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Cryptographic Hash Functions 

or, Why can't they tell me my password? 



Cryptographic hash functions 

Encrypt data so that it can never be 
decrypted. Why is this useful? 
• Efficient signatures 
• Safely storing passwords 
•  "Proof of work" protocols 



Hash functions in action 

h("secret") = 5ebe2294ecd0e0f08eab7690d2a6ee69 

Username PasswordHash 
Alice 5ebe2294ecd0e0f08eab7690d2a6ee69 
Bob 4bbfbb9beab959cc431ec4eed504cde5 
Charlie 5f202e7ab75f00af194c61cc07ae6b0c 
David 3feb2d8fe13b4e9c3c81de0734257103 



Hash and Sign 
•  Suppose Alice signs M 
– Alice sends M and S = [M]Alice to Bob 
– Bob verifies that M = {S}Alice 
– Can Alice just send S? 

•  If M is big, [M]Alice costly to compute & send 
•  Suppose Alice signs h(M) instead,�

where h(M) is much smaller than M. 
– Alice sends M and S = [h(M)]Alice to Bob 
– Bob verifies that h(M) = {S}Alice 



Hash and Sign Collision 
•  So, Alice signs h(M)  
– That is, Alice computes S = [h(M)]Alice  
– Alice then sends (M, S) to Bob 
– Bob verifies that h(M) = {S}Alice 

•  What if Trudy finds M’ so that h(M) = h(M’) 
– Then Trudy can replace (M, S) with (M’, S)  
– Bob does not detect tampering, since  

h(M’) = h(M) = {S}Alice 

•  What properties must h(M) satisfy? 



Crypto Hash Function Properties 
•  Crypto hash function h(x) must provide 
–  Compression – output length is small 
–  Efficiency –  h(x) easy to compute for any x 
–  One-way – given a value y it is infeasible to find an x 

such that h(x) = y 
–  Weak collision resistance – given x and h(x), infeasible 

to find y ≠ x such that h(y) = h(x) 
–  Strong collision resistance – infeasible to find any x 

and y, with x ≠ y such that h(x) = h(y)

•  Lots of collisions exist, but hard to find any 



Pre-Birthday Problem 

• Suppose N people in a room 
• How large must N be before the 

probability someone has same 
birthday as me is ≥ 1/2 ? 
– Solve: 1/2 = 1 - (364/365)N for N 
– We find N = 253



Birthday Problem 
•  How many must be in a room before prob. is 
≥ 1/2 that any two have same birthday? 
– 1 - 365/365 ⋅ 364/365 ⋅ ⋅ ⋅(365-N+1)/365
– Set equal to 1/2 and solve: N = 23 

•  Surprising? A paradox?  
•  Maybe not: “Should be” about sqrt(365) 

since we compare all pairs x and y 
– And there are 365 possible birthdays 



Of Hashes and Birthdays 

•  If h(x) is N bits, 2N different hash values are 
possible 

•  So, if you hash about 2N/2 random values then 
you expect to find a collision 
– Since sqrt(2N) = 2N/2  

•  Implication: easier to brute-force hashes 
– secure N bit symmetric key requires 2N-1 work 
– secure N bit hash requires 2N/2 work 



Non-crypto Hash (1) 

•  Data X = (X0,X1,X2,…,Xn-1), each Xi is a byte 
•  Define h(X) = X0+X1+X2+…+Xn-1 

•  Is this a secure cryptographic hash? 

•  Example: X = (10101010, 00001111) 
•  Hash is h(X) = 10111001 

•  If Y = (00001111, 10101010) then h(X) = h(Y) 

•  Easy to find collisions, so not secure… 



Non-crypto Hash (2) 
•  Data X = (X0,X1,X2,…,Xn-1) 
•  Suppose hash is defined as 

h(X) = nX0+(n-1)X1+(n-2)X2+…+1⋅Xn-1 
•  Is this a secure cryptographic hash? 
•  Note that 

h(10101010, 00001111) ≠ h(00001111, 10101010) 
•  But hash of (00000001, 00001111) is same as hash 

of (00000000, 00010001) 
•  Not “secure”, but this hash is used in the 

(non-crypto) application rsync 



Non-crypto Hash (3) 
•  Cyclic Redundancy Check (CRC) 
•  Essentially, CRC is the remainder in a long division 

calculation 
•  Good for detecting burst errors 
–  Random errors unlikely to yield a collision 

•  But easy to construct collisions 
•  CRC has been mistakenly used where crypto integrity 

check is required (e.g., WEP) 



Avalanche Effect 

•  Desired property: avalanche effect 
– Change to 1 bit of input should affect about half 

of output bits 

•  Crypto hash functions consist of some 
number of rounds 

•  Want security and speed 
– Avalanche effect after few rounds 
– But simple rounds 

