognisasy one to fix. Coq needs a utility
that will step through an entire proof and run tree recarsn theorem calls all the way down to
component axioms, and see if any of them are a forimecdixiom of choice. This process could
even assemble the complete list of axioms the thedegrands on. This process may actually
tie into CoQ’s normal compilation algorithm in a natuwaly.

3.4. Coq is more difficult to read

One of the realizations that came to me after thaddization of Markov’s inequality in Coq
was the striking difference between Coq expressiondvaral syntax: how differently
expressions written in these two systems “read.”

The Calculus of Inductive Constructions’ idea of prooftypes has something in common with
the programming language Lisp: rapid growth of nested pare@a@hexpressions, though the
mechanism is different. Let me give an example.

Consider a sigma-algebraa “nice” family of subsets of the universe getNow, in Coq, if we
want to say that a setis an element of, Elementof F in Mizar parlance, we do this by
simply supplying a little proof thatis inF: probably trivial or assumed as a hypothesis, but
necessary to have explicitly named. Suddenly the bas become a pair,{) wheret' is the
proof thatt is indeed irF, and now that pair can be thought of as the setit tagged as type
Elementof F . Now consider a subset of the sigma-algébralledT. (This is a common setup
in many of the lemmas | wrote during Markov’s inequalit$9T is also a family of subsets of
the universe; in fact, T is a subset of our sigma-algebraxoknown as=. Now consider our set
t fromF again; only this time, we even know tha inT, not just inF. So once again, the pair
(t,t) wheret is now the proof that is inT, can be thought of as a variable whose value is
but has typ&lement of T

Proof Checking37

Now, suppose | am moving along in a proof, proving various thibgata, and | come to a
point where | want to use some theorem that appliegtorants of typ&lementof F ; that is,
this theorem is generally meant to be used on elemétiie sigma-algebra. Well, in Mizar
thinking, or object-oriented programming language thinking ifréfaeler prefers, sinceis a
“parent” of T, then obviously it is inT then tis inF! Should we even have to tell Coq this?
Well, in Mizar or most OOP languages one does not, inarst in Coq. Moreover, the proof
thatt is inT, which wedo have at the moment, has no obvious way to be “conveiriemla
proof thatt is inF, at least not a nice looking way.

The only way is to create a “proof converter theorémat takes a proof that something igjn
and outputs a proof that that thing isFinIn the end, the exact Coq syntax one h&@s is) ,
whereT’ is the proof converter, and this triplet is the proof thia inF. Then, to get the actual
itemt “cast” to typeElementof F , we havet(,(T' tt)). That is, we have the original set
accompanied by a proof thais inF. Any element of cast to typ&lementof F will look
similar: s,(T'ss))or (v, (T'vv)).

This is the most direct and proper way to do a type naSoq. Itis a consequence of the highly
structured and exact nature of the Coq proof verifier i@pdobably the single biggest culprit in

making Coq expressions (and thus, the interactive Coq prooéss) difficult to read and follow
for humans.

3.4.1. A more detailed example

For another, more detailed example of this phenomenbous leok at what happened later in
Markov’s inequality. One step in the proof required me tovsihat for a constart,

cxintegral of indicator functior= integral of (Cxindicator functior).

My statement of this fact in Coq:

forall(c:R)(c:0<c),lebint s uuu"u" "n(fun i

nat=>v i*c)w (simple_P9 _nvw SO S1 S2 S3 c ¢')(simple_P10 _n

vw S0 S1S2S3cc)(simple P11 nvwS0S1S2S 3cc)(
simple_P12 _nvw S0 S1S2 S3cc')(simple_P13 _ _ FF"F"
nvwS0S1S2S3Mcc)EE'=

c*lebint s uu'u"u"nvwS0S1S2S3MEE)% R.

Figure 3.4.1.1. Formulation of a property of Lebesgue iiateg

The bold portion of the lemma is somewhat decipherabteeasserted factkebint_s is the
Lebesgue integral for a simple functionis the finite sequence representing the list of possible
range values, andis the associated list of partition pieces. Th@tley expressionsimple_P9
throughsimple_P13 are what | did not realize | needed until actuallyrgittiiown to write this
statement. They are proof converter lemmas, sayingrthiiplying a simple measurable

Proof Checking38

function by a constant still preserves the four qualiftms for a function to be simple and the
one description that says a function is measurablethkr words, these long expressions
popped in unexpectedly — when | thought | would be writing Birastatement about a constant
and a Lebesgue integral, | failed to see that | would teettlude lengthy expressions related
to proper typing of arguments.

Imagine what would happen if writing otlitoselemmas necessitated filling in the blanks of
more expressions as we broke each hypothesis downcnifzonent basic assumptions, and
having to verify each one in turn. This cascade of egfres is, again, the mechanism by which
Coq expressions quickly become very large. It happeagteater degree when one enters the
interactive proof of a theorem and begins to unfold thmwa definitions in the statement to
prove and use facts about them. Anyone who uses Cagiontrivial application runs into
unmanageably large expressions. Figuring out how to do anythingh&se is one of the most
difficult hurdles to overcome in learning how to use C{Qne way to deal with this issue is by
going aroundhese large expressions, stepping out of the curteatisn and defining helper
lemmas that simplify pieces of the expression unisl whittled down to a manageable size, at
which point one can proceed with the original proof.)

Mizar, like a structured programming language, can hold irdtiom about current variables and
types invisibly in the current environment or scope and avgdsherating large expressions that
in a sense try to include the whole environment withimgelves. However, this is because
Mizar does not seek to support the more powerful and funataimdea of proofs as types in the
Calculus of Inductive Constructions.

3.4.2. Implicit arguments

Coq actually does have an attempt at a solution foetlaege expressions, implicit arguments.
After interacting with it, | feel that this is notdHinal solution, as it creates its own issues. For
an example, here is the syntax of ithec_right theorem.

Theorem ifdec_right :
forall (A B:Prop) (C:Set) (H:{A} + {B}),
~A->forall xy:C, ifdec Hxy =vy.

Figure 3.4.2.1. Thifdec_right theorem from the Coq standard library.

The idea is that it simplifies one level ofianthen expression. Even to a seasoned Coq user,
the statement and arguments are difficult to interjared,| needed to do some testing to figure
out exactly what to pass as arguments. However, thefuswlicit arguments in this theorem
(specified by an earlier directive) makes it extrenfeyd to use the normal procedure of
deducing argument types by guessing and checking. In Cognigdmiv to use a theorem
usually means invoking it and supplying one’s best guess farguments, which Coq responds
to with typing errors, which one reads to get hints on whaty next. Depending on the

Proof Checking39

theorem, this might take one round of guesses or doZémns.process, while tedious, is at least
predictable and methodical, and works.

It does not work as well when the theorem uses im@igtments. The implicit arguments
functionality will fill in certain arguments for theser based on the arguments the user supplies,
but Coqg’s algorithm for deciding which arguments to filaimd when is hard to figure out. Itis
often not clear what place a particular argumentsupplies is going in when implicit

arguments are involved. The effect is to multiplynbenber of combinations of arguments one
has to try as well as make the returned error mes$agésr to take hints from. | remember
trying about forty iterations of different attemptsaagument lists to the function.

The point of implicit arguments is to let a seasonent asthe theorem input a few less
arguments, thus shortening the expression and saving sphtgang time. However, without
author-written documentation on how to use the thaptke added frustration for new users is
unacceptable. Inthe end, | actually gave up and wrote awveriSfdec_right without the
implicit arguments specifier, adapting their proofiddc_right to work with the change in
convention.

4. Formalizing Markov’s inequality in Mizar

We use the same Mizar categories as for the orliutiger theorem, and see if the proportions
of time change as we expect.

4.1. Breakdown

Category of work Approximate work (hrs.) Percentage of total work
Learning Mizar syntax by trial and error 7 8%
Searching libraries for examples of new 2 2%
syntax
Familiarizing with user-defined libraries 7 8%
Searching for existence of terms and 8 10%
theorems
Rote formalizing 48 56%
Fixing the Mizar environment 4 5%
Logically planning out the proof itself 10 11%

Table 4.1.1. Time breakdown of Markov's inequality iizaf.

Proof Checking40

As expected, the proportion of time for rote work hasaased significantly from the previous
formalization of the orbit-stabilizer theorem. Thigkas sense given my increased experience
with many aspects of Mizar, including creating skeletomsniductive proofs and proofs by
cases, as well as using Mizar “schemes” and definingduhavithdeffunc . By a certain point
in this formalization, | had solved all those problemgesal times, so even if | needed to look
back at some old examples, or do a little trial andreoroefresh my memory, | was confident
that | could write the portions of code involving thesepgof syntax without significant
trouble. Thus, | file much of the time associatedehdth under rote formalization for Markov’'s
inequality, while they were partially or completely nemwme during the orbit-stabilizer theorem.

A category that ended up taking the same proportion ofdsriedid with the orbit-stabilizer
theorem was the searching for the existence of terrtf'eorems in the MML. Again, we note
that this category reflects only searching for the terth@orem itself. For example, we might
be asking, “Okay, is there a definition for Lebesguegral?” Or, “Is there a theorem that tells
us that every set in a sigma-algebra is necessasipset of the universe 9€®” Looking up
these answers is purely the action of daimgstr or grep text searches, employitigdvoc

or browsing MML files. To be pedantic, once | wenbithe realm of trying taiseor get
familiar with the new MML term or theorem, | feltahl had gone into a different category,
related to the ease or difficulty of getting up to spedtl some new Mizar entitgnce | had
already found it This division allows us to separate two issues wittMizar system: that of a
user-friendly search capability and that of the eagfficulty with which one can interpret and
make use of others’ Mizar creations.

It makes sense that the proportion of time should be rodlgalgame, as my skill with searching
out things in the MML plateaued a while ago. This igikthat one learns early on in one’s
Mizar career. There is actually a slight drop inpheportion of time; this is either experimental
error or a result of being familiar with a slightlydar section of the MML after completing the
orbit-stabilizer theorem. That theorem gave me aflekperience with the MML files about
finite sequences and real numbers, which | used often ikdvia inequality.

Looking at the other categories, the results showthigatime spent learning Mizar has
approximately been cut in half. The two main typewaifk related to learning Mizar, all of
which can be viewed as a one-time cost, are the et Siguring out how to use new Mizar
syntax, which in this formalization mainly consistédwiting term and functor definitions, and
the time spent reading and getting familiar with usemaefiMML terms and theorems. We
notice that the time spent on these categories droppedli6% to 8% and from 18% to 8%.
This is good news, as these percentages are becomingeamagih that if one could find a way
to partially automate the rote work portions of a fdinagion, it would have a large effect on the
total time required.

For the total time, although the orbit-stabilizer theoesmd Markov’s inequality turned out to be
very different styles of proofs — the orbit-stabilizeedhem was almost pure logical reasoning,
while Markov's inequality contained a significant amountvofk related to simply defining
new terms — the total time was about the same. Markoequality tallied 86 hours while the
orbit-stabilizer theorem tallied 89 hours.

Proof Checking41

At this point, | expect that further exercises with &izvill have diminishing returns toward
improving my proficiency with Mizar. Although there aréeav terms and structures of Mizar
syntax that | have not yet tried, such as defining @scor schemes, | am certain that | can
deduce the proper syntax for those with the same tithearor method that has served me well.
As for the proofs themselves, | have pretty much estedalishe basic style of approach. First, |
try to understand the proof conceptually, writing out a prooiormal mathematical notation.
Then | peruse the MML to see what previous Mizar users hewed and defined already for
me, browse the associated lists of theorems to fgetl for what facts | already have, and then
write a skeleton of the entire proof in Mizar to hashall the environments, definitions, and
typing errors. Once the skeleton is complete, onglemsimply pick out lemmas or parts to
begin the rote formalizing work, and slowly fill in theopf, gap by gap, until the blessed
moment when one rumsizf for the last time and n@ errors appear in the checker, meaning
that as far as the checker is concerned, one’s proofmgpletely valid.

4.2. Markov in Mizar analysis: syntax and interface

We cover a few issues and potential areas of improvedigadvered during this formalization
of Markov’s inequality in Mizar. We begin with syntaand interface-related issues.

