
CS 166: Information Security

Prof. Tom Austin
San José State University

Cryptographic
Hash Functions

Cryptographic Hash Functions

or, Why can't they tell me my password?

Cryptographic hash functions

Encrypt data so that it can never be
decrypted. Why is this useful?
• Efficient signatures
• Safely storing passwords
•  "Proof of work" protocols

Hash functions in action

h("secret") = 5ebe2294ecd0e0f08eab7690d2a6ee69

Username PasswordHash
Alice 5ebe2294ecd0e0f08eab7690d2a6ee69
Bob 4bbfbb9beab959cc431ec4eed504cde5
Charlie 5f202e7ab75f00af194c61cc07ae6b0c
David 3feb2d8fe13b4e9c3c81de0734257103

Hash and Sign
•  Suppose Alice signs M
– Alice sends M and S = [M]Alice to Bob
– Bob verifies that M = {S}Alice
– Can Alice just send S?

•  If M is big, [M]Alice costly to compute & send
•  Suppose Alice signs h(M) instead,�

where h(M) is much smaller than M.
– Alice sends M and S = [h(M)]Alice to Bob
– Bob verifies that h(M) = {S}Alice

Hash and Sign Collision
•  So, Alice signs h(M)
– That is, Alice computes S = [h(M)]Alice
– Alice then sends (M, S) to Bob
– Bob verifies that h(M) = {S}Alice

•  What if Trudy finds M’ so that h(M) = h(M’)
– Then Trudy can replace (M, S) with (M’, S)
– Bob does not detect tampering, since

h(M’) = h(M) = {S}Alice

•  What properties must h(M) satisfy?

Crypto Hash Function Properties
•  Crypto hash function h(x) must provide
–  Compression – output length is small
–  Efficiency – h(x) easy to compute for any x
–  One-way – given a value y it is infeasible to find an x

such that h(x) = y
–  Weak collision resistance – given x and h(x), infeasible

to find y ≠ x such that h(y) = h(x)
–  Strong collision resistance – infeasible to find any x

and y, with x ≠ y such that h(x) = h(y)

•  Lots of collisions exist, but hard to find any

Pre-Birthday Problem

• Suppose N people in a room
• How large must N be before the

probability someone has same
birthday as me is ≥ 1/2 ?
– Solve: 1/2 = 1 - (364/365)N for N
– We find N = 253

Birthday Problem
•  How many must be in a room before prob. is
≥ 1/2 that any two have same birthday?
– 1 - 365/365 ⋅ 364/365 ⋅ ⋅ ⋅(365-N+1)/365
– Set equal to 1/2 and solve: N = 23

•  Surprising? A paradox?
•  Maybe not: “Should be” about sqrt(365)

since we compare all pairs x and y
– And there are 365 possible birthdays

Of Hashes and Birthdays

•  If h(x) is N bits, 2N different hash values are
possible

•  So, if you hash about 2N/2 random values then
you expect to find a collision
– Since sqrt(2N) = 2N/2

•  Implication: easier to brute-force hashes
– secure N bit symmetric key requires 2N-1 work
– secure N bit hash requires 2N/2 work

Non-crypto Hash (1)

•  Data X = (X0,X1,X2,…,Xn-1), each Xi is a byte
•  Define h(X) = X0+X1+X2+…+Xn-1

•  Is this a secure cryptographic hash?

•  Example: X = (10101010, 00001111)
•  Hash is h(X) = 10111001

•  If Y = (00001111, 10101010) then h(X) = h(Y)

•  Easy to find collisions, so not secure…

Non-crypto Hash (2)
•  Data X = (X0,X1,X2,…,Xn-1)
•  Suppose hash is defined as

h(X) = nX0+(n-1)X1+(n-2)X2+…+1⋅Xn-1
•  Is this a secure cryptographic hash?
•  Note that

h(10101010, 00001111) ≠ h(00001111, 10101010)
•  But hash of (00000001, 00001111) is same as hash

of (00000000, 00010001)
•  Not “secure”, but this hash is used in the

(non-crypto) application rsync

Non-crypto Hash (3)
•  Cyclic Redundancy Check (CRC)
•  Essentially, CRC is the remainder in a long division

calculation
•  Good for detecting burst errors
–  Random errors unlikely to yield a collision

•  But easy to construct collisions
•  CRC has been mistakenly used where crypto integrity

check is required (e.g., WEP)

