
Prof. Tom Austin
San José State University

CS 168: Blockchain and Cryptocurrencies

Distributed
Apps (DApps)

Evolution of the Web
• Web 1.0
– Few content creators

• Web 2.0
– User-generated content
– Social media
– Applications still centralized

• Web 3.0
– Decentralized applications

What Makes a DApp?
• Smart contracts
–Business-logic, application state, etc.
–Replace server-side layer

• Frontend
–HTML, JavaScript, etc.
–Web3.js – communication with smart contract

• Other components
–Storage: IPFS or Swarm
–Messaging: Whisper

Taken from Mastering Ethereum

Advantages of a DApp

• Advantages:
–Censorship-resistance
–Transparency
–Resilience

• Disadvantages:
–Pretty much everything else

DApp Development Process

1. Compile Solidity code
2. Run Ganache for testing
3. Deploy code
4. Interact through web3.js

Solidity Compiler
• Produces:
– EVM bytecode
– Application Binary Interface (ABI)

• Usage:
$solcjs --bin --abi ContractFile.sol

• Installed through npm.
– NOTE: There are other solidity compilers.

ABI

• Specifies interface for other
tools to use.
• Produced by Solidity compiler.

Solidity Compiler Example

(in class)

Ganache

• "One-click blockchain"
–Blockchain emulator

• Part of Truffle tool suite
• Install through npm
• Creates 10 accounts with 100 ether

Web3.js

• Interacts with Smart Contract
• Works with either node or browser
• WARNING: a little buggy

DApp example

(in class)

Note on Using Strings

• Many applications use bytes32 rather than
string.
– Lower gas price.

• Web3.js offers utility functions to convert:
– web3.utils.hexToAscii converts bytes

to a string
– web3.utils.asciiToHex converts a

string to bytes

Lab: Auction DApp

• Build a DApp for an auction
• Details in Canvas