4.2.1. Piecewise functions must be named

I am not sure if this is inherent in set theory, but izdvl defining a piecewise function is a
tricky process. The best way is to useftine keyword to create a functor (also known as a
metalanguage function, as it exists outside of théheetry universe in which Mizar
formalizations live) and then use tihe-otherwise construction for the separation of cases.
(One cannot use thie -otherwise ~ construction outside offanc definition.) Then one must
convert this functor into Bunction in the Mizar set theory universe by useeONCT_1:sch 3 .

| used this process to define indicator functions as agefivo auxiliary piecewise functions that
might as well have been nameless, being only intelamiedito details of the proof. My slight
quibble with this is having to take up keyword space to name thieee functions.

4.2.2. Mizar theorem numbering

Mizar requires all theorems to be numbered. Howeughors of MML files often must revise
their submissions as time passes, and insert or deleremns

Proof Checking42

When deleting a theorem, Mizar allows one to repiaadth acanceled statement. That single
keyword takes the place of the theorem, and aside fremdhéo remove all references to that
theorem by other files, one needs do nothing elseegslalseholdecanceled preserves the
original numbering of all other theorems. Howevewauld probably be cleaner to, instead of
using thecanceled keyword, simply keep the theorem around and change ierstat to
something meaningless likeo or not contradiction , SO that one can do text searches and
simply count the number of times the watieorem appears to get to a specific theorem number.

There is currently no good way to insert a theorem éntinished MML file since Mizar theorem
numbers are integers; no Dewey Decimal System h&gain, this contributes to newer
theorems cropping up in odd places. One is used to gomy3aQ_1 for all one’s finite
sequence needs, and then finds that a useful singkejoersce theorem is locateddONVFUN1

| see no problem with the idea of numbering theorengemeral, as it cuts down on typing long
theorem names repeatedly, as is sometimes nee@ztjinComments could take the place of
the descriptive theorem names. To alleviate the gémeamsertion problem, MML writers could
start numbering theorems by tens, as BASIC programmaeisl @fere taught to do.

4.2.3. findvoc does not cover redefinitions

Thefindvoc utility is good at finding the original definition of arte, quicker thamyrep or

findstr . However, it cannot find redefinitions, and usgagp orfindstr in this way requires
fairly sophisticated regular expressions. Again, Mizar @denefit here from a feature of
modern programming environments where an intelligent pieseftware compiles a list of all
definitions and redefinitions of a particular term and digpthem when the user right-clicks the
term. One model is Microsoft Visual Studio’s dynamic pojgrface.

Proof Checking43

TR T T e T
return DoPreparePrintingipInfo):
i

wold CHFCAppView::OnBeginPrinting (CDCY /+pDC#/, CPrintInfo® /tpInfos/)
{
this-=»
Lfx ¢ GetTypelnfoaunt ;I ;
SBr = GetTypelnfoOfGuid
- 1 =i GetTypelib
=i GetTypelibCache
void CM =@ GetUpdateRect —epc+ /eppc*/, CPrintInfat /*plnfo*/)
i =@ GetUpdateRan
Lfwx = GetWindow g
1 =i GebWindowContextHelpId
= GetwindowDC
= GetWindowedChildCount |

f4 CMFCAppView diagnostics

#ifdef DEBUG

wold CMFCAppWView::AssertValid() const

H e
CView::hssertValid() ;

i

Figure 4.2.3.1. Microsoft Visual Studio dynamic list bfraember functions.

Even better would be if that piece of software deterchgich particular redefinition of the

term is being used in the context. Indeed, it is oftdrclear to the Mizar user which version of

a term Mizar is interpreting a particular usage as. nibist common example, mentioned earlier,
is sum() , which has been defined on many different types oveydaes. Another example is

the innocuous=, which while only being defined on two major types, reats extended reals,
due to the nature of reals being a subset of extendecceemes many typing errors.

4.2.4. Order of hypotheses

One odd discovery was that combining two logical statesnsith the &’ operator is not
necessarily symmetric when expanding a definition. Mais surprising because Mizar is
usually robust in this regard, for example, when combinintjiplel statements to draw a
conclusion. Let us look at an example involvingdhien term.

Here is the definition adnion in TARSKI.MIZ (Def4):

definition let X;
func union X means
xinitiffexYstxinY &YinX;
correctness;
end;

Figure 4.2.4.1. Definition afnion in TARSKILMIZ .

Proof Checking44

Compare the following four usages of the term, only ongla¢h generates an error when
compiled. These are direct applications (either unfoldangllapsings of the exact definition).
(The reader can verify these results using a bare-lmmwa®nment with justARSKI in
vocabularies , constructors , notations , andtheorems)

for x,Z be set st x in union Z holds
ex Y besetstxinY &Y inZby TARSKI.def 4;

for x,Z be set st x in union Z holds
exYbesetstYinZ&xinY by TARSKI.def 4;
> *4

for x,Y,Z be set st
XinY &Y in Z holds x in union Z by TARSKI.def 4;

for x,Y,Z be set st
Y inZ & xinY holds x in union Z by TARSKI.def 4;

Figure 4.2.4.1. Reversing the order of hypotheses cansagor withunion .

Notice that the order of the two logical parts of deénition of union — that fox to be in the

union ofz, there must exist an intermediate wv&t z andy must contaix — matters when we

are unfolding the definition, but not when we are collagst. This would be a good candidate
for inclusion in a FAQ about Mizar for new usershiéte were such a document. (Coq has one
and was a useful reference at all stages of my learn)ng i

4.2.5. Order ofotations

One troublesome aspect of the Mizar environment ligtsaisnot only must one make sure that
one has all the needed files in the lists, but ond oeasionally play around with the order of
the files. The phenomenon seems to be related tamémefs. In one occurrence of this issue,
a file | was adding to theotations list had to be placed before another specific filprevent
typing errors. This does not bode well for the MML peirsjsas a single database of all
mathematics. With enough layering of redefinitions anndsreferencing of MML files, two
files from the MML might become completely incompagiblinable to both be used for a given
proof.

Here are the essential portions taken from my largak®l/’s inequality file, with which the
reader can reproduce the error. The statement apouandx at the end is not true; it is merely
there to showcase the error. The error is that)MCT_1occurs afteSUPINF_2, one gets &102
typing error, which is probably because Mizar is interpgethe expressiotx as returning the
default typeset , which does not make sense with ¢hgless than or equal to) operator. If
FUNCT_1is placed beforgsUPINF_2, Mizar returns a4 logical error, correctly as the test
statement is not true, and the fact that Mizar gadtigogtage of error shows that Mizar accepts
the statement as well-typed. In other words, the typnocessed properly, and Mizar knows

Proof Checking45

thatf.x returns something of tymtREAL (extended real) for which the: operator makes
sense.

environ

vocabularies PARTFUN1,SUPINF_1,FUNCT 1,
notations XXREAL_0,PARTFUNZ1,SUPINF_2,FUNCT_1;
constructors MESFUNC3,MEASURES®;

registrations SUPINF_1,RELSET_1,NAT_1;
requirements NUMERALS,SUBSET;

begin

for X be set,f be PartFunc of X,ExtREAL,x be set
holds 0<=f.x;

w> 0 *102

>

> 102: Unknown predicate

Figure 4.2.5.1. Consequences of the order of theifilkeenotations directive.

| believe this error is related to redefinitions becadisNF_2 redefines the operator (function
notation) to work intelligently on functions that outgxtended real numbers. This redefinition
lets Mizar know automatically that such functions wilitput objects of typExtREAL (without

the redefinition, the Mizar user would have to do aliftoof each time she uses the function to
show that the output is, indeed, of typeREAL). Hence, placingUNCT_lafter SUPINF_2 in
notations overrideSUPINF_2’s redefinition, and so Mizar goes back to the orighuCT_1
definition of. wheref.x is of typeset , which makes no sense with (thus the typing error).

func f.x -> set means
:Def4: [x,it] in fif X in dom f otherwise it = {};
existence by RELAT_1:def 4;
unigueness by Defl;
consistency;
end;

Figure 4.2.5.2. The definition of theoperator ilFUNCT_1.MIZ.

Proof Checking46

definition
let X be non empty set;
let Y be non empty Subset of EXtREAL;
let F be Function of X,Y;
let x be Element of X;
redefine func F.x -> R_eal;
coherence
proof
F.x in EXtREAL by TARSKI:def 3;
hence thesis;
end;
end;

Figure 4.2.5.3. The redefinition of theoperator irSUPINF_2.MIZ .

4.2.6. reconsider s do permanent damage

| recall this as one of the most difficult idiosyngessof Mizar to uncover overall. The initial
error was the common typing-related errms3 .

At least in the environment | was working in, if ameonsider s a variable from typeon

empty set , tOElementof S , then back t@mon empty set , the variable has been permanently
changed. Where previously it was valid in a particutgression, after the change-to-and-back,
it generated &103 in that same expression.

Here is the actual occurrence in my work, pared dowmlpwhat is necessary for the reader to
duplicate the error. This code also need®\BKOV.vO@ocabulary file containing the single line
of text Ofsepseq to be placed in theict directory, for the definition of thizepseq term. The
different situations have been bolded: beforerdbensider to and back from a different type,
there is no typing error, only a logical error. Thihg, statement is parsing correctly with the
appropriate types. But after theonsider to and back, we get a typing error, meaning
something has irrevocably changed in the variabl&he first part of the code is the
environment, the second is the definition of the cusemrmsepseq which seems to have a
property that makes this strange behavior possible, antittas the test expression and
illustration of the different situations before antkathereconsider s.

Proof Checking47

environ

vocabularies MARKOV,PARTFUN1,SUPINF_1,MEASURE1,RELA T_1,FUNCT_1,
ORDINAL2,PROB_1,MESFUNC2,BOOLE,INTEGRA1,RLVECT_1,MEASUREG,ARYTM_3,
TARSKI,COMPLEX1,ABSVALUE,FINSEQ_1,MESFUNC1],

notations FUNCT_1,XBOOLE_0,XXREAL_0,0ORDINAL2,RELAT _ 1,PARTFUN1,PROB_1,
SUPINF_2,MEASURE1,REAL_1,SUBSET_1,FUNCT_2,MESFUNC2TARSKI,MESFUNCS3,
SUPINF_1,EXTREAL1,MEASUREG6,RELSET_1,NAT_1,COMPLEX1,FINSEQ_1,MESFUNC];
constructors MESFUNC1,MESFUNC3,MESFUNC2,EXTREAL1,ME ASUREG6,REAL_ 1,
registrations SUPINF_1,RELSET_1,NAT_1,SUBSET_1,NUMB ERS,XREAL_O;
requirements NUMERALS,SUBSET,BOOLE,REAL,ARITHM;

theorems PROB_1;

begin

definition

let X be non empty set;

let S be SigmaField of X;

let M be sigma_Measure of S;

let f be PartFunc of X,ExXtREAL such that
for x be set st x in dom f holds 0<=f.x;

let a be Real such that a>0;

let n be set;

func fsepseq(X,S,M,f,a,n) -> set equals :Def4:
{x where x is Element of X:f.x>=a} if n=1
otherwise {x where x is Element of X:f.x<a};
coherence;

consistency;

end;

for X be non empty set,

S be SigmaField of X,

M be sigma_Measure of S,

f be PartFunc of X,ExtREAL,

a be Real

st (for x be set st x in dom f holds 0<=f.x) & a>0 holds 0=0 proof
let X be non empty set;

let S be SigmaField of X;

let M be sigma_Measure of S;

let f be PartFunc of X,ExtREAL;

let a be Real;

assume AQ:(for x be set st x in dom f holds 0<=f.x) &a>0;
fsepseq(X,S,M,f,a,0)=0;

s %

reconsider X as Element of S by PROB_1:43;
reconsider X as hon empty set;
fsepseq(X,S,M,f,a,0)=0;

> *103

0=0;hence thesis;

end;

>

> 4: This inference is not accepted

> 103: Unknown functor

Figure 4.2.6.1. Aeconsider followed by its reverse causes a permanent change ine&lear

This is another example of an error that | resolvedudh trial and error, but for which | could
not figure out the underlying reason. It may have sometbinip with the fact that the original

Proof Checking48

type,non empty set , iS a two-part type: it contains a main typs,, and an attributeyon
empty . Perhaps some attribute information is lost throughwloreconsider — s.

4.3. Markov in Mizar analysis: matters of style
4.3.1. Syntactic sugar

The MML seems to define many new types and predicate®jssiorten Mizar phrases or make
Mizar statements more closely resemble English ema#tical statements. In some cases, user-
defined types and predicates do clarify code. Re-presentation_of and

is_simple_func_in have a clearer purpose than an ordered list of subktts universe set

and an ordered list of extended-real values.