Avalanche Effect

•  Desired property: avalanche effect
– Change to 1 bit of input should affect about half

of output bits

•  Crypto hash functions consist of some
number of rounds

•  Want security and speed
– Avalanche effect after few rounds
– But simple rounds

•  Analogous to design of block ciphers

Avalanche Effect

Tiger("better call saul") =
 0201b60356a7eca259ff4d71
 ea910b83a316ceaed29f9d0a

Tiger("better call paul") =
 a9c6722a7a338cb292787d74
 2474839dd9338a116fafd17c

Popular (but Broken) Crypto Hashes

•  MD5 – Message Digest 5
–  invented by Rivest
– 128 bit output
– Note: MD5 collisions easy to find

•  SHA-1 – Secure Hash Algorithm 1
– U.S. government standard
–  inner workings similar to MD5
– 160 bit output

MD5SUMS text

31125bf3134b4668ef5b0e93238cc922 *ubuntu-core-13.04-core-amd64.tar.gz
3480417a46bd9c53ca4594838fd9876e *ubuntu-core-13.04-core-armhf.tar.gz
f058338adedcad35e14e1443ef622740 *ubuntu-core-13.04-core-i386.tar.gz
c0b7a109824620122bfcc6062d4aeec3 *ubuntu-core-13.04-core-powerpc.tar.gz

c0b7a109824620122bfcc6062d4aeec3

MD5SUMS.gpg

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)

iEYEABECAAYFAlF5BCwACgkQRhgUM/u3VFHcjgCdGbqf2dS6VwTtiKeq0PHaOtAr
RnAAnj9kthXEVG7gjs9DCWpuHxJOZQyW

=XjUX
-----END PGP SIGNATURE-----

Broken Hashes, Broken Dreams

• MD5 collisions discovered
• Known shortcut attack for SHA-1.
• MD5 collision attack requires the

attacker to control both hashed files.
– Is this just a theoretical threat?
– Is MD5 still safe for other uses?

Tiger Hash

•  “Fast and strong”
• Designed by Ross Anderson and Eli

Biham
• Design criteria
– Secure
– Optimized for 64-bit processors
– Easy replacement for MD5 or SHA-1

Tiger Hash

•  Input divided into 512 bit blocks (padded)
– similar to MD5/SHA-1

•  Output is 192 bits (three 64-bit words)
– Truncate output if replacing MD5 or SHA-1

•  Intermediate rounds are all 192 bits
•  4 S-boxes, each maps 8 bits to 64 bits
•  A “key schedule” is used

Tiger Outer Round

F7

F9

+

W

⊕ -

ca b

ca b

F5

key schedule

key schedule

•  Input is X
–  X = (X0,X1,…,Xn-1)
–  X is padded
– Each Xi is 512 bits

•  There are n iterations of
diagram at left
–  One for each input block

•  Initial (a,b,c) constants
•  Final (a,b,c) is hash
•  Looks like block cipher!

ca b

W

W

Xi

Tiger Inner Rounds

fm,0

fm.1

fm,2

fm,7

w0

w1

w2

w7

ca b

ca b

•  Each Fm consists of
precisely 8 rounds

•  512 bit input W to Fm
–  W=(w0,w1,…,w7)

–  W is one of the input
blocks Xi

•  All lines are 64 bits

•  The fm,i depend on the S-
boxes (next slide)

Tiger Hash: One Round
•  Each fm,i is a function of a,b,c,wi and m
–  Input values of a,b,c from previous round
–  And wi is 64-bit block of 512 bit W
–  Subscript m is multiplier
–  And c = (c0,c1,…,c7)

•  Output of fm,i is
–  c = c ⊕ wi
–  a = a - (S0[c0] ⊕ S1[c2] ⊕ S2[c4] ⊕ S3[c6])
–  b = b + (S3[c1] ⊕ S2[c3] ⊕ S1[c5] ⊕ S0[c7])
–  b = b * m

•  Each Si is S-box: 8 bits mapped to 64 bits

Tiger Hash
Key Schedule

•  Input is X
– X=(x0,x1,…,x7)

•  Small change
in X will
produce large
change in key
schedule
output

x0 = x0 - (x7 ⊕ 0xA5A5A5A5A5A5A5A5)
x1 = x1 ⊕ x0
x2 = x2 + x1
x3 = x3 - (x2 ⊕ ((~x1) << 19))
x4 = x4 ⊕ x3
x5 = x5 +x4
x6 = x6 - (x5 ⊕ ((~x4) >> 23))
x7 = x7 ⊕ x6
x0 = x0 +x7
x1 = x1 - (x0 ⊕ ((~x7) << 19))
x2 = x2 ⊕ x1
x3 = x3 +x2
x4 = x4 - (x3 ⊕ ((~x2) >> 23))
x5 = x5 ⊕ x4
x6 = x6 +x5
x7 = x7 -(x6 ⊕ 0x0123456789ABCDEF)

