CS 166: Information Security

Cryptographic
Hash Functions

Prof. Tom Austin

San Jos¢ State University

Cryptographic Hash Functions

or, Why can't they tell me my password?

Cryptographic hash functions

Encrypt data so that it can never be
decrypted. Why 1s this useful?

* Efficient signatures
 Safely storing passwords

* "Proof of work" protocols

Hash functions 1n action

h("secret") = Sebe2294ecd0e0f08eab7690d2a6ee69

Username PasswordHash

Alice Sebe2294ecd0e0f08eab7690d2abeec69
Bob 4bbfbb9beab959cc431ecdeed504cdeS
Charlie 5£202e7ab75f00af194c61cc07ae6b0c
David 3feb2d8fe13b4e9¢c3c81de0734257103

Hash and Sign

* Suppose Alice signs M
— Alice sends M and S = [M] ;... to Bob
— Bob verifies that M = {S},,. ..
— Can Alice just send S?

* If M 1s big, [M] ;... costly to compute & send

* Suppose Alice signs h(M) instead,
where h(M) 1s much smaller than M.

— Alice sends M and S = [h(M)] ;... to Bob
— Bob verifies that h(M) = {S} ...

Hash and Sign Collision

* So, Alice signs h(M)
— That 1s, Alice computes S = [h(M)] 5.
— Alice then sends (M, S) to Bob
— Bob verifies that h(M) = {S} ;..

* What if Trudy finds M’ so that h(M) = h(M”)
— Then Trudy can replace (M, S) with (M’, S)

— Bob does not detect tampering, since
h(M’) = h(M) = {S} alice

* What properties must h(M) satisfy?

Crypto Hash Function Properties

* Crypto hash function h(x) must provide
— Compression - output length 1s small
— Efficiency - h(x) easy to compute for any x

— One-way - given a value y it 1s infeasible to find an x
such that h(x) =y

— Weak collision resistance — given x and h(x), infeasible
to find y = x such that h(y) = h(x)

— Strong collision resistance - infeasible to find any x
and y, with x = y such that h(x) = h(y)

e Lots of collisions exist, but hard to find

Pre-Birthday Problem

* Suppose N people 1n a room

* How large must N be before the
probability someone has same

birthday asme 1s = 1/2 ?
—Solve: 1/2 =1 - (364/365)N for N
—We find N = 253

Birthday Problem

 How many must be 1n a room before prob. 1s
= 1/2 that any two have same birthday?

—1-365/365 - 364/365 - - «(365-N+1)/365
— Set equal to 1/2 and solve:
* Surprising? A paradox?
« Maybe not: “Should be” about sqrt(365)
since we compare all pairs X and y
— And there are 365 possible birthdays

Of Hashes and Birthdays

* [fh(x) is N bits, 2N different hash values are
possible

 So, if you hash about 2V? random values then
you expect to find a collision

— Since sqrt(2N) = 2N?2

» Implication: easier to brute-force hashes

— secure N bit symmetric key requires 2N-! work

— secure N bit hash requires 2NV? work

Non-crypto Hash (1)

Data X = (X,X,,X,,...,X, 1), €each X. 1s a byte
Define h(X) = X +X,+X+...+X_,

Is this a secure cryptographic hash?

Example: X = (10101010, 00001111)

Hash is h(X) = 10111001

If Y =(00001111, 10101010) then h(X) = h(Y)

Easy to find collisions, so not secure...

Non-crypto Hash (2)

Data X = (X,X,X5,...,X,,1)
Suppose hash 1s defined as
h(X) = nX+(n-1)X,+(n-2)X,+...+1- X,
Is this a secure cryptographic hash?
Note that
h(10101010, 00001111) = h(00001111, 10101010)

But hash of (00000001, 00001111) 1s same as hash
of (00000000, 00010001)

Not “secure”, but this hash is used in the
(non-crypto) application rsync

Non-crypto Hash (3)

Cyclic Redundancy Check (CRC)

Essentially, CRC 1s the remainder in a long division
calculation

Good for detecting burst errors

— Random errors unlikely to yield a collision
But easy to construct collisions

CRC has been mistakenly used where crypto integrity
check 1s required (e.g., WEP)

Avalanche Effect

Desired property: avalanche effect

— Change to 1 bit of mput should affect about half
of output bits

Crypto hash functions consist of some

number of rounds

Want security and speed
— Avalanche effect after few rounds

— But simple rounds

Analogous to design of block ciphers

Avalanche Effect

Tiger ("better call saul") =

0201bo0350a7’7eca’boffid’/l
ca910b83a3loceaed29f9d0a

Tiger ("better call paul") =
a9co/722a7a338cb2927874d74
2474839dd9338allofafdl’/c

Popular (but Broken) Crypto Hashes

* MDS5 - Message Digest 5

— invented by Rivest
— 128 bit output

— Note: 5 collisions easy to find

* SHA-1 - Secure Hash Algorithm 1

— U.S. government standard

— inner workings similar to
— 160 bit output

Ubuntu-Core 13.04 (Raring Ringtail)

Select an image

For ARM hardware for which we do not ship preinstalled images, see ARM/Server/Install for detailed installation information.