But what aboutunction of A,B andPartFuncof AB ? Why not stick with the already
existing termslom andrng and say is Function & dom f=A & rng f c= B , if that is
precisely whatunction of A,B means? That is completely clear and needs no rekintpup
of definitions and flipping back and forth between files.

One reason for the proliferation of terms may bé kfiaar has trouble linking multiple logical
steps together in a single justification. Mizar’'s aodbic reasoning can occasionally surprise,
but overall | have learned to break arguments down @@ mallest possible steps. Let us look
more closely at what Mizar can and cannot do.

consider x,X,Y,Z be set;
Al:xin X;

> %4

A2:Xc=Y;

> %4

A3.Y ¢c=Z;

> %4

B1:X c=Z by A2,A3;

> *4

B2:X c=Z by A2,A3,XBOOLE_1:1;
B3:xinY by A1,A2;

B4:x in Z by A1,A2,A3,XBOOLE_1:1;
> *4

Figure 4.3.1.1. Mizar’s automatic reasoning capgbilit

We examine the Mizar subset operater,, and what Mizar implicitly knows about it and how
well it reasons with it. We have three hypotheseésa2, andAs, and try a few test statements,

Proof Checking49

B1, B2, B3, andB4. The failure of the first statememt], may be surprising to a new Mizar user.
Transitivity of the subset operation is not implickinown by Mizar; it is proved in the theorem
XBOOLE_1:1. SoB2 does not generate a logical error, whileB1 does. B3 is an example of the
kind of two-step reasoning that Mizeando. Beyond a trivial logical step like replacing a term
with its exact definition (a common single step in &)z here Mizar actually combines two
separate facts in a creative way. Or does ithéflooks at the definition @k in TARSKI.MIZ ,

one sees that Mizar is simply directly applying therdedin of c= here, nothing creative.

definition let X,Y;
pred X c=Y means
x in X implies xinY;
reflexivity;

end;

Figure 4.3.1.2. The definition of in TARSKI.MIZ .

B4 is a true attempt to get Mizar to make a two-step logicap. We know thakBOOLE_1:1
combined with the facts2 andA3 is enough to justify that c=z in this example. Addingl

as another hypothesis produces the exact same scendirecbty applying the definition af=
that Mizar knows without needing to cite any speciabtam inB3. However, trying to do both
of these steps at once faist gets a4 error.

Seeing the level of detail Mizar needs explains why Miapfs are so long. This may be the
true reason for having a lot of terms. The terms atéonmake Mizar look like English
mathematical writing; they are for unifying the many drhgpotheses and variables of a
mathematical concept under a single term such as ‘sifapttion” so that we may then write
clustersabout simple functions. Clusters cannot operate ampgrof many small hypotheses;
they are one-to-one relationships.s s a simple function, then this cluster says thaa#
some_property . If s is a simple function, then this other cluster shgss has
some_other_property . But are clusters really worth it?

4.3.2. Clusters considered harmful

Clusters are the only way to expand Mizar’s abilitydasorimplicitly. They do so in two ways:
they use a hierarchical structure similar to inheritanaject-oriented programming, giving

the illusion that Mizar knows more about transitivitgt it really does (we saw an instance of its
limits in the above example), and they outright teltd rules for making logical jumps.

For the hierarchical structure, consider thaingequence (finite sequence) is runction , and
aFunction Is aRelation . When we start applying theorems that ostensiblywlithl

Relation s directly toFinSequence s, it feels like Mizar is employing logic on multiplehts at
once, reasoning about transitivity (knowing thiasequence is aRelation) while at the same
time applying a theorem. This is an example of how efastllow Mizar to seem to elide many
steps into one step. But really, Mizar is doing notlsipgcial. That theorem abadrilation S

Proof Checking50

only applies to myinSequence because | was asking something alutandrng , basic
properties oRelation S, andrinSequence , if that term had never been defined, would just be
another conglomerate ofdam andrng and some pairs —Relation is exactly what it is. Mizar
needed no logic to do this; it only seems like Mizae&soning because we have labeled
identical things with different names.

Where clusters reallgo elide multiple steps in one is when the third typelaster is used
(Wiedijk, 1999, p. 10). This kind of cluster is essentialtheorem that has been stamped with a
note to Mizar to try to use this theorem automaticaliemever it sees the type on the left-hand
side. For example, the clustégma_Field(C) -> sigma-additive compl-closed non

empty from MEASURE4.MIzallows one to state that one’s sigma-algebnariempty in one’s

code without any justification. Now we see why clustgyerate only on specific types, and
hence the ultimate reason for types existing atTdiey are to give Mizar an easier time with
knowing when to try to apply which clusters. If we did have clear, succinct labels of

Function andFinSequence , Mizar would have to try to apply hundreds of clustergweery
statement, and it would run very slowly (Wiedijk, 1999, p. 10)

So clusters require the existence of types. Typesside &ffect, do eliminate a significant
amount of writing in any proof. If types likeinction were not defined, and we kept long
assumption lists such &s Function & dom f=X & g fc=Y in their place, whenever
we applied a theorem we would take up many lines simphgcitt Mizar that, indeed, every
single one of these twenty-seven or so hypothesesissiad by the environment we are
currently in, before we could get around to actually udnegtheorem.

Still, Mizar proofs are already long and detailed, and hatarigpe in even more steps, tedious
as it sounds, is preferable to the trouble of looking upzermaew definitions several times, until
the definitions are finally burned into memory fromeheepetition, for every MML file one
builds upon in one’s proof.

Another argument against types is that they obscureutiseand bolts of mathematical concepts,
making it harder to convert between types. One must speaditrolling layers of definitions,
proving equality of underlying basic parts, and then recongpilie basic parts into the new type.
This happened when | failed to find thetSequence type on an initial search for helping me
define the partition piece list for a simple functidrfound theSetSequence type later, by
accident, after already defining the partition pieseriyself. | considered trying to write a
lemma that would convert my creation intSeaSequence , so that | could use a useful theorem
onSetSequence S, but after some analysis | judged that it would bese&siwrite the theorem

for my own partition piece list from scratch. Thegiwas fairly long, but it was still
comparable to the work | would have had to do to convert t8etisequence type.

A problem with clusters themselves is that they intreduareliability. At one time, | was trying
to figure out how to show thatxfis real, thenx.| , the absolute value &f is real also.
Searching the MML, | found a cluster@®MPLEX1

Proof Checking51

registration let z be complex number;
cluster |.z.| -> real;

Figure 4.3.2.1. A cluster fro@OMPLEX1

Since anyreal is also acomplex number , | attempted to useconsider to casix to complex
number , and then presumably the cluster would take care okte However, trying to castto
complex number created environment errors, and | did not feel like nyareif my environment
at that point, having recently resolved issues with argesome of the lists. | went to look for a
workaround.

Now imagine if Mizar were really bare-bones: no tdus, no types, just predicates. This
particular step would have been simple. There would heaém that saifbr x st x in

REAL holds x in COMPLEX and a theorem that sdift z st zin COMPLEX holds |.z.|

in REAL , and these kinds of modus ponens applications neven fdizar. It would be nice if
every time one went to apply some logic involving atelyne had that degree of assurance.

The idea of this simplified system comes from Coq, @lmre works with basic predicates and
equality almost exclusively, and one gets used to applying sraaif obvious logical steps to
minute parts of data structures, instead of thinking in broagd®an terms that resemble Mizar
clusters.

4.3.3. Operator overloading and mistaken identities

The single largest avoidable issue that | encountered diigi@prmalization was the issue of
operator overloading. Convenient in programming languag@spof verification it seems to
create a lot of trouble with little benefit.

Here is a particularly confusing example. In measurertheve have the idea of a universe
and a sigma-algebmawhich is a set of “nice” subsets of that univexsé=rom here we can talk
about “nice” functions which ar&measurable. That simply means for any subset of tlgera
of the measurable function, the preimage of that séteifinitely be inS. Put another way, alll
preimages are well-behaved.

Some measure theorists apply the term measurablestassetell to mean that the set is a
member of the sigma-algebra, in keeping with the ideatieasigma-algebra contains all sets
that behave properly with the measure function. Thieas ofMESFUNCHefine the binary
predicatds_measurable_on to mean this, with the first argument any set andé¢bersl
argument the sigma-algebra.

definition Proof Checking52
let X be set;
let S be SigmakField of X;
let A be set;
pred A is_measurable_on S means :Defl1:
AinS;
end;

Figure 4.3.3.1. The first definition af measurable_on

Later, they overload_measurable_on to have a different meaning when the first argument is a
function fromx to the extended reals, the expected meaning that theeslifyptiction iss-
measurable. What if a user intending to use the secomntidefiofis_measurable_on

accidentally supplies a narartFunc argument, perhaps because he got his variable names
mixed up? Normally, Mizar would generate a typing errar iammediately alert the user to his
mistake, but since the original definition takess for the first argument, and everything in
Mizar has the typeet , Mizar will accept the phrase as written. Mizarlyiobably report a
logical error though, because whatever the user isalimg here is probably talking about
measurable functions, not set membership. | made thiswistake in my code, and seeing the
logical error, | spent considerable time trying to krdown the failure in logic, when all along
the real problem was that Mizar was not using the @ersfis_measurable_on that | thought it
was. It defeats the point of predicates that takenaegts of specific types, if when one puts in a
bad type, Mizar cannot report that one did so. Thisésway operator overloading can be
detrimental.

Another serious instance of mistaken identity thateafamm operator overloading occurred with
the overloading of the operator, used to denote composition of both functiodgelations.

This may also say something about the inherent diffesiitvith having many Mizar cooks
contributing to the same broth: the author of the MMésfion relations was not the same person
who wrote the MML files on functions, but both wantedise* to represent composition, and in
different ways.

The original snippet of code that uncovered the problem:

M is Function of S,ExtREAL;

p is Function of Seg 1,S;

p*M is PartFunc of Seg 1,EXtREAL,;
M*p is PartFunc of Seg 1,EXtREAL,;

Figure 4.3.3.2. The composition operator

Ignoring the difference betweénnction andpPartFunc for now (it does not cause problems
here), as well as the meaningssed 1 , S, andextREAL (in this example, they are just sets),
which of the third and fourth statements should compiteectly? Given thamandp are
functions, usual mathematical notation reverses ttieraf application, so singeoutputs an
element ofs, andvaccepts elements 8f the proper notation would b p.

Proof Checking53

Mizar actually compiles the third line as correct areftiurth as wrong. It turns out that the
author of the MML file on relation®RELAT_1, defined the operator to denote composition
when applied to relations, but in the opposite ordertttewriter ofFUNCT_1defined it. Since
functions are relation®élation is a supertype dfunction), one might ask the question of
how Mizar decides which operator to use when faced with two functions applyindvight it
be that Mizar chooses whichever definition came firshe environment lists (in other words,
whichever definition Mizar “loaded” first)? No, becausepping the order c#ELAT_1 and
FUNCT_1in the environment does not move the error from thetdume to the third. Inthe end,
only a fix | found from another MML file that also uskdthRELAT_1 andFUNCT_1solved the
problem, and | still am not sure exactly how:

notation let f,g be Function;
synonym g*f for f*g;
end;

Figure 4.3.3.3. Reconciling the two definitions of deenposition operator.

This seems to beg the question of how Mizar would decidmerversion over another when
faced with the operator being applied to two functions. Resolving 88se was both
confusing and time-consuming (looking for special code ton@lethe two versions of was
not part of my typical plan of attack for typing errom@)d the issue would not have arisen if
Mizar forced authors to adopt unique notation for commwsaf relations and composition of
functions. (This is another benefit that Coq demotedrats type semantics prevents these
kinds of confusion with operator overloading.)

