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Stream Ciphers & Block Ciphers 

• Stream ciphers 
– based on the one-time pad 
• Block ciphers 
– based on codebook ciphers 

 



Symmetric Key Notation 

Encrypt the plaintext P with the key 
K to produce the ciphertext C. 
  E(P,K) = C 
Decrypt the ciphertext C with the 
key K to produce the plaintext P. 
  D(C,K) = P 



Stream Ciphers 

• Based on one time pad (OTP) 
• Not provably secure 
• More usable 

than OTP 



One-Time Pad Review 

0101 1010 0101 1011 0101 Plaintext: 

1011 0010 1101 1001 0001 Key: 

1110 1000 1000 0010 0100 Ciphertext: 

⨁  

Provably secure! 



One-Time Pad Review 

0101 1010 0101 1011 0101 Plaintext: 

1011 0010 1101 1001 0001 Key: 

1110 1000 1000 0010 0100 Ciphertext: 

⨁  

Key is as long as the original message  



Replacing the key with a keystream 

1001 1110 Key: Keystream 
Generator 

Keystream: 

1001  0011  1101  1000  … 
0101 1010 0101 1011 P: 

⨁  

1100 0001 1000 0011  C: 



Two Stream Ciphers 

• A5/1 
– Based on shift registers 
– Used in GSM mobile phones 

• RC4 
– Based on changing lookup table 
– Used many places 



A5/1: Shift Registers 

• Uses three shift registers 
– Efficient in hardware 
– Often slow if implemented in software 

• The A5/1 shift registers: 
– X: 19 bits (x0,x1,x2, …,x18) 
– Y: 22 bits (y0,y1,y2, …,y21) 
– Z: 23 bits (z0,z1,z2, …,z22) 



A5/1: Keystream 
•  At each step: m = maj(x8, y10, z10)  
–  Examples: maj(0,1,0) = 0 and maj(1,1,0) = 1  

•  If x8 = m then X steps  
–  t = x13 ⊕ x16 ⊕ x17 ⊕ x18 
–  xi = xi-1 for i = 18,17,…,1 and x0 = t 

•  If y10 = m then Y steps 
–  t = y20 ⊕ y21 
–  yi = yi-1 for i = 21,20,…,1 and y0 = t 

•  If z10 = m then Z steps 
–  t = z7 ⊕ z20 ⊕ z21 ⊕ z22 
–  zi = zi-1 for i = 22,21,…,1 and z0 = t 

•  Keystream bit is x18 ⊕ y21 ⊕ z22  



A5/1 

•  Each variable here is a single bit 
•  Key is used as initial fill of registers 
•  Each register steps (or not) based on maj(x8, y10, z10) 
•  Keystream bit is XOR of rightmost bits of registers 

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21 

z0 z1 z2 z3 z4 z5 z6 z7 z8  z9  z10  z11  z12 z13 z14 z15 z16 z17 z18 z19 z20 z21 z22 

X

Y

Z

⊕ 

⊕ 

⊕ 

⊕ 

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 



A5/1 

•  In this example, m = maj(x8, y10, z10) = maj(1,0,1) = 1  
•  Register X steps, Y does not step, and Z steps 
•  Keystream bit is XOR of right bits of registers 
•  Here, keystream bit will be 0 ⊕ 1 ⊕ 0 = 1 

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 

1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 

X

Y

Z

⊕ 

⊕ 

⊕ 

⊕ 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 



Lab 3: A5/1 exercise 
For the A5/1 cipher, on average how often 
1.  does the X register step? 
2.  does the Y register step? 
3.  does the Z register step? 
4.  do all 3 registers step? 
5.  do exactly 2 registers step? 
6.  does exactly 1 register step? 
7.  does no register step? 



Still useful for resource-
constrained devices. 

Shift Register Crypto 

Efficient in hardware, but is often slow 
in software. 

With faster processors, this 
approach is used less often. 



Rivest Cipher 4 (RC4) 

•  Stream cipher 
•  Used in wireless protocols 
– WEP, WPA, etc. 

•  Designed to be implemented efficiently 
in software. 
•  Uses a self-modifying lookup table 
– vs. A5/1 shift registers. 

•  Generates a byte at a time 
– vs. A5/1 bit at a time. 



RC4 Design 

•  Self-modifying lookup table always 
contains a permutation of the byte 
values 0,1,…,255. 
•  Key determines initial permutation 
•  At each step, RC4 

1.  Swaps elements in current lookup table 
2.  Selects a keystream byte from table 



RC4 Initialization 
•  S[] is permutation of 0,1,...,255
•  key[] contains N bytes of key

for i = 0 to 255

S[i] = i

K[i] = key[i (mod N)]

next i

j = 0

for i = 0 to 255

j = (j + S[i] + K[i]) mod 256

swap(S[i], S[j])

next i

i = j = 0



RC4 Keystream 
•  For each keystream byte, swap elements in table and 

select byte 
i = (i + 1) mod 256

j = (j + S[i]) mod 256

swap(S[i], S[j])

t = (S[i] + S[j]) mod 256

keystreamByte = S[t]

•  Use keystream bytes like a one-time pad 
•  Note: first 256 bytes should be discarded 
–  Otherwise, related key attack exists 



RC4 fading from popularity 

• Used incorrectly in WEP 
– related key attack 

• vulnerable to distinguishing 
attacks 
– random data distinguishable from 

RC4 encrypted data 
• prohibited for TLS by RFC 7465 



Death of Stream Ciphers? 
•  Popular in the past 
–  Efficient in hardware 

–  Speed was needed to keep up with voice, etc. 