A full list of available files can be found below.

Name Last modified Size Description

& Parent Directory

’ MD5SUMS ‘ 25-Apr-2013

MD5SUMS. gpg 25-Apr-2013

SHA1SUMS 25-Apr-2013
SHA1SUMS.gpg 25-Apr-2013

25-Apr-2013

SHA256SUMS.gpg J 25-Apr-2013

ubuntu-core-13.04-core-amd64.manifest 23-Apr-2013

ubuntu-core-=13.04-core-amd64.tar.qz 23-Apr-2013

MDS5SUMS text

31125b£f3134b4668ef5b0e93238cc922
3480417a46bd9%c53cad594838fd9876e
f058338adedcad35eld4eldd3ef622740
c0b7a109824620122bfcco062d4aeec3

*ubuntu-core-13.
*ubuntu-core-13.
*ubuntu-core-13.
*ubuntu-core-13.

04-core-amd64.tar.gz
0O4d-core-armhf.tar.gz
0O4-core-i386.tar.gz
0O4-core-powerpc.tar.gz

c0b7al109824620122bfcc6062d4aeec3

MDSSUMS.gpg

Version: GnuPG v1.4.11 (GNU/Linux)

iEYEABECAAYFAlF5BCWACgkQRhgUM/u3VFHc]gCdGbgf2dS6VwTtiKeqO0PHaOtAY
RNAANJ9kthXEVGT7g]s9DCWpuHxJOZQyW
=XjUX

MDS5 encryption broken, Microsoft warns

Andrew Lyle 26 Comments HOT! 3 W Tweet < 0 FlLike 0O

Microsoft Security Advisory warned today that a possible attack against the MD5 hash digital certificate
could allow an attacker to generate their own certificate with information from the original. Microsoft warned
that only the X.509 certificates could be attacked, and suggests users to upgrade to the newer SHA-1
algorithm.

Although the information was not published publically to allow hackers the chance to launch attacks on the
vulnerability, Microsoft is keeping a watch on the possible attack, even though the vulnerability does not come
in a Microsoft product. The researchers that discovered the MD5 X.509 digital signature vulnerability did not
post the cryptographic background to the attack, which cannot be reproduced without it, leaving little or no
risk to users who still use the X.509 signature. Most Digital Certificates are no longer signed using the MD5
X.509 method, but use the more secure SHA-1 algorithm.

MDS is a widely used cryptographic hash function that encrypts with a 128-bit hash value. The MD5 hash
typically outputs a 32 digit hexadecimal number, using a specific algorithm to secure bits of information.

ENCRYPTION BROKEN MICROSOFT WARNS

Broken Hashes, Broken Dreams

e MDS5 collisions discovered
e Known shortcut attack for SHA-1.

* MD)35 collision attack requires the
attacker to control both hashed files.

—Is this just a theoretical threat?
—Is MD?35 still safe for other uses?

Tiger Hash
* “Fast and strong”

* Designed by Ross Anderson and Eli
Biham

* Design criteria

—Secure
—Optimized for 64-bit processors
—Easy replacement for MD3S or SHA-1

Tiger Hash

Input divided into 512 bit blocks (padded)
— similar to MD5/SHA-1

Output 1s 192 bits (three 64-bit words)
— Truncate output 1f replacing 5 or SHA-1

Intermediate rounds are all 192 bits
4 S-boxes, each maps 8 bits to 64 bits
A “key schedule” 1s used

X,
|
\WY%

|

key schedule

v
W

|

key schedule

v
W

Tiger Outer Round

Input 1s X
— X=X X505 X0 1)
— X 1s padded
— Each X, 1s 512 bits

There are n iterations of
diagram at left

— One for each put block
Initial (a,b,c) constants
Final (a,b,c) 1s hash
Looks like block cipher!