4.3.4. Operator overloading and syntax

Accommodating operator overloading can lead to bizarre mamt®ns. In this example, we use
MEASURES®6:16t0 convert an extended real number to a real numban wheknow that the
extended real number is sandwiched between two finite. rea

theorem
for x,y,z being R_eal holds
xis Real & zis Real & x <=y & y <= z implies y is Real

Figure 4.3.4.1. Theorem for converting extended readdb

Notice that it uses the= operator to show the sandwiching, and that the arguraeatype
extended reaR_eal). This leads to difficulties trying to apply the theore@ne must ensure
that thex<=y andy<=z preconditions one supplies are using the proper versien tiie
version that has been overloaded to work Wwitbal S. Sincereal s arer_eal s (every real
number is an extended real number), this would seemdtrdightforward, and often is in
similar situations, but for some reason, this paricoperator overloading combined with the

Proof Checking54

structure oMEASURES6:16required a unique construction. Here is the simplestisall could
find that works:

for i be Nat stiin dom F holds(M*F).i is Real
& 0<=(M*F).i & (M*F).i<=1 proof

let i be Nat;

assume CO:iin dom F;

C1:F.iin S by B1082,C0;

C2:(M*F).i=M.(F.i) by B1120,C0;

M is nonnegative by MEASURE1:def 11;

then 0. <= M.(F.i) by C1, MEASUREL1.:def 4;
then C3:0 <= M.(F.i) by SUPINF_2:def 1;
reconsider Zer=0 as R_eal by SUPINF_1:10;
reconsider One=1 as R_eal by SUPINF_1:10;
M.(F.i) <= M.X' by MEASURE1:62,C1;

then M.(F.i) <= 1 by AOQ;

then 0<=(M*F).i & (M*F).i<=1 by C3,C2;

then Zer<=(M*F).i & (M*F).i<=0One;

then (M*F).i is Real & 0<=(M*F).i & (M*F).i<=1 by MEASURES®:16;
hence thesis;

end;

Figure 4.3.4.2. Instantiation of extra variables.

The instantiation of theer andone R_eal wrappers for the numbers 0 and 1, bolded above, are
necessary. This was the only time in Mizar thatddsel to create wrapper variables to resolve a
typing error.

4.3.5. Operator overloading and user-friendliness

A final way operator overloading can create problemsigers is in blurring users’ abilities to
easily see what is going on. Mizar always has @bi#ndle on the current types of variables
than its users do, because users often declare and rtioelifypes of their variables (with
reconsider) in places far off from their current section ofleo A Mizar author can use the
reserve keyword to localize type declarations in a standard pladestill must flip back and
forth to remind herself of the types of variablesserve also cannot completely overcome the
localization of type information problem, becaus®nsider s are often the most direct way to
fix typing errors. (This may be an argument for removimgcurrent ability of Mizar to
reconsider theoriginal variable to a different type, instead only allowing teeosidary mode
of reconsider , which creates a new variable with the desired typldeaves the original one
untouched.)

With Mizar as it is now, users have no confidence whbeking at an expression that they can
interpret it properly. They must always search througtizeirs’ and others’ code for type-
modifying statements, and use test statements oftesfrasin their memory. This is solely
because operator overloading allows a keyword or symldlange meanings depending on its

Proof Checking55

arguments, and arguments are only ambiguous in the st pecause type information is
invisible lexically. Again the type system interaatith a feature of Mizar (operator overloading
currently, previously clusters) to create an unfriendlyirmnment for the user.

For an illustration, here is another sample fromawoge for Markov’s inequality:

reconsider a=Seg 1-->0. as Function of Seg 1,ExXtREA L by FUNCOP_1:57;
A90:a is FinSequence of ExtREAL proof

dom a =Seg 1 by FUNCOP_1:19;

then reconsider a as FinSequence by FINSEQ_1:def 2 ;
rng a c= EXtREAL by RELSET_1:12;

hence thesis by FINSEQ 1:def 4;

end;

then reconsider a as FinSequence of ExtREAL;

A91:Sum(a)=0. proof

a = 1|->0. by FINSEQ_2:def 2;

then a = 1]->0 by SUPINF_2:def 1;

then B0O:a = <*0*> by FINSEQ_ 2:73;

then reconsider a as FinSequence of REAL;

Sum(a) = Sum<*0*> by BO;

then Sum(a) = 0 by RVSUM_1:103;

then B1:Sum(a) = 0. by SUPINF_2:def 1;

reconsider a as FinSequence of ExXtREAL by A90;

Sum(a) = 0. by B1;

> *4
hence thesis;
end;

Figure 4.3.5.1. Unfriendly code.

Most of the above code is background and the reader ©areid; the important lines are in
boldface type. Just from a user-friendliness standpaiptoof checker should not say to its user,
“The fact thatSum(a) =0. does not imply thasum(a) =0. .” (0. is the symbol for zero with

the type extended real.) The reason, of courskaighe twosum(a) s are actually different
expressions, with different meanings, as one is threafla sequence of reals and the other is the
sum of a sequence of extended reals. Notesthesider changinga from FinSequence of

REALt0 FinSequence of ExXtREAL

Besides emotional distress, this particular pieceodéded me to embark on a chain of work that
turned out at the end to be irrelevant. As showrad working to shov8um(a)=0. , a necessary
fact for a different part of the proof. This should notdm difficult, | thought, since is a
singleton sequence containiag | found a chain of theoren®= Sum<*0*> and<*0*> =

1]->0 and1]->0 = Seg 1-->0. , Which is exactly what | definedlto be in the first line of the
sample code. But writing this out, it was only at lds# link that the error appeared; only at the
end did | notice that the theorems in my chain werdirde®ith FinSequence of REAL S, not
FinSequence of EXtREAL s. All along thesum(a) | was equating to was not tBem(a) |

needed. If the authors of the MML had not overloasiedl) , | would have known from the

start that | needed to find theorems about finite sexpgeaf extended reals.

Proof Checking56

4.3.6. The legacy of MML authors

In a way, the problems with operator overloading are¢hefault of operator overloading itself,
but related to a general issue with proof checker systéftst all, when mathematics textbooks
or literature set up their conventions of terminologyg aotation, the worst that can happen is
that the reader must learn to think in an unusual wotébir the duration of this textbook or
paper. Once the user has absorbed the meaning of the gfapirfree to build on that
knowledge using whatever notation she prefers. But ingdbpnoof checker systems, future
users are more or less stuck with adopting in their wank any previously created notation. If
one wishes to use a different notation, one eithetcheswrite each file one uses from the MML
to use that notation, or write some conversion theorbatscan mediate between logical
statements in one’s preferred notation and staterfambsitted in existing notation. Either way,
this is too much to ask.

4.3.7. Mathematics is not uniformly canonized

That concerns different notations for the same qaindeit what about the same notation for
different concepts? What if an MML author’s definitioha foundational piece differs from a
future proof writer’'s concept of it? The writer mussfiunderstand that he has found someone’s
attempt to define whatever particular term or theorens keoking for, and then he must
convince himself without the benefit of human interactioat the piece he is about to use is
indeed the same piece that he originally thought he woultsibg.

The example that came up in my own experience wasrobdeg the existing definition of
Lebesgue integral. The definitionMESFUNCHhad the unusual property that it did not specify
over which subset of the measure space’s universe to @kaelral. (This is analogous to
being unable to take a Riemann integral over the closed/al [0,1] instead of the entire real
line.) This definition of Lebesgue integral loses no galitg, because any subset of a measure
space is a measure space. It should be able to be used,littihmassaging, in any case in
which the more common definition could be.

Nevertheless, this reminds us that one cannot simply adchenent “Lebesgue integral” next to
a definition and have that be the end of the story. elaer different definitions of Lebesgue
integral, measure space, measurability, and just aboutthey@mplex concept in mathematics,
and without actually looking at the exact axioms or hyps¢ls described when an MML author
defines their terms, one cannot be sure if one’s prami ihe foundation one thinks it is.

For another example that arose in this formalizatietnys look at the extended real numbers.
Pop quiz: does 0 multiplied by infinity equal 0? | beliéws is not necessarily true of all
definitions of extended real numbers. Some systemsth@vbold and others leave the
operation undefined. At any rate, | found myself in a Stnavhere | needed to prove this, and
automatically | went the usual route of searching foreartém that would prove this (assuming
it was derived from basic axioms), before it occurregh¢othat it might be an axiom in the
definition of theExtREAL set itself, which it turned out to be.

Proof Checking57

Now, although this particular example did not take thag lw figure out, this idea might cause
problems more generally. Suppose some mathematiciansiagemeasure theory to prove a
theorem, and they proceed happily using theorems outsfUNC3.MIZ Suddenly, they hit a
snag in a particular lemma. Puzzled, and having trouble firmlihgxactly why the logical step
is failing, they trace backwards through the relevambhgeunrolling definitions, until they

finally find the reason — the writers GESFUNC3.MIzhad used a different set of assumptions to
define their measure theory to begin with! In other wobdsause the basic assumptions of
measure theory have not been canonized, one runs the déhyeng to use a library or set of
theorems that are not talking about what one really ne€ds upshot is that one must verify
each library and its assumptions before use. Sibcaries build upon other libraries, the farther
afield one’s topic is from set theory’s fundamenttis, more work this is.

4.3.8. Reinventing the wheel
This is not the theorem you're looking ferObi-Wan Kenobe, if he were a user-defined proof chditkary

When browsing MML files, it becomes apparent that cemis really do go a long way. It is
true in computer programming, but it is even more pertimehtizar because variable names are
more terse and obscure. MML writers have to think up saoreall their intermediate variables,
and due to referring to these variables many times ovaotlse of a proof, just as in normal
mathematical writing they choose short, often oteeenames. For example, when | was trying
to find out if there were a theorem stating that thm sfia sequence equals the sum of that
sequence with all zeroes removed, | ran into new notdian had never seen before. In
addition to the alphabet soup of variables names theesse¢he terminology was mostly new:
Ser() ,vol() ,SUM() (all caps, not th&um() | knew about).

Experience has taught me that sometimes it is easieinteent the wheel than to learn other
authors’ uncommented, mysterious syntax well enough tordieie if they have proven a
theorem | need. Depending on how difficult the needed¢hneds, one has to make a judgment
call of whether it is likely to be worth examining MMiles for an hour or two.

A policy of casual documentation would help; a few seces on the meaning of each variable
and term should be enough to communicate the intentcbfte a human reader. As noted
above, though, this is more for a user roadmap; it doteget around the problem of authors
having different ideas of what mathematical terms mean.

Proof Checking58

5. Comparison

We discuss a few high-level differences between &whMizar.

5.1. Underlying theory

The semantics of Mizar is fairly straightforward. Mizar is abdlatstyle set theory with first order logic
—Dr. Freek Wiedijk, Mizar: an Impression, p. 10

Coq is a proof tool based on a type system with inductive typesd ¢tladl Calculus of Inductive Constructions (CIC).
Through the Curry-Howard isomorphism, proofs are identified with terrdgpawof-checking with type checking;
the construction of a proof then becomes simply the inteeactimstruction of a term which is at the end type-
checked.-Dr. Luis Cruz-Filipe, Formalizing Real Calculus in Cpg2

As | have alluded to before, understanding the underlyingyltgd@oq will be one of the main
challenges for a new user. The Calculus of Indu&wastructions, the general concept of
constructive logic, and the Curry-Howard isomorphismnatewidely known outside the
computer proof checking community. In contrast, any madhieran seeking to check his
proofs by computer will be relatively familiar with seebry and first-order logic, which is all
one needs to know about the underlying theory of Mizar.

Besides the main concept of “proofs as types,” theuliadoof Inductive Constructions theory

has a lot of subtleties, each of which was a challémgme to get used to. One involves the
idea of equality. Suppose we have two sets, each conté@ngatural numbers 1, 2, and 3.
However, the first set we build up in the order 1, 3, 2hgyes because we apply thethen
construction of Coq in that order) and the second sdiuike up in the order 1, 2, 3. In that case,
according to Coq, the two sets are not equal, since thaitwre is clearly different. Even

though we could prove that the two sets contain exdwtlgame elements, this is immaterial
from the viewpoint of Coq’s=" operator. Of course, most mathematics defines equalityets
based on whether or not they contain the same elesmegdrdless of how the sets were
“constructed” (indeed, in most mathematics there isemen the idea of “constructing” a set —
this is analogous to the issue in computer programmingetieay group of data has an order to it,
the order that the data is laid out in memory, wheth@obthe programmers want to think about
the data as being ordered at all). In each of the tmagor libraries | used, there is a provision
for allowing Coq to have a more traditional idea of equal€-CoRN defines an equals operator
[=] for all its types, and Pottier-Stein similarly defimasltiple versions of thequal predicate.
The Coq standard library has thaensionality_Ensembles axiom to essentially modify the
equality operator to accept sets which have proofs thatiteegubsets of each other as equal, as
opposed to only accepting sets which have exactly the s&ructure as equal.