Tiger Hash Summary (1)
•  Hash and intermediate values are 192 bits
•  24 (inner) rounds
–  S-boxes: Claimed that each input bit affects a, b and c

after 3 rounds
–  Key schedule: Small change in message affects many

bits of intermediate hash values
–  Multiply: Designed to ensure that input to S-box in one

round mixed into many S-boxes in next

•  S-boxes, key schedule and multiply together
designed to ensure strong avalanche effect

Tiger Hash Summary (2)

• Uses ideas from block ciphers
– S-boxes
– Multiple rounds
– Mixed mode arithmetic

• At a higher level, Tiger employs
– Confusion
– Diffusion

HMAC

•  Can compute a MAC of the message M with key K
using a “hashed MAC” or HMAC

•  HMAC is a keyed hash
–  Why would we need a key?

•  How to compute HMAC?

•  Two obvious choices: h(K,M) and h(M,K)
•  Which is better?

HMAC
•  Should we compute HMAC as h(K,M) ?
•  Hashes computed in blocks
–  h(B1,B2) = F(F(A,B1),B2) for some F and constant A
–  Then h(B1,B2) = F(h(B1),B2)

•  Let M’ = (M,X)
–  Then h(K,M’) = F(h(K,M),X)
–  Attacker can compute HMAC of M’ without K

•  Is h(M,K) better?
–  Yes, but… if h(M’) = h(M) then we might have

h(M,K)=F(h(M),K)=F(h(M’),K)=h(M’,K)

The Right Way to HMAC

•  Described in RFC 2104
•  Let B be the block length of hash, in bytes
–  B = 64 for MD5 and SHA-1 and Tiger

•  ipad = 0x36 repeated B times

•  opad = 0x5C repeated B times

•  Then
HMAC(M,K) = h(K ⊕ opad, h(K ⊕ ipad, M))

Hash Uses

•  Authentication (HMAC)
•  Message integrity (HMAC)

•  Message fingerprint

•  Data corruption detection

•  Digital signature efficiency

•  Anything you can do with symmetric crypto

•  Also, many, many clever/surprising uses…

Online Bids
•  Suppose Alice, Bob and Charlie are bidders
•  Alice plans to bid A, Bob B and Charlie C
•  They don’t trust that bids will stay secret
•  A possible solution?
–  Alice, Bob, Charlie submit hashes h(A), h(B), h(C)
–  All hashes received and posted online
–  Then bids A, B, and C submitted and revealed

•  Hashes don’t reveal bids (one way)
•  Can’t change bid after hash sent (collision)
•  But there is a flaw here…

Spam Reduction

•  Spam reduction
•  Before accept email, want proof that

sender spent effort to create email
– Here, effort == CPU cycles

•  Goal is to limit the amount of email
that can be sent
– This approach will not eliminate spam
– Instead, make spam more costly to

send

Hashcash: Spam Reduction

•  Let M = email message
 R = value to be determined
 T = current time
•  Sender must find R so that

h(M,R,T) = (00…0,X), where
N initial bits of hash value are all zero

•  Sender then sends (M,R,T)
•  Recipient accepts email, provided that…

h(M,R,T) begins with N zeros

Hashcash: Work for Sender and Receiver

•  Sender: h(M,R,T) begins with N zeros
•  Recipient: verify that h(M,R,T) begins with N

zeros
•  Work for sender: about 2N hashes
•  Work for recipient: always 1 hash
•  Sender’s work increases exponentially in N
•  Small work for recipient regardless of N
•  Choose N so that…
–  Work acceptable for normal email users
–  Work is too high for spammers

Hashcash: Bitcoin Proof of Work

•  The Bitcoin protocol uses proof of work
to verify block chains.
– determine transaction history
– proof of work uses hashcash

•  Prevents double spending, where Alice
gives the same coin to Bob & Charlie.

MD5 collision lab

Download http://www.cs.sjsu.edu/~stamp/
infosec/files/MD5_collision.zip. Open each
file and read it with a postscript viewer.
Calculate the hash of each file.
Do they match?
Open up each file with a text editor.
Describe how this attack works.

