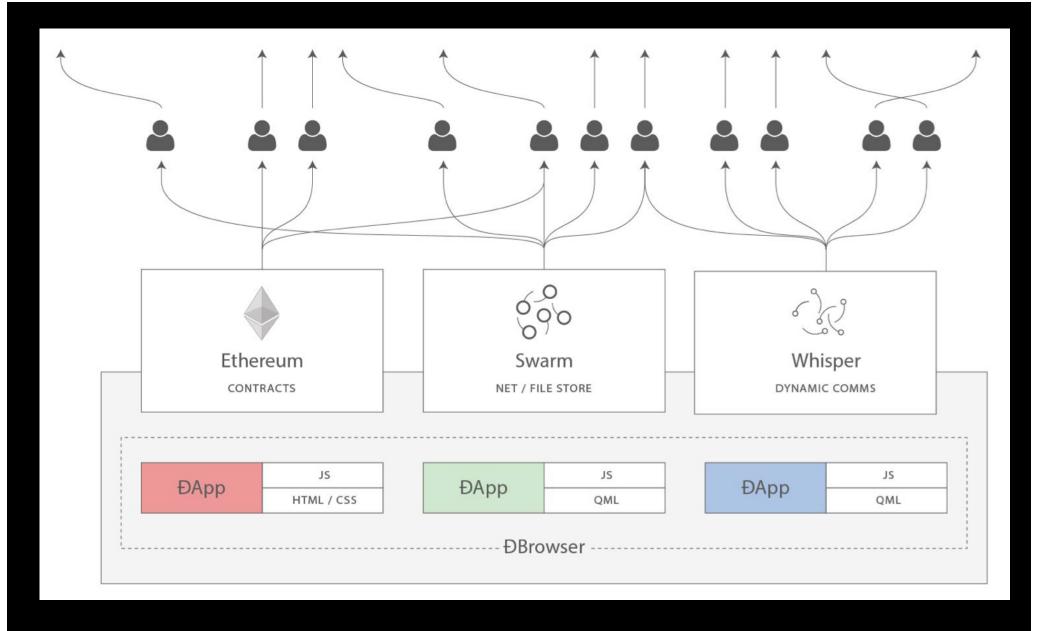
CS 168: Blockchain and Cryptocurrencies

Distributed Apps (DApps)


Prof. Tom Austin
San José State University

Evolution of the Web

- Web 1.0
 - Few content creators
- Web 2.0
 - User-generated content
 - Social media
 - Applications still centralized
- Web 3.0
 - Decentralized applications

What Makes a DApp?

- Smart contracts
 - -Business-logic, application state, etc.
 - -Replace server-side layer
- Frontend
 - -HTML, JavaScript, etc.
 - Web3.js communication with smart contract
- Other components
 - -Storage: IPFS or Swarm
 - -Messaging: Whisper

Taken from Mastering Ethereum

Advantages of a DApp

- Advantages:
 - -Censorship-resistance
 - -Transparency
 - -Resilience
- Disadvantages:
 - -Pretty much everything else

DApp Development Process

- 1. Compile Solidity code
- 2. Run Ganache for testing
- 3. Deploy code
- 4. Interact through web3.js

Solidity Compiler

- Produces:
 - EVM bytecode
 - Application Binary Interface (ABI)
- Usage:

```
$solcjs --bin --abi ContractFile.sol
```

- Installed through npm.
 - NOTE: There are other solidity compilers.

ABI

- Specifies interface for other tools to use.
- Produced by Solidity compiler.

Solidity Compiler Example

(in class)

Ganache

- "One-click blockchain"
 - -Blockchain emulator
- Part of Truffle tool suite
- Install through npm
- Creates 10 accounts with 100 ether

Web3.js

- Interacts with Smart Contract
- Works with either node or browser
- WARNING: a little buggy

DApp example

(in class)

Note on Using Strings

- Many applications use bytes32 rather than string.
 - -Lower gas price.
- Web3.js offers utility functions to convert:
 - -web3.utils.hexToAscii converts bytes
 to a string
 - -web3.utils.asciiToHex converts a
 string to bytes

Lab: Auction DApp

- Build a DApp for an auction
- Details in Canvas