Proof Checking59

5.2. Constructivity

Being able to enter a fully constructive proof into Cod have it generate an algorithm for
computing an object stated to exist by the theorem (eximpatas one of Coq's main goals from
the beginning (Filliatre, 2000, p. 2; Letouzey, 2003, p. 1keKe first described this idea of
generating algorithms from proofs, called realizabilityl 945, although the idea exists in
Godel's work dating as far back as 1932 (2000, van Oosten, pp. 2-3)

One of the main aspects of constructivity new Coq uset wrap their heads around is the
difference between being able to state that somethisgseaid actually being able to compute
it. A basic rule of constructive logic is thatpifie has proved that for alkhere exists & such
that propertyA(x,y) holds, then that means one has a process by whictaongiven arx,
produce the actuglsatisfying the propert(x,y). In classical logic, the statement of existence
does not inherently bring along a way to specify or desthidg in other words, classical logic
is looser and less stringent about letting mathenaaiscsay things exist.

The real numbers provide an interesting case study iriroatigity. A common way to
constructively define the reals is as infinite sequenteationals that approach a certain value
(the real number) with increasing accuracy. One validtewagandate this accuracy is that for a
real number, any two rationals in the sequengandr,, must satisfy the condition,|- rm| <

1/n + 1/m. From this, logically two realsands are indistinguishable, and thus equal, if every
pair of terms from the sequences satisfigs |s,| < 2/n. Since the sequences are infinite, we can
never finish a computation to conclude that every pamfthe sequences satisfies this rule, and
this lack of computability equates to a lack of a proof of Egua pure constructive

mathematics.

A new Coq user will likely first run into this differentetween constructive and classical logic
in Coq when he first encounters the wall betweerpttye domain and theet domain.

Although it is not obvious unless one reads the manualeands some of the underlying
workings of Coq, there are two “modes” of proof writingdaq, Prop andSet. A major
separation occurs when one looks atettiets keyword, which talks about existence in the
Prop domain (any statement of the forexists [something]” in Coq is an object in tireop
domain), and theig keyword, which is its counterpart in tBet domain. One may, as | did,
get used to using theim tactic to convert aexists statement into the claimed object itself,
which is the only way to use existence hypotheses to producexistence theorems. This
works fine until one attempts to use an existence hypasthesn theProp domain to build a
proof in theset domain. Theset domain is the true constructive arena we talked abaweab
The minute one jumps into trying to build a proof in see domain — perhaps because one is
starting to use a new user-defined library, or sectiditbiry that works in that domain — one
finds that all one’s storehouse of knowledge builexsts keywords is moot. New users must
be cautious of this to avoid building a large databaseeoié&ms in th@rop domain and
suddenly having to redo it due to not enteringStteworld early enough.

Proof Checking60

5.3. Readability

A major difference between Mizar and Coq is apparemnirowsing the user-defined
contributions of each system. Coq’s expression systharnder for humans to parse than
Mizar's. Consider the following statement of a welbkvn theorem in Coq. First are the
variables and preconditions, followed by the statement.

Variable J : interval.

Variable F : PartIR.

Hypothesis contF : Continuous J F.

Variable x0 : IR.

Hypothesis HxO0 : J xO0.

Hypothesis pJ : proper J.

Variable GO : PartIR.

Hypothesis derGO : Derivative J pJ GO F.

Let GO_inc := Derivative_imp_inc _ _ _ _ derGO.

Theorem : foralla b

(H : Continuous_I (Min_leEq_Max a b) F) Ha Hb,
let Ha' := GO _inc a Ha in

let Hb' := GO _inc b Hb in

Integral H [=] GO b Hb'[-]GO a Ha'.

Figure 5.3.1. A Cog theorem statement.

Despite some descriptive term names bkévative , Continuous , interval , PartiR , (partial
function from the reals to the reals) andgral , it is difficult to interpret this. The meaning of
arguments with respect to their terms is not as e@eam Mizar. For example, why is the only
argument of thantegral ~ expression a single preconditigd Does not an integral require a
function and an interval at minimumtégral actually does require those; the explanation is
that all the needed information is contained impliartlyl.) At any rate, this is Barrow's rule, a
formulation of the fundamental theorem of calcuthe, main goal of the C-CoRN library.

ff[x]dx:F[&]—F[&).

Figure 5.3.2. The real Barrow.

Let us look at the Mizar formulatiom{TEGRA5:13):

for f being PartFunc of REAL,REAL st Ac=X &fis_ differentiable_on X &
f'|X is_integrable_on A & f'|X is_bounded_on A hold s
integral(f'|X,A) = f.(sup A)-f.(inf A)

Figure 5.3.3. A Mizar theorem statement.

If | mention thatt is the derivative of, this statement is almost conventional mathematical
writing. This is pretty typical of Mizar. As mentied in the Mizar analysis, Mizar authors tend

Proof Checking61

to create new terms for most concepts, here includifeyelntiability, integrability, and
boundedness, not to mention integral, supremum, and infirandithe notation for
derivatives. If we add and rename some terms in tloev€ision to improve readability, the
result is still murky:

Variable J : interval.

Variable F : PartFunct_Real.

Hypothesis contF : is_continuous J F.
Variable x0 : Real.

Hypothesis HxO0 : J xO0.

Hypothesis pJ : proper_interval J.
Variable Fprime : PartFunct_Real.
Hypothesis is_deriv : Derivative J pJ GO F.
Let included_in :=
Is_deriv_implies_interval_is_included

__ _ _is_deriv.

Theorem : forall F:PartFunct_Real,
forall a:Real, forall b:Real,

(H : continuous_on (interval_well_defined a b) F) Ha Hb,
let Ha' ;= Is_deriv_implies_interval_is_included a Hain
let Hb' ;= Is_deriv_implies_interval _is_included b Hb in

Integral H [=] Fprime b Hb'[-]Fprime a Ha'.

Figure 5.3.4. Coqg statement of Barrow’s rule with reingm

The unorthodox placing of the arguments to terms suchlaged_in
Is_deriv_implies_interval_is_included , andcontinuous_on , and the lack of a clear
operator for function evaluation make this about the dsestcan do.

6. The Book proof

There is a book by Martin Aigner and Gunter M. ZieglalledProofs from THE BOOK
(Wikipedia, 2007). This is a reference to a saying of Baafls about how God has a Book
which contains perfect, the “most elegant,” proofs bir@thematical facts. It makes sense to
try to come up with an elegant, succinct handwritten poe@dre trying to convert it into Mizar
or Cog. Optimizing the human proof by minimizing the nundfesteps should decrease the
formalization time proportionally.

| used this strategy in the formalizations described sghper. First | browsed basic
explanations of the theorems, and then sat down ane& wrcomplete proof by hand, polishing it
until | felt it elegantly captured the essentials and ngthiore. Let us look at how this
optimization bore out during formalization.

Proof Checking62

6.1. Cons

One inevitably makes changes to one’s Book proof as one psegrésough the formalization.
Some logic that is easy to understand for humangfisuili for computers, and vice versa. For
example, in the Wikipedia proof of Markov’s inequalitlye writers state as a single step that,
given a random variableand a particular set of points whérakes on values greater than a
constanig, a multiplied by the indicator function fdris less than or equal tdor all points in

the measure space universe. With a little thought, #eerecan see that this is true where the
indicator function is 0, becausds mandated in the assumptions to be greater than @hiand
true where the indicator function is 1, because byl#imition of indicator functionf is greater
than or equal ta at precisely those points.

However, using this as a step in Coq or Mizar requirekribevledge of a fact that you can pull
out a constant from a Lebesgue integral in generals faht is lengthy to prove. So, in the
formalization, we restricted ourselves to only proving fédrct for simple functions. One often
chooses data structures or lemma statements thaseepeasily in the proof checker system
over structures or statements that seem elegant amansal to humans.

Streamlining a pencil-and-paper proof beforehand is stillssacy, because it gives a clear
understanding of the proof from start to finish. Howeitas, best not to think about the data
structures and minute lemmas when writing the handwritteof, leaving that for when one
begins browsing the user-defined libraries of the proof chiessigtem.

6.2. Pros

A good thing about writing out a Book proof first is thafbrces one to decide on what sets of
assumptions and versions of used terms one plans to hage been tempted to “cheat” when
looking too soon at the actual Coq or Mizar terms | béllusing in the formalization.

To give an example, another step in the Wikipedia prodMarkov's inequality is that the
probability thatf > a equals the expected value of the indicator function. ré/tlees this fact
come from? Might not some mathematicians define “@bdiby” in measure theory to exactly

to be the integral of the indicator function of the e?eBut in that case, a large step of the proof
IS just a definition! On the other hand, mathematiciaight define probability in any number

of other ways, perhaps, just to give an example,abrttit of some carefully chosen expression.
In that case, | would be in for a very long lemma eaqgathat complex definition to the
Lebesgue integral of an indicator function. The reade see how it can be tempting to choose
the easy definition that absorbs most of the woidx &n axiom.

How about definitions of measurability? Some authofmée function to be measurable if the
preimages of every subset of its range are in theasgjgebra. This is a natural and direct

Proof Checking63

definition. But some authors choose to define it in a mestictive way to avoid talking about
intractable, badly-behaved sets. They define meastyadulithe property that all half-lines of
its range have preimages in the sigma-algebra. Bothitawigare fairly common. So which
shall we choose? The first one, of course saves ues wark.

6.2.1. “Cheating” in Coq

The first time the idea that | might be “cheating’smme way occurred to me was during
formalizing Markov’s inequality in Cog.

| was describing the structure of a countable collectiGubsets of the measure space, as part of
writing the definition of measure. (The sets in tbhéection can be thought of as intervals of the
real line, except that they can be “spotty,” and wdrdegested in the additivity of measure, that
IS, what the measure of the union of this collectiomi&rvals will be.) For proving certain
lemmas in Coq regarding this union of a countable collectite most convenient way to
represent the collection was a serial numbering o$¢te and a separate map taking the serial
numbers to the measures of the sets. But it occurmee that the future user of my statement

of Markov’s inequality (after all, theorems are met@anbe used to prove other theorems) would
probably find it more natural for his own work to simpgve a map taking each element of the
collection to its measure, not this intermediatéas@umbering system.

Thinking about how this idea might apply elsewhere in napfr returned to my definition of
countability. | had chosen, again, the definition of ¢ability that made my future work the
easiest. (I actually did not realize before this ptbaf there were so many ways to define
countability: with injective maps, with surjective mapad with relationships with subsets of the
natural numbers.)

| decided that | should at least go with the two mostroon formulations of countability, and
prove them equivalent. Then | would not be clearlytilogsas much work as possible upon the
user — | was simply choosing what honestly seemed tio e the two most accepted
formulations and proving their equivalence so that | costleither one without feeling lazy.
The proofs of equivalence (both ways, showing that dahition implied the other) were
fairly complex and took 45 lines of compressed code, saléusion was not without
consequence.

Despite that, in the end | realized that this issumisso clear-cut. The Coq standard library
itself does not contain an official definition of caahbility. In fact, as far as | could tell, the
concept is only used once in the whole standard librargog.Logic.ConstructiveEpsilon ,
Yevgeniy Makarov formulates his own version of countgbibr a small proof at the end.

When | saw an author of the Coq standard library hintselbse a definition of countability that
is most natural for his own purposes, exactly engagitigisrpractice of removing the most
work from his proof, it struck me that in some senseishisstified. The author of
Cog.Logic.ConstructiveEpsilon may know that the Coq standard library will later eomp

Proof Checking64

with proofs of equivalence of all formulations of counlity, and perhaps such a basic concept
should be kept the domain of the (rest of) the standanaty anyway.

6.2.2. Mizar

Of course, this phenomenon is not restricted to Cog. ixanVit happened to me at the very
beginning of my formalization of Markov’s inequality, duritige definitions phase. One of the
first things needed is the idea of the set of all eléesehthe measure space universe tmaaps
to something greater than or equaétoln this picture from the Wikipedia proof, it is ttwo
segments at the bottom which correspond to the pastibthat rises above the dotted line.

f(x)

{xeX|f(x)=¢}
Figure 6.2.2.1. lllustration of the set of all elemehtdf maps to something greater than or equal to

The dilemma was, do | state the theorem of Markov’s inégugilch that “for all sets that

exactly capture this set of points tlabaps to something greater than or equal.td or do | say
“for a given fixed real constaiat there exists a unique set which captures all elemerts tha
maps to something greater than or equalté On the surface, the main difference is tha on
way requires me to prove something extra that the othe=y niot, the existence and uniqueness
of a certain set. But the important question is, wigdhe “fair” way to state Markov’s
inequality? Is it really my problem to establish whethenat such a set exists and is unique, or
should | concentrate on just the logic of Markov’s inditpidiself? If it is true that some

standard library should cover this for me, becauseréally a fundamental fact and more or less
tangential to the real issues being addressed by Markagsatity, | do not want to duplicate
their work when they do get around to it. (The C-CoRXettgoers saw the consequences such a
choice can have for the size of one’s proof. Inrtfeimalization of the fundamental theorem of
algebra, the constructive definition of and basic teewmrabout the real numbers took up 865 KB
of Cog code, while the code directly related to the logite theorem’s proof was 65 KB
(Geuvers et al., 2001, p. 4)).