•  Today, processors are fast 
–  Software-based crypto is usually fast enough 

•  Future of stream ciphers? 
–  Shamir declared “the death of stream ciphers” 

–  May be greatly exaggerated… 



Block Ciphers 



Review of codebook ciphers 

Word Codeword 
Apple 00123 
Banana 11439 
Citrus 92340 
Cranberry 87642 
Durian 58629 
Orange 66793 
Strawberry 88432 
Watermelon 90210 

Apple Durian Orange 
Plaintext: 

Ciphertext: 

00123 58629 66793 



Block Ciphers: Codebooks of Bytes 

Input Output 
… … 
9E CB 
9F 80 
A0 4F 
A1 ED 
A2 62 
A3 9A 
… … 

OK, they are a bit 
more complicated 
than that… 



(Iterated) Block Cipher 

•  Plaintext and ciphertext consist of 
fixed-sized blocks 
• Ciphertext obtained from plaintext 

by iterating a round function 
•  Input to round function consists of 

key and output of previous round 
• Usually implemented in software 



Feistel Ciphers 
• A type of cipher. 
• Easy to reverse 

encryption. 
– i.e. you get decryption for 

free  
• Most modern block 

ciphers are "Feistel-ish" if 
not strict Feistel ciphers. 

Horst 
Feistel 



Feistel Cipher: Encryption 

•  Split plaintext block into left and right 
halves: 
P = (L0,R0)
•  For each round i = 1, 2, ..., n, compute 

Li= Ri-1 
Ri= Li-1 ⊕ F(Ri-1,Ki)
 where F is round function and Ki is 
subkey 
•  Ciphertext: C = (Ln,Rn)



Feistel Cipher: Decryption 

•  Start with ciphertext C = (Ln,Rn)
•  Each round i = n,n-1,…,1, compute 

  Ri-1 = Li
  Li-1 = Ri ⊕ F(Ri-1,Ki)
•  F is round function and Ki is subkey 
•  Plaintext: P = (L0,R0)



http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html  







Data Encryption Standard (DES) 

• Developed in 1970’s 
• Based on IBM’s Lucifer 
cipher 
• U.S. government standard 



DES Controversy 

• NSA secretly involved 
– changes made without explanation 

• Key length reduced 128 to 56 bits 
• Subtle changes to Lucifer 

algorithm 





DES Numerology 

•  Feistel cipher with… 
–  64 bit block length 

–  56 bit key length 
–  16 rounds 
–  48 bits of key used each round (subkey) 

•  Each round is simple (for a block cipher) 
•  Security depends heavily on “S-boxes” 
–  Each S-boxes maps 6 bits to 4 bits 

Odds of guessing key: roughly 
the same as winning the lottery 
& getting struck by lightning 
the same day. [Schneier 1996] 
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DES Expansion Permutation 

•  Input 32 bits 
 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• Output 48 bits 
31  0  1  2  3  4  3  4  5  6  7  8

 7  8  9 10 11 12 11 12 13 14 15 16

15 16 17 18 19 20 19 20 21 22 23 24

23 24 25 26 27 28 27 28 29 30 31  0 



DES S-box 

• 8 “substitution boxes” or S-boxes 
• Each S-box maps 6 bits to 4 bits 
• S-box number 1 
 

input bits (0,5)   
↓                input bits (1,2,3,4) 
   | 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
------------------------------------------------------------------------------------
00 | 1110 0100 1101 0001 0010 1111 1011 1000 0011 1010 0110 1100 0101 1001 0000 0111
01 | 0000 1111 0111 0100 1110 0010 1101 0001 1010 0110 1100 1011 1001 0101 0011 1000
10 | 0100 0001 1110 1000 1101 0110 0010 1011 1111 1100 1001 0111 0011 1010 0101 0000
11 | 1111 1100 1000 0010 0100 1001 0001 0111 0101 1011 0011 1110 1010 0000 0110 1101 



DES P-box 

•  Input 32 bits 
 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 

• Output 32 bits 
15  6 19 20 28 11 27 16  0 14 22 25  4 17 30  9

 1  7 23 13 31 26  2  8 18 12 29  5 21 10  3 24



DES Subkey 

•  56 bit DES key, numbered 0,1,2,…,55 
•  Left half key bits, LK 

49 42 35 28 21 14  7  

 0 50 43 36 29 22 15

 8  1 51 44 37 30 23

16  9  2 52 45 38 31

•  Right half key bits, RK  
55 48 41 34 27 20 13

 6 54 47 40 33 26 19

12  5 53 46 39 32 25

18 11  4 24 17 10  3



DES Subkey 

•  For rounds i=1,2,...,16
– Let LK = (LK circular shift left by ri)
– Let RK = (RK circular shift left by ri)