Tiger Inner Rounds

Each F_, consists of
precisely 8 rounds

512 bit input W to F_|

— W=(Wy,Wy,..., W)

— W is one of the input
blocks X,

All lines are 64 bits

The £ ; depend on the S-
boxes (next slide)

Tiger Hash: One Round

* Eachf{ ;isa function of a,b,c,w; and m
— Input values of a,b,c from previous round
— And w. 1s 64-bit block of 512 bit W
— Subscript m 1s multiplier
— And ¢ =(¢y,C;5---,C7)

* Outputoff ;is
—Cc=Cc@w,
—a=a- (Sylcy] ® S,[c,] D S,[c,] D S;[ce])
— b=b+(S;5[c;] D S,[c5] D S[cs] @ Syle,])
—b=b*m

* Each S; 1s S-box: 8 bits mapped to 64 bits

Tiger Hash
Xp = Xg- (X7 @ OXA5A5A5A5A5A5A5A5)
Key Schedule X, = X, ® X,

Xy = Xy + X

° Input iS X X3 =X3- (X, @ ((~x;) << 19))
Xy =X, DXy
X5 = X5 +X,
Xg = X6 - (X5 @ ((~Xx,) >> 23))
X7 = X7 @ X¢

* Small change X = Xo+X,
1n }é Wlll1 X, = X, - (Xg ® ((~x;) << 19))

roduce lar X, =X, ® X

p . ge X2 = X2 +X 1

change 1n key =X

Xy = X4 - (X3 @ ((~X,) >> 23))
schedule . o

output X, = X, +x,
X, = X, (X, ® 0x0123456789ABCDEF)

Tiger Hash Summary (1)

 Hash and intermediate values are 192 bits

* 24 (inner) rounds

— S-boxes: Claimed that each input bit affects a, b and ¢
after 3 rounds

— Key schedule: Small change in message affects many
bits of intermediate hash values

— Multiply: Designed to ensure that input to S-box 1n one
round mixed into many S-boxes in next

* S-boxes, key schedule and multiply together
designed to ensure strong avalanche effect

Tiger Hash Summary (2)

* Uses 1deas from block ciphers
—S-boxes
—Multiple rounds
—Mixed mode arithmetic

* At a higher level, Tiger employs

—Confusion

—Di1ffusion

HMAC
Can compute a MAC of the message M with key K
using a “hashed MAC” or HMAC

HMAC 1s a keyed hash
— Why would we need a key?

How to compute HMAC?
Two obvious choices: h(K,M) and h(M ,K)
Which is better?

HMAC

Should we compute HMAC as h(K.M) ?
Hashes computed 1n blocks
— h(B,,B,) = F(F(A,B,),B,) for some F and constant A
— Then h(B,,B,) = F(h(B,),B,)
Let M’ = (M,X)

— Then h(K.M”) = F(h(K,M),X)
— Attacker can compute HMAC of M’ without K
Is h(M,K) better?

— Yes, but... 1if h(M’) = h(M) then we might have
h(M.K)=F(h(M),K)=F(h(M") ,K)=h(M’ K)

The Right Way to HMAC

Described in RFC 2104

Let B be the block length of hash, in bytes
— B = 64 for MD5 and SHA-1 and Tiger

ipad = 0x36 repeated B times
opad = 0x5C repeated B times

Then
HMAC(M K) = h(K ® opad, h(K @ ipad, M))

Hash Uses

Authentication (HMAC)

Message integrity (HMAC)

Message fingerprint

Data corruption detection

Digital signature efficiency

Anything you can do with symmetric crypto

Also, many, many clever/surprising uses...

Online Bids

Suppose Alice, Bob and Charlie are bidders
Alice plans to bid A, Bob B and Charlie C
They don’t trust that bids will stay secret

A possible solution?
— Alice, Bob, Charlie submit hashes h(A), h(B), h(C)

— All hashes received and posted online
— Then bids A, B, and C submitted and revealed

Hashes don’t reveal bids (one way)
Can’t change bid after hash sent (collision)
But there 1s a flaw here...

Spam Reduction

* Spam reduction

* Before accept email, want proof that
sender spent effort to create email

—Here, effort == CPU cycles

e (Goal 1s to Iimit the amount of email
that can be sent

—This approach will not eliminate spam

—Instead, make spam more costly to
send

Hashcash: Spam Reduction

Let M = email message
= value to be determined
T = current time
Sender must find so that
h(M, .T) = (00...0.X), where

N 1nitial bits of hash value are
Sender then sends (M, ,T)

Recipient accepts email, provided that...
h(M, ,T) begins with N zeros

Hashcash: Work for Sender and Receiver

Sender: h(M,R,T) begins with N zeros

Recipient: verify that h(M,R,T) begins with N
Zeros

Work for sender: about

Work for recipient: always

Sender’s work increases exponentially in N
Small work for recipient regardless of N
Choose N so that...

— Work acceptable for normal email users

— Work is too high for spammers

Hashcash: Bitcoin Proof of Work

* The Bitcoin protocol uses proof of work
to verity block chains.

—determine transaction history
—proof of work uses hashcash

* Prevents double spending, where Alice
gives the same coin to Bob & Charlie.

MD5 collision lab

Download http://www.cs.sjsu.edu/~stamp/
infosec/files/MDS5 collision.zip. Open each
file and read 1t with a postscript viewer.

Calculate the hash of each file.

Do they match?

Open up each file with a text editor.
Describe how this attack works.