The situation as it actually arose turned out to has@wion that had its cake and ate it too. It
turned out to be almost trivial (as the reader may dyréave questioned) to say that this set
exists and is unique by the axiom of separation. It wasarapletely trivial because | had to
familiarize myself with the Fraenkel operator in Mizane of the tougher pieces of syntax, to
use this axiom. Still, these questions of fairness anthguttork upon others persist in general.

Proof Checking65

7. Conclusions

We make observations on the future of proof checking meige, based on the experiences of
doing these formalizations in Coq and Mizar.

7.1. An eye for detalil

Formalizing a proof forces one to look at mathematictdildethat one otherwise overlooks.

One example | encountered concerns the definition asaorable functions. | have a function
which is measurable on the sigma-algebra, a basic esggiirt to take a Lebesgue integral.

Since most of the MML deals witbartFunc (partial functions), and to be consistent | had typed
f as aPartFunc also, is it necessary that the domair efjuals the entire universe of the measure
space to know thdtis measurable on the sigma-algebra? After all, mabgusimply means

that for every subset of the range, the preimageabfsitt is in the sigma-algebra. But what
exactly does this statement mean whenonly partially defined on the universe of the measure
space? The preimage will be the intersection of thigmoof the universe upon whidhs

defined and the “true” preimage of the range subset. kdlpteimage always be contained in
the sigma-algebra? In general, it seems not, simcpdttial function’s domain could be any
badly-behaved subset of the universe.

The paper formulations of Markov’s inequality that | reagf@vmute on the subject. It seems
that this concept of measurability as related to pdttradtions is too obscure for most people to
notice, myself included, even in expositions of measwgerthintended to be fairly
comprehensive tutorials and explorations of the basinitiefs. It is the sort of thing that only
comes to the forefront when one begins instantiatingbies and data structures for a computer
formalization of a proof.

In general, the exact nature of computers when formgliziathematics in proof checker
systems trained me to develop an eye for detail. Fongeal had to reformulate my four
axioms of what it means to be a simple function sévenas. The concept of a simple function
is easy, but | kept uncovering errors and things | had aeztbin my formulations as | used
them in later sections of the proof. | learned that one thing to understand the concept of a
function with a finite number of values in its ranbet it is another to be able to formulate that
in terms of precise data structures and statements astuctions on those data structures.

One such mistake involved the axiom describing the fiilst®f range values. The natural way
to represent a finite list of reals in Coq is a funethi@m the natural numbers to the reals. For
this list to be a legal representation of the rangeesbf a simple function, we add the
restriction that we only care about the portion of figction below a certain fixed natural
numbern representing the end of the list. For clarity and t&enfature lemmas easier, |
mandated that the range values be distinct as wellt i§;Hadid not want to allow the possibility

Proof Checking66

of the simple function being broken up into partition pgesech that there were multiple
partition pieces all mapping to the same real number.

Long after writing this axiom, | was creating an actumjde function, the indicator function of
an eventA. In other wordsA was a subset of the universe dom&imnd its indicator function
would be a simple function mapping pointsAimo 1 and points outside éfto 0. As another
simplification to make life easier, instead of map@ngy the complement &, and 1 toA, and
natural numbers from 2 to infinity to some null valugist mapped 0 to the complement?of
and all other natural numbersAc- why? Because that required only one use of thigen
construction in Coq (it is somewhat cumbersome to wattk) w

Having created the indicator function, | proceeded onsaddenly was amazed to hit a brick
wall: looking at the current list of known facts and gamng it with the current goal, | saw that
| was attempting to prove a falsehood. | had stated $yp@thesis incorrectly. After some
analysis, | realized the culprit was not the currentrha’s preconditions, but my old axiom of
simple functions! The current proof depended on the fattall partition pieces would have a
distinct range value. But, in my axiom, | had neglettegidd in a note that | only cared that
range values would be distinct for the “relevant” ndtnuanbers, that is, the ones below the
length of the list! | had left out the phrase “fotural numbers less than or equahtdrom the
distinctness axiom, again, for simplicity. Sincetret moment, all natural numbers from 1 to
infinity were mapping td\, in terms of the current language | indeed had multigdeidl
numbers” of partition pieces mapping to the same range vebntradicting the axiom! It
impressed me that an innocuous concept like the partitiofiagionple function could lead to
mistakes like this.

If I were to sum up the main difference between penmaHaaper mathematics and computer
formalizations in a single phrase, it would be “instamiabf data structures.”

7.2. Subjective experience

Although I find Coq much harder to learn than Mizar, | dmtsto mention something good
about this. One has to come up with creative solutopsoblems caused by Coqg’s many
nuances, and this makes the process of becoming proficitbnCoq continually new and
satisfying. Figuring things out in Mizar, including learnireywsyntax and user-defined terms,
is like debugging a memory dump. Caeowsthat one can find the answer, eventually, given
enough time and poring over pages of data (or, in Mizangusany test statements to narrow
down the causes of an error). However, this kind dblpra solving is not very inventive or
rewarding. In Coq, there is always the element@idering, “Will Cog stymie me this time or
will I be able to figure this one out?” After reachingeatain level of experience with Coq,
having gotten through enough problems (with help from othanstbbout) and having mastered
a significant portion of the system, some of therniegrabout never being able to figure out this

Proof Checking67

system disappeared. Feeling a little more confidenguiitest to become fun learning each new
layer, digging deeper into Coq's world. Working on a forealon became something | would
look forward to.

Most of this paper has been devoted to criticism and prabweith Coq and Mizar, but | do not
want to give the wrong impression. After some initiglrey into the systems followed by two
medium-sized proofs in each, | feel competent enough@athand Mizar to formalize
theorems in the accepted amount of time (several radotta group to formalize a fairly
complex theorem, longer for an individual). So whikerfeng them was definitely challenging
and time-consuming, the experiment succeeded.

For the person who wants to pick up a system and begikingguoofs as quickly as possible, |
would suggest Mizar. Mizar’s learning curve flattens redyivapidly compared to Coq's. One
fairly quickly gets to the point where the majorityome’s time is spent on busy work (the
necessary work), and not always having to learn nevasynt

7.3. General benefits

The main benefit of proof checking is a standardized ndetti@erifying proofs, especially for
ones like Kepler’'s conjecture which required computerwetetion either way. By having a
system universally considered reliable, as time goes byhanslystem maintains its reliability,
the confidence of users only increases. It may alsoléakdime than human verification of
proofs, as also noted in the Flyspeck project, wheredhenittee of referees felt that verifying
the proof by hand, while possible, was too laborious.

Proof Checking68

Acknowledgements

I would like to thank my advisor for this project, Dr. Mael Beeson, for his encouragement,
proofreading, suggestions for revisions, and the general ideeBeeson also corrected some of
my misunderstandings of constructive logic. | also kian Philippe Audebaud, Dr. Gilles
Barthe, Dr. Thierry Coquand, Seokhyun Han, Dr. Chridfiaalin, and Dr. Jan Reimann for
responding to my inquiries. | would like to thank Lionel Blamane and Nickolay Shmyrev
for their extremely helpful answers to my questionshenCog-club mailing list. | especially
wish to thank Russell O’Connor and Jasper Stein fohtegane several of the ins and outs of
Coqg. | would like to thank the committee members whand#d the defense of this paper, Dr.
Michael Beeson, Dr. Chris Pollett, and Dr. Mack Stanlewould also like to thank Deanna
Diaz, Dr. Horstmann, and Dr. Louden for their help vaitiministrative issues.

Proof Checking69

Bibliography

Alama, Jesse. (2007, February 17). Re: referring to unthb®erems. Message posted to
http://www.nabble.com. Retrieved April 25, 2007, from httpsiwnabble.com/Re:-referring-
to-unlabeled-theorems-p9022199.html.

Anderson, Robert M. Lecture Notes on Measure and Bilapa heory. (n.d.). Retrieved June
26, 2007, from http://elsa.berkeley.edu/users/anderson/Econ204/
MeasureTheoryLectureNotesTimeless.pdf.

Ash, Robert B. Some basic techniques of Group theory. (289Zmber). Retrieved March
12, 2007, from http://www.math.uiuc.edu/~r-ash/Algebra/Chapelf.

Audebaud, Philippe, and Paulin-Mohring, Christine. Proofsusdomized algorithms in Cog.
(n.d.). Retrieved June 23, 2007, from http://www.Iri.fr/~pdALEA/article.pdf.

Barthe, Gilles, Forest, Julien, Pichardie, David, anduRutad. Defining and reasoning about
recursive functions: a practical tool for the Coq prooiséast. Retrieved December 27, 2006,
from http://www-sop.inria.fr/everest/personnel/DavidtRidie/Publis/genfixpoint.pdf.

Bass, Richard F. Real Analysis. (2007, April 10). Re&deJune 25, 2007, from
http://www.math.uconn.edu/~bass/meas.pdf.

Bass, Richard F. Probability Theory. (2001). Retde#ne 25, 2007, from
http://www.math.uconn.edu/~bass/prob.pdf.

Bertot, Yves, and Pierre, Castéran. On Well Foundecdhgdtthe Axiom of Choice. (2004).
Retrieved May 9, 2007, from https://www.labri.fr/persofeesn/CoqgArt/newstuff/notwf. html.

Bogomolny, Alexander. (n.d.). The Inclusion-Excluskrinciple. Retrieved May 7, 2007,
from http://www.cut-the-knot.org/arithmetic/combinatoric&lusionExclusion.shtml.

Bray, Nicholas. (2002, December 3). Subgroup Index. WathWorld-A Wolfram Web
Resource. Retrieved March 12, 2007, from http://mathworléavo.com/Subgrouplindex.html.

Bylinski, Czestaw. Strengthening the Computational PowdreoMizar Checker. (2004,
November 1). Retrieved March 30, 2007, from http://www.itglsu.nl/typesworkshop/slides/
bylinski.pdf.

Cairns, Paul, and Gow, Jeremy. Integrating Searching arebéog in Mizar. (2006, January
31). Retrieved August 1, 2007, from http://www.uclic.ucL&fpeople/j.gow/papers/alcor-
jar.pdf.

Candel, Alberto. (2003). The limit of sin(x)/x as*®. Retrieved January 8, 2007, from
http://mwww.csun.edu/ac53971/courses/math350/xtra_sine.pdf.

Proof Checking70

C-CoRN -- History. (n.d.). Retrieved December 22, 20@8nfnttp://c-corn.cs.kun.nl/
history.html.

The C-CoRN library. (n.d.). Retrieved May 8, 2007, frdtp:Hc-corn.cs.ru.nl/downloads/
CoRN.tar.gz.

Chen, Beifang. The Inclusion-Exclusion principle. (20@&ych 31). Retrieved May 7, 2007,
from http://www.math.ust.hk/~mabfchen/Math391l/InclusBxelusion.pdf.

Chicli, L., Pottier, L., and Simpson, C. Mathematmgabtients and quotient types in Coq.
(2002). Retrieved May 9, 2007, from http://www-sop.inria.fnee/Loic.Pottier/
chicli_pottier_simpson.ps.

Chlipala, Adam. (2006, June 16). Equality modulo proofs. Messasgted to the Cog-club
electronic mailing list. Retrieved July 3, 2007, from htgawillac.inria.fr/pipermail/coq-
club/2006/002404.html.

Chlipala, Adam. Propositional and First-Order Logig0(6, August 31). Retrieved May 11,
2007, from http://www.cs.berkeley.edu/~adamc/itp/lecturesite@t pdf.

Coleman, Mark. Measurable functions. (n.d.). Retdedune 26, 2007, from
http://www.maths.manchester.ac.uk/~mdc/old/341/not4.pdf.

Coleman, Mark. Simple functions. (n.d.). RetrievedeJ26, 2007, from
http://www.maths.manchester.ac.uk/~mdc/old/341/not5.pdf.

Coleman, Mark. Integration. (n.d.). Retrieved June2R6y7, from
http://www.maths.manchester.ac.uk/~mdc/old/341/not6.pdf.

Coleman, Mark. Integration of measurable functiomsd.]. Retrieved June 26, 2007, from
http://www.maths.manchester.ac.uk/~mdc/old/341/not8.pdf.