•  Analogous to design of block ciphers 



Avalanche Effect 

Tiger("better call saul") = 
   0201b60356a7eca259ff4d71 
   ea910b83a316ceaed29f9d0a 
 
Tiger("better call paul") =    
   a9c6722a7a338cb292787d74 
   2474839dd9338a116fafd17c 
 



Popular (but Broken) Crypto Hashes 

•  MD5 – Message Digest 5 
–  invented by Rivest 
– 128 bit output 
– Note: MD5 collisions easy to find 

•  SHA-1 – Secure Hash Algorithm 1 
– U.S. government standard 
–  inner workings similar to MD5 
– 160 bit output 





MD5SUMS text 

31125bf3134b4668ef5b0e93238cc922 *ubuntu-core-13.04-core-amd64.tar.gz 
3480417a46bd9c53ca4594838fd9876e *ubuntu-core-13.04-core-armhf.tar.gz 
f058338adedcad35e14e1443ef622740 *ubuntu-core-13.04-core-i386.tar.gz 
c0b7a109824620122bfcc6062d4aeec3 *ubuntu-core-13.04-core-powerpc.tar.gz 

c0b7a109824620122bfcc6062d4aeec3 



MD5SUMS.gpg 

-----BEGIN PGP SIGNATURE----- 
Version: GnuPG v1.4.11 (GNU/Linux) 
 

iEYEABECAAYFAlF5BCwACgkQRhgUM/u3VFHcjgCdGbqf2dS6VwTtiKeq0PHaOtAr 
RnAAnj9kthXEVG7gjs9DCWpuHxJOZQyW 

=XjUX 
-----END PGP SIGNATURE----- 





Broken Hashes, Broken Dreams 

• MD5 collisions discovered 
• Known shortcut attack for SHA-1. 
• MD5 collision attack requires the 

attacker to control both hashed files. 
– Is this just a theoretical threat? 
– Is MD5 still safe for other uses? 



Tiger Hash 

•  “Fast and strong” 
• Designed by Ross Anderson and Eli 

Biham 
• Design criteria 
– Secure 
– Optimized for 64-bit processors 
– Easy replacement for MD5 or SHA-1 



Tiger Hash 

•  Input divided into 512 bit blocks (padded) 
– similar to MD5/SHA-1 

•  Output is 192 bits (three 64-bit words) 
– Truncate output if replacing MD5 or SHA-1 

•  Intermediate rounds are all 192 bits 
•  4 S-boxes, each maps 8 bits to 64 bits 
•  A “key schedule” is used 



Tiger Outer Round  

F7 

F9 

+

W

⊕ -

ca b

ca b

F5 

key schedule 

key schedule 

•  Input is X 
–  X = (X0,X1,…,Xn-1)
–  X is padded  
– Each Xi is 512 bits 

•  There are n iterations of 
diagram at left 
–  One for each input block 

•  Initial (a,b,c) constants 
•  Final (a,b,c) is hash 
•  Looks like block cipher! 
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Tiger Inner Rounds 
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•  Each Fm consists of 
precisely 8 rounds 

•  512 bit input W to Fm 
–  W=(w0,w1,…,w7) 

–  W is one of the input 
blocks Xi 

•  All lines are 64 bits 

•  The fm,i depend on the S-
boxes (next slide) 



Tiger Hash: One Round 
•  Each fm,i is a function of a,b,c,wi and m 
–  Input values of a,b,c from previous round 
–  And wi is 64-bit block of 512 bit W 
–  Subscript m is multiplier 
–  And c = (c0,c1,…,c7) 

•  Output of fm,i is
–  c = c ⊕ wi
–  a = a - (S0[c0] ⊕ S1[c2] ⊕ S2[c4] ⊕ S3[c6])
–  b = b + (S3[c1] ⊕ S2[c3] ⊕ S1[c5] ⊕ S0[c7])
–  b = b * m

•  Each Si is S-box: 8 bits mapped to 64 bits 



Tiger Hash  
Key Schedule 

•  Input is X 
– X=(x0,x1,…,x7) 

•  Small change 
in X will 
produce large 
change in key 
schedule 
output 

x0 = x0 - (x7 ⊕ 0xA5A5A5A5A5A5A5A5) 
x1 = x1 ⊕ x0
x2 = x2 + x1
x3 = x3 - (x2 ⊕ ((~x1) << 19))
x4 = x4 ⊕ x3
x5 = x5 +x4
x6 = x6 - (x5 ⊕ ((~x4) >> 23))
x7 = x7 ⊕ x6
x0 = x0 +x7
x1 = x1 - (x0 ⊕ ((~x7) << 19))
x2 = x2 ⊕ x1
x3 = x3 +x2
x4 = x4 - (x3 ⊕ ((~x2) >> 23))
x5 = x5 ⊕ x4
x6 = x6 +x5
x7 = x7 -(x6 ⊕ 0x0123456789ABCDEF)