Construction of real numbers. (December 22, 2006Wikipedia, The Free Encyclopedia
Retrieved December 22, 2006, from http://en.wikipedia.org/@dastruction_of real_numbers.

The Coq proof assistant, version 8.0, for Windows. (20@6ebber 15). Retrieved February
27, 2007, from ftp://ftp.inria.fr/INRIA/coq/V8.0/Cog-8.0-Wini

The Coq proof assistant, version 8.1, for Windows. (208@tesnber 3). Retrieved September
14, 2007, from http://coq.inria.fr/\VV8.1/files/cog-8.1-win.exe.

The Coq standard library. (n.d.). Retrieved April 6, 2@®#n http://coq.inria.fr/library-
eng.html.

The Coq users’ contributions. (2006, December 15). RetriEgbruary 27, 2007, from
ftp://ftp.inria.fr/INRIA/coq/V8.0/contrib-8.0.tar.gz.

Proof Checking71

Cruz-Filipe, Luis, Geuvers, Herman, and Wiedijk, FreEKCoRN, the Constructive Coq
Repository at Nijmegen. (n.d.). Retrieved January 16, 208, http://www.cs.math.ist.utl.pt/
s84.www/cs/Icf/pubs/report3.pdf.

Cruz-Filipe, Luis. A Constructive Formalization of thendamental Theorem of Calculus.
Retrieved December 25, 2006, from http://www.cs.ru.nl/~Icf/pays#r2.ps.

Cruz-Filipe, Luis. (2004, June 15). Constructive Real Asilya Type-Theoretical
Formalization and Applications. (Doctoral dissedatiUniversity of Nijmegen, 2004).
Retrieved December 28, 2006, from http://www.cs.ru.nl/~Icf/mpHaspdf.

Cruz-Filipe, Luis. Formalizing Real Calculus in Cdg.d.) Retrieved April 3, 2007, from
http://slc.math.ist.utl.pt/Icf/pubs/report1.pdf.

Denney, Ewen. The Synthesis of a Java Card Tokesnisatgorithm. (2001, November).
Retrieved July 2, 2007, from http://www.inf.ed.ac.uk/publicationkne/0143.pdf.

Desmettre, Olivier. A formalization of real anatys Coqg. (2003, February 27). Retrieved
June 23, 2007, from http://pauillac.inria.fr/~desmettr/publbicestiReals.ps.

ExistsFromPropToSet. (2006, June 12)Cabtorico!, the Coqg Wiki Retrieved June 8, 2007,
from http://cocorico.cs.ru.nl/coqwiki/ExistsFromPropTaSe

FAQ about Cog. (n.d.). Retrieved June 10, 2007, from Hbopihria.fr/V8.1/faq.html.

Felty, Amy. Coqg Session 1. (n.d.). Retrieved DecerhBe2006, from
http://www.site.uottawa.ca/~afelty/csi5110/CoqSessionl.txt.

Felty, Amy. Coqg Session 2. (n.d.). Retrieved DecerhBe2006, from
http://www.site.uottawa.ca/~afelty/csi5110/CoqSession2.txt.

Filliatre, Jean-Christophe. Design of a proof assist@oq version 7. (2000, October).
Retrieved November 17, 2007, from http://72.14.253.104/search?q-o@EKLG1pIEJ:

www. Iri. fr/~filliatr/ftp/publis/coqv7.ps.gz+%22Design+of+a+preafssistant: +Coqg+version+7%
22&hl=en&ct=cInk&cd=3&gl=us.

Geuvers, Herman, Pollack, Randy, Wiedijk, Freek, andnéwhaurg, Jan. The algebraic
hierarchy of the FTA project. (2001, Jun®roceedings of Calculemus 2QQ1-27. Retrieved
February 3, 2007, from http://www.calculemus.net/meetirgsa91/Papers/overall.ps.

Geuvers, Herman, Pollack, Randy, Wiedijk, Freek, andnéwburg, Jan. A Constructive
Algebraic Hierarchy in Coq. (2002, October). Retrievegdnber 28, 2006, from
http://www.cs.ru.nl/~freek/pubs/alghierl.pdf.

Geuvers, Herman, and Niqui, Milad. Constructive ReatSag: Axioms and Categoricity.

Proof Checking72

(2000). Retrieved December 25, 2006, from http://www.cs.ru.neipublications/
TYPESOO.ps.

Geuvers, Herman, Wiedijk, Freek, and Zwanenburg, Janorst@uictive Proof of the
Fundamental Theorem of Algebra without using the Ralson@001). Retrieved November 17,
2007, from http://citeseer.ist.psu.edu/rd/27441992%2C466997%2C1%2C0.25%2CDownload/
http://citeseer.ist.psu.edu/cache/papers/cs/24588/http:zSzzSeskm.nlzSz%7EfreekzSznote
szSzkneser.pdf/geuversOlconstructive.pdf.

Giménez, Eduardo. Co-Inductive Types in Coq: An Experiméhttive Alternating Bit
Protocol. (1995, June). Retrieved December 27, 2006, frottitfigehs-lyon.fr/pub/LIP/
Rapports/RR/RR1995/RR1995-38.ps.Z.

Gonthier, Georges. A computer-checked proof of the Fowutdlheorem. (n.d.). Retrieved
March 31, 2007, from http://research.microsoft.com/~gon#duteiproof.pdf.

Gonthier, Georges. Notations of the Four Colour Thegreraf. (n.d.). Retrieved March 31,
2007, from http://research.microsoft.com/~gonthier/4colmmtatpdf.

Group action. (2007, March 12). Wikipedia, The Free Encyclopedi®etrieved March 12,
2007, from http://en.wikipedia.org/wiki/Group_action.

Gupta, Maya R. A Measure Theory Tutorial (Measure Théripummies). (2006, May).
Retrieved June 24, 2007, from https://www.ee.washington.edsitiegapers/documents/
UWEETR-2006-0008.pdf.

Hales, Thomas C. Introduction to the Flyspeck Projé2d05). Retrieved October 31, 2007,
from http://drops.dagstuhl.de/opus/volltexte/2006/432/pdf/05021.Hales BiBamer.432.pdf.

Han, Seokhyun. Personal site. (n.d.). Retrieved 2802007, from http://www.cs.rhul.ac.uk/
~seokhyun/.

Har-Peled, Sariel. Lecture 8. (2004, February 18). Rettidune 23, 2007, from
http://valis.cs.uiuc.edu/~sariel/teach/2003/b_273/notes/08_prob_IIl.pdf

Herbelin, Hugo. (2006, February 14). On the form of theravof description [Message-ID:
200602140912.KAA30896 @pauillac.inria.fr]. Message posted to the Coaplelatoonic
mailing list, archived at http://pauillac.inria.fr/pipermedg-club/. Retrieved June 11, 2007,
from http://pauillac.inria.fr/pipermail/coq-club/2006.txt.

Huet, G., Kahn, G., and Paulin-Mohring, C. The Coq Prosfstant: A Tutorial. (2004, April
27). Retrieved July 3, 2007, from http:/flint.cs.yale.edi28scoq/pdf/Tutorial.pdf.

Hurd, Joe. HOL Theorem Prover Case Study: Verifying Ryidiec Algorithms. (2002).
Retrieved June 23, 2007, from http://www.cl.cam.ac.uk/~jeh10fHreh/talks/holprob-
short.pdf.

Proof Checking73

Imura, Hiroshi, Kimura, Morishige, and Shidama, Yasund@he Differentiable Functions on
Normed Linear Spaces. (2004, May 24). Retrieved February 10, 200V,
http://www.cs.ualberta.ca/~piotr/Mizar/mirror/http/fm/2002/pdf12-3/ndiff_1.pdf.

Inclusion-exclusion principle. (2007, May 7). Wikipedia, The Free Encyclopedidetrieved
May 7, 2007, from http://en.wikipedia.org/wiki/Inclusionetxsion_principle.

Index of MML Identifiers. (n.d.). Retrieved February2007, from http://mizar.org/JFM/
mmlident.html.

Introduction to Group Theory. (n.d.). Retrieved March2)7, from
http://members.tripod.com/~dogschool/.

Invited talks. (n.d.). Retrieved June 23, 2007, from http:¥ives.ru.nl/lc2006/invited.html.

Karrmann, Stefan. (2005, October 27). Early versus ete-Jinformative terms. Message
posted to the Cog-club electronic mailing list. RetrieM®vember 5, 2007, from
http://pauillac.inria.fr/pipermail/cog-club/2005/002133.html.

Koprowski, A. (2007, March 21). Setoid for arbitrary relaf Message posted to
http://www.nabble.com/Setoid-for-arbitrary-relation--t34414%8lh Retrieved April 3, 2007.

Kouba, Duane. The method of integration by parts. (2000, 29 Retrieved February 22,
2007, from http://www.math.ucdavis.edu/~kouba/CalcTwoDIRECTGibYypartsdirectory/
IntByParts.html.

Lebesgue integration. (2007, July 5).Whkipedia, The Free Encyclopedi&etrieved July 5,
2007, from http://en.wikipedia.org/wiki/Lebesgue_integration.

Lecture 1 — the first Mizar article. (2004, May 10). Reted October 5, 2006, from
http://ysserve.int-univ.com/Lecture/MizarLecture/lecturel.pdf

Letouzey, Pierre. (2005, February 21). Manipulating proof t@vfessage-ID: Pine.LNX.
4.44.0502211639260.30942-100000@pc8-142]. Message posted to the Cog-club electronic
mailing list, archived at http://pauillac.inria.fr/pipermedg-club/. Retrieved June 11, 2007,
from http://pauillac.inria.fr/pipermail/coq-club/2005.txt.

Letouzey, Pierre. A New Extraction for Coq. (2003udap 22). Retrieved November 17,
2007, from http://www.pps.jussieu.fr/~letouzey/download/extoa02.ps.gz.

Luo, Zhaohui. Annual site reports 2001 for the TYPESeutoj (2002, October 8). Retrieved
June 23, 2007, from http://www.dur.ac.uk/TYPES/report-2001.ps.

MacQueen, David. Using Dependent Type to Express Mo&tlacture. (1985, October 30).
Retrieved January 2, 2007, from http://www.cs.cmu.edu/~rwinges/modules/papers/

Proof Checking74

macqueen86/paper.pdf.

Mamane, Lionel Elie. (2007, January 2). sin_seq. Messagedtm the Cog-club electronic
mailing list. Retrieved November 5, 2007, from http://maiitsaience.ru.nl/pipermail/c-
corn/2007-January/000051.html.

Maor, Eli. (1998). Trigonometric delights. New Jerdeginceton University Press. Retrieved
January 8, 2007, from http://press.princeton.edu/books/maor/chapiedf.

Marzocchi, M., Brand, H., and Edgar, G. A. (1997, Oct@B0). Re: Question: Lebesgue
Measurable but not Borel. Message posted to news://$hi.riRetrieved June 25, 2007, from
http://www.math.niu.edu/~rusin/known-math/97/measure.

Matuszewski, Roman and Rudnicki, Piotr. Mizar: thetf80 years. (n.d.). Retrieved
November 5, 2007, from http://www.cs.ualberta.ca/~piozéviHistory/04MMA/M30.pdf.

McCarty, M., Leibel, S., Davis, D., Edgar, G. A., anodén, J. (1999, May 7-8). Re: |l am
losing my math ability. Message posted to news://stihmRetrieved June 24, 2007, from
http://www.math.niu.edu/~rusin/known-math/99/lebesgue.

The Mizar Mathematical Library, version 4.60.938. (2006, M&)x Retrieved January 31,
2007, from ftp://mizar.uwb.edu.pl/pub/system/i386-win32/mizar02.64.60.938-i386-
win32.exe.

The Mizar system, version 7.6.02, for Windows. (2006, M&8)chRetrieved January 31, 2007,
from ftp://mizar.uwb.edu.pl/pub/system/i386-win32/mizar-7.6.02_93®i386-win32.exe.

Mizar Verifier Basic Package (ver 7.8.05 mml 4.87.985). (nKétrieved September 29, 2006,
from http://www.wakasato.org/mizar/s7.8.05m4.87.985/verifieristai.cgi.

MML Search. (2005, December 30). Retrieved September 29, 2006,
http://www.wakasato.org/mizar/s7.8.05m4.87.985/mml_search.php.

Monoid. (2007, May 16). IWikipedia, The Free Encyclopedi&etrieved May 16, 2007, from
http://en.wikipedia.org/wiki/Monoid.

The most important facts in MML. (n.d.). Retrievedfeary 6, 2007, from
http://merak.pb.bialystok.pl/mmlquery/fillin.php?filledfileme=mmIl-facts.mgt&argument=
number+102.

mulhern@gmail.com. (2006, June 16). Equality modulo proofsssge posted to the Coqg-
club electronic mailing list. Retrieved July 3, 2007, frottp://pauillac.inria.fr/pipermail/cog-
club/2006/002403.html.

Muzalewski, Michat. An Outline of PC Mizar. (1999, Auga8). Retrieved March 30, 2007,
from http://www.cs.ru.nl/~freek/mizar/mizarmanual.ps.gz.

Proof Checking75

Nakamura, Yatsuka, Watanabe, Toshihiko, Tanaka, Yasushkamamoto, Pauline. Mizar
Lecture Notes. (n.d.). Retrieved March 20, 2007, from httprkun.cs.shinshu-u.ac.jp/
kiso/projects/proofchecker/mizar/Mizar4/printout/mizar4em.goc.

Naumowicz, Adam. (2006, November 23). Re: Re: a ternesepting the extension of a type.
Message posted to http://www.nabble.com. Retrieved V298¢ 2007, from
http://www.nabble.com/Re:-Re:-a-term-representing-thereston-of-a-type-p7506530.html.

Naumowicz, Adam. (2007, February 17). Re: referring to urdakdleorems. Message posted
to http://www.nabble.com. Retrieved April 25, 2007, from hitpwiv.nabble.com/
Re:-referring-to-unlabeled-theorems-p9022084.html.

Naumowicz, Adam. (2007, February 22). Re: unused loci. adesgosted to
http://www.nabble.com. Retrieved March 28, 2007, from Hitguniv.nabble.com/Re:-unused-
loci-p9095762.html.

O'Connor, Russell. (2007, February 18). le_or_It for CRedlisssage posted to the Cog-club
electronic mailing list. Retrieved November 5, 2007, fratp:Hmailman.science.ru.nl/
pipermail/c-corn/2007-February/000059.html.

O'Connor, Russell. (2007, January 2). sin_seq. Message poshe Cog-club electronic
mailing list. Retrieved November 5, 2007, from http://maiitsaience.ru.nl/pipermail/c-
corn/2007-January/000052.html.

O'Connor, Russell. (2007, January 19). sin x < x. Megsasted to the Cog-club electronic
mailing list. Retrieved November 5, 2007, from http://maiitsaience.ru.nl/pipermail/c-
corn/2007-January/000056.html.

O’Connor, Russell. (2006, December 6). Using a Prop to baaunlsion [Message-ID:
Pine.LNX.4.64.0612060242110.25142@erdos.theorem.ca]. Message posteddq-tieb
electronic mailing list, archived at http://pauillac.innigpipermail/coq-club/. Retrieved June 8,
2007, from http://pauillac.inria.fr/pipermail/cog-club/2006.txt.

Oliver, M., Taylor, B., Grambsch, P., and Renfro, D.(IL999, March 4). Re: Borel-sets.
Message posted to news://sci.math. Retrieved June 25, @@ http://www.math.niu.edu/
~rusin/known-math/97/measure.

Paulin, Christine. (1997, January 14). Re: Problemsexidt [Message-Id:
199701140842.JAA11521 @aquavit.ens-lyon.fr]. Message posted to thdubagjectronic
mailing list, archived at http://www.iist.unu.edu/~alumnite@re/other/inria/www/cog/mailing-
lists/coqclub/. Retrieved July 3, 2007, from http://wwst.unu.edu/~alumni/software/other/
inria/www/cog/mailing-lists/coqclub/0168.html.

Paulin-Mohring, Christine. A library for reasoning @mdomized algorithms in Coq. (2007,
May 30). Retrieved June 23, 2007, from http://www.Iri.fr/~padLEA/library.pdf.

Proof Checking76

Plume. (n.d.). Retrieved June 23, 2007, from http://wwsvlgon.fr/LIP/PLUME/.

Pollack, Robert. Dependently Typed Records in Type The(®@§02, February 5). Retrieved
January 2, 2007, from http://homepages.inf.ed.ac.uk/rpollackiqoardsFAC.ps.gz.

Pottier, Loic. Basic notions of algebra. (1999, MardRgtrieved May 9, 2007, from
http://cog.inria.fr/contribs/algebra.tar.gz.

Probability Tutorial. (n.d.). Retrieved June 24, 2007, fhdtp://tutors4you.com/
probabilitytutorial.htm.

Proofs from THE BOOK. (2007, October 19). Wikipedia, The Free Encyclopedid&etrieved
October 29, 2007, from http://en.wikipedia.org/wiki/Proofenir THE_BOOK.

Raamsdonk, Femke van. Inductive types. (n.d.). Reti®ecember 11, 2006, from
http://www.cs.vu.nl/~femke/courses/Iv/notes/week04.pdf.

Raamsdonk, Femke van. Logical verification 06-07 practicakweek 1. (n.d.). Retrieved
December 11, 2006, from http://www.cs.vu.nl/~femke/coursesdu/pw01l_answers.v.

Raamsdonk, Femke van. Logical verification 06-07 practicakweek 2. (n.d.). Retrieved
December 11, 2006, from http://www.cs.vu.nl/~femke/coursesdu/pw02_answers.v.

Raamsdonk, Femke van. Logical verification 06-07 practicakweek 3. (n.d.). Retrieved
December 11, 2006, from http://www.cs.vu.nl/~femke/coursesdu/pw03_answers.v.

Raamsdonk, Femke van. Logical verification 06-07 practicakweek 4. (n.d.). Retrieved
December 11, 2006, from http://www.cs.vu.nl/~femke/coursesdu/pw04_answers.v.

Renfro, D. L. and Rubin, H. (1999, August 27). Re: nonmeasuwsatdeand non_Borel sets in
R. Message posted to news://sci.math. Retrieved Jurg®@%, from http://www.math.niu.edu/
~rusin/known-math/97/measure.

Richter, Stefan. Formalizing Integration Theory, vathApplication to Probabilistic Algorithms.
(2005, October 14). Retrieved June 25, 2007, from http://afp.sotgeafiet/browser_info/
current/HOL/HOL-Complex/Integration/outline.pdf.

Rideau, Laurence, and Théry, Laurent. Formalising Sgldweorems in Coq. (2006,
November 22). Retrieved March 31, 2007, from http://hal.iintin.cs/00/11/56/32/PDF/RT-
0327.pdf.

Riemann integral. (2007, July 4). Wikipedia, The Free Encyclopedi®etrieved July 4, 2007,
from http://en.wikipedia.org/wiki/Riemann_integral.

Proof Checking77

Rudnicki, Piotr. A Mizar demo. (1997, March 13). Retree@eptember 29, 2006, from
http://www.cs.ualberta.ca/~piotr/Mizar/Dagstuhl97/.

Rusin, Dave. Measure and integration. (2000, Januaryi@®he Mathematical Atlas
Retrieved June 24, 2007, from http://www.math.niu.edu/~rusin/knmath/index/28-XX.html.

Setoid. (2007, March 22). Wikipedia, The Free Encyclopedi&etrieved April 6, 2007, from
http://en.wikipedia.org/wiki/Setoid.

Shmyrev, Nickolay V. (2007, January 19). sin x < x. Mgsgaosted to the Coq-club
electronic mailing list. Retrieved November 5, 2007, fratp:Hmailman.science.ru.nl/
pipermail/c-corn/2007-January/000055.html.

Simpson, Carlos. Set-theoretical mathematics in G204, February 20). Retrieved April 3,
2007, from http://arxiv.org/pdf/math.LO/0402336.pdf.

Smith, Geoff. The Inclusion Exclusion Counting Priteip(1998, February). Retrieved May 7,
2007, from http://people.bath.ac.uk/masgcs/bookl/amplificatmengxc. pdf.

Sozeau, Matthieu. Subset coercions in Cog. (2006, Aptétrieved July 3, 2007, from
http://www.Iri.fr/~sozeau/research/russell/article.pdf.

Stein, Jasper. Linear algebra. (2003, September 1®ieveel May 12, 2007, from
http://coq.inria.fr/contribs/LinAlg.tar.gz.

Stump, Aaron. sni_sec. (2005). Retrieved July 13, 2007, Httpri/cl.cse.wustl.edu/classes/
cseb45/lec/sni.v.

Urban, Josef. (2002, July 25). Error Number: 129Mitrar TWiki Retrieved March 30, 2007,
from http://wiki.mizar.org/cgi-bin/twiki/view/Mizar/Errorh129.

van Oosten, Jaap. Realizability: An Historical Essé3000, December 29). Retrieved
November 17, 2007, from http://www.math.uu.nl/people/jvoostatizability/history.ps.gz.

Viltersten, K., gowand@hotmail.com, Santos, J. GJ, &ares. (2006, January 20). What is a
Borel set? Message posted to news://sci.math. Redrigwne 29, 2007, from
http://groups.google.com/group/sci.math/browse_thread/thread/d3160c2B28,
77352d6bbfObfe00?Ink=st&qg=borel+set+real&rmnum=6#77352d6bbfObfe00.

Virk, Rahbar. The Orbit-Stabilizer Theorem. (n.d.etd®ved March 12, 2007, from
http://www.math.wisc.edu/~virk/notes/pdf/orphans/orbit-staéil_thm.pdf.

Wenzel, Markus, and Wiedijk, Freek. A Comparison of ttehdmatical Proof Languages
Mizar and Isar. (2002). Retrieved February 6, 2007, from/Miww4.in.tum.de/~wenzelm/
papers/romantic.pdf.

Proof Checking78

Werner, Benjamin. Sets in Types, Types in Sets. (20@r¢hivb). Retrieved June 8, 2007,
from http://www.lix.polytechnique.fr/Labo/Benjamin.Werneublis/tacs97.pdf.

Werner, Benjamin, Paulin, Christine, dowek@pomerol.ifiri®espeyroux, Joelle, and Kahn,
Gilles. (1993, August 31). Various answers to Gilles Kahn's ignesbout Sets in Coq.
Messages posted to the Cog-club electronic mailing Rstrieved July 3, 2007, from
http://www.iist.unu.edu/~alumni/software/other/inria/wwwdédmailing-lists/coqclub/0018.html.

Weisstein, Eric W. (2002, June 24). Fundamental Theoré@aloulus. FronMathWorld-A
Wolfram Web Resource. Retrieved November 1, 2007, fropw/mmiathworld.wolfram.com/
FundamentalTheoremsofCalculus.html.

Weisstein, Eric W. (2003, September 2). Inclusion-&sioln Principle. FrorviathWorld-A
Wolfram Web Resource. Retrieved May 7, 2007, from httpthwarld.wolfram.com/
Inclusion-ExclusionPrinciple.html.

Wiedijk, Freek. (2007, May 7). Formalizing 100 Theoremstri®ed May 7, 2007, from
http://www.cs.ru.nl/~freek/100/.

Wiedijk, Freek. Mizar: An Impression. (1999, September R@gtrieved March 20, 2007, from
http://www.cs.ru.nl/~freek/mizar/mizarintro.ps.gz.

Wiedijk, Freek (Ed.). The Seventeen Provers of thel#¥q2006a, March). New York:
Springer-Verlag. Retrieved February 6, 2007, from http://weswuml/~freek/comparison/
comparison.pdf.

Wiedijk, Freek. Writing a Mizar article in nine easgss$. (2006b). Retrieved March 14, 2006,
from http://www.cs.ru.nl/~freek/mizar/mizman.pdf.

Wilde, Ivan F. Measure, integration & probability. (20B68pruary 2). Retrieved July 1, 2007,
from http://www.mth.kcl.ac.uk/~iwilde/notes/mip/mip.pdf.

Zanella, Santiago. (2007, March 21). Re: Setoid forrarygirelation? Message posted to
http://www.nabble.com. Retrieved April 3, 2007, from httpaimnabble.com/Re:-Setoid-for-
arbitrary-relation--p9668747.html.

Zumkeller, Roland. (2006, November 23). Newbie questioresfisige-1D:
d02dcb040611231401r47ed3f46j2d19b565356f9e5f@mail.gmail.com]. Message posted to th
Cog-club electronic mailing list, archived at http://padlinria.fr/pipermail/coq-club/.

Retrieved June 11, 2007, from http://pauillac.inria.fr/pipe¥oeg-club/2006.txt.