Tiger Hash Summary (1) 
•  Hash and intermediate values are 192 bits 
•  24 (inner) rounds 
–  S-boxes: Claimed that each input bit affects a, b and c 

after 3 rounds 
–  Key schedule: Small change in message affects many 

bits of intermediate hash values 
–  Multiply: Designed to ensure that input to S-box in one 

round mixed into many S-boxes in next 

•  S-boxes, key schedule and multiply together 
designed to ensure strong avalanche effect 



Tiger Hash Summary (2) 

• Uses ideas from block ciphers 
– S-boxes 
– Multiple rounds 
– Mixed mode arithmetic 

• At a higher level, Tiger employs 
– Confusion 
– Diffusion 



HMAC 

•  Can compute a MAC of the message M with key K 
using a “hashed MAC” or HMAC 

•  HMAC is a keyed hash 
–  Why would we need a key? 

•  How to compute HMAC? 

•  Two obvious choices: h(K,M) and h(M,K)
•  Which is better?



HMAC 
•  Should we compute HMAC as h(K,M) ? 
•  Hashes computed in blocks 
–  h(B1,B2) = F(F(A,B1),B2) for some F and constant A 
–  Then h(B1,B2) = F(h(B1),B2)  

•  Let M’ = (M,X)
–  Then h(K,M’) = F(h(K,M),X) 
–  Attacker can compute HMAC of M’ without K 

•  Is h(M,K) better?  
–  Yes, but… if h(M’) = h(M) then we might have 

h(M,K)=F(h(M),K)=F(h(M’),K)=h(M’,K)  



The Right Way to HMAC 

•  Described in RFC 2104  
•  Let B be the block length of hash, in bytes 
–  B = 64 for MD5 and SHA-1 and Tiger 

•  ipad = 0x36 repeated B times 

•  opad = 0x5C repeated B times 

•  Then 
HMAC(M,K) = h(K ⊕ opad, h(K ⊕ ipad, M))



Hash Uses 

•  Authentication (HMAC) 
•  Message integrity (HMAC) 

•  Message fingerprint 

•  Data corruption detection 

•  Digital signature efficiency 

•  Anything you can do with symmetric crypto 

•  Also, many, many clever/surprising uses… 



Online Bids 
•  Suppose Alice, Bob and Charlie are bidders 
•  Alice plans to bid A, Bob B and Charlie C 
•  They don’t trust that bids will stay secret 
•  A possible solution? 
–  Alice, Bob, Charlie submit hashes h(A), h(B), h(C) 
–  All hashes received and posted online 
–  Then bids A, B, and C  submitted and revealed 

•  Hashes don’t reveal bids (one way) 
•  Can’t change bid after hash sent (collision) 
•  But there is a flaw here… 



Spam Reduction 

•  Spam reduction 
•  Before accept email, want proof that 

sender spent effort to create email 
– Here, effort == CPU cycles 

•  Goal is to limit the amount of email 
that can be sent 
– This approach will not eliminate spam 
– Instead, make spam more costly to 

send 



Hashcash: Spam Reduction 

•  Let M = email message 
   R = value to be determined 
   T = current time 
•  Sender must find R so that 

h(M,R,T) = (00…0,X), where
N initial bits of hash value are all zero

•  Sender then sends (M,R,T)
•  Recipient accepts email, provided that… 

h(M,R,T) begins with N zeros



Hashcash: Work for Sender and Receiver 

•  Sender: h(M,R,T) begins with N zeros
•  Recipient: verify that h(M,R,T) begins with N 

zeros 
•  Work for sender: about 2N hashes 
•  Work for recipient: always 1 hash 
•  Sender’s work increases exponentially in N 
•  Small work for recipient regardless of N 
•  Choose N so that… 
–  Work acceptable for normal email users 
–  Work is too high for spammers  



Hashcash: Bitcoin Proof of Work 

•  The Bitcoin protocol uses proof of work 
to verify block chains. 
– determine transaction history 
– proof of work uses hashcash 

•  Prevents double spending, where Alice 
gives the same coin to Bob & Charlie. 



MD5 collision lab 

Download http://www.cs.sjsu.edu/~stamp/ 
infosec/files/MD5_collision.zip. Open each 
file and read it with a postscript viewer. 
Calculate the hash of each file. 
Do they match? 
Open up each file with a text editor. 
Describe how this attack works. 