– Left half of subkey Ki is of LK bits 
13 16 10 23  0  4  2 27 14  5 20  9

22 18 11  3 25  7 15  6 26 19 12  1

– Right half of subkey Ki is RK bits
12 23  2  8 18 26  1 11 22 16  4 19

15 20 10 27  5 24 17 13 21  7  0  3



DES Subkey 

•  For rounds 1, 2, 9 and 16 the shift ri is 1, 
and in all other rounds ri is 2

•  Bits 8,17,21,24 of LK omitted each round 
•  Bits 6,9,14,25 of RK omitted each round 
•  Compression permutation yields 48 bit 

subkey Ki from 56 bits of LK and RK
•  Key schedule generates subkey 



DES Last Word (Almost) 

•  Initial permutation before round 1 
• Halves swapped after last round 
•  Final permutation applied to 

(R16,L16) 
• None of this serves security 

purpose 



Security of DES 

•  Security depends heavily on S-boxes 
– Everything else in DES is linear 

•  Thirty+ years of intense analysis has 
revealed no “back door” 

•  Attacks, essentially exhaustive key search 
•  Inescapable conclusions  
– Designers knew what they were doing 
– Way ahead of their time 









Block Cipher Notation 
•  P = plaintext block  
•  C = ciphertext block 
•  Encrypt P with key K to get ciphertext C 
–  C = E(P, K)

•  Decrypt C with key K to get plaintext P 
–  P = D(C, K)

•  Note: P = D(E(P, K), K) and C = E(D(C, K), K)
–  But P ≠ D(E(P, K1), K2) and C ≠ E(D(C, K1), K2) when K1 
≠ K2



Triple DES 
•  Today, 56 bit DES key is too small 
–  Exhaustive key search is feasible 

•  But DES is everywhere, so what to do? 
•  Triple DES or 3DES (112 bit key) 
–   C = E(D(E(P,K1),K2),K1)
–   P = D(E(D(C,K1),K2),K1)

•  Why Encrypt-Decrypt-Encrypt with 2 keys? 
–  Backward compatible: E(D(E(P,K),K),K) = E(P,K) 
–  And 112 bits is enough



Alternate Strategy to 3DES 

• Why not C = E(E(P,K),K) ? 
– Trick question: it’s still just 56 bit key 

• Why not C = E(E(P,K1),K2) ? 
• A (semi-practical) known plaintext 

attack exists 



Known Plaintext Attack AgainstAlternate 3DES 

•  Pre-compute table of E(P,K1) for every 
possible key K1 
– resulting table has 256 entries. 

•  For each possible K2 compute D(C,K2) until a match in table is found. 
•  When match is found, have: 

    E(P,K1) = D(C,K2)
•  Result gives us keys: C = E(E(P,K1),K2) 
•  Worst case to break? 256 + 256 = 257 



REVIEW: A5/1 lab 

•  Each variable here is a single bit 
•  Key is used as initial fill of registers 
•  Each register steps (or not) based on maj(x8, y10, z10) 
•  Keystream bit is XOR of rightmost bits of registers 

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21 

z0 z1 z2 z3 z4 z5 z6 z7 z8  z9  z10  z11  z12 z13 z14 z15 z16 z17 z18 z19 z20 z21 z22 

X

Y

Z

⊕ 

⊕ 

⊕ 

⊕ 

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 













Advanced Encryption Standard (AES) 

•  Replacement for DES 
•  AES competition (late 90’s) 
– NSA openly involved 
– Transparent process 
– Many strong algorithms proposed 
– Rijndael Algorithm ultimately selected 

(pronounced like  “Rhine Doll”) 

•  Iterated block cipher (like DES) 
•  Not a Feistel cipher (unlike DES) 



AES Overview 
•  Block size: 128 bits (others in Rijndael) 
•  Key length: 128, 192 or 256 bits 

(independent of block size) 
•  10 to 14 rounds (depends on key length) 
•  Each round uses 4 functions (3 “layers”) 

–  ByteSub (nonlinear layer) 
–  ShiftRow (linear mixing layer) 
–  MixColumn (nonlinear layer) 
–  AddRoundKey (key addition layer) 



AES ByteSub 

•  ByteSub is AES’s “S-box” 
–  details next slide 

•  Can be viewed as either 
1.  a nonlinear (but invertible) composition of 2 math operations; or 
2.  a lookup table 

•  Treat 128 bit block as 4x6 byte array 
a00 a01 a02 a03 

a10 a11 a12 a13 

a20 a21 a22 a23 

a30 a31 a32 a33 

b00 b01 b02 b03 

b10 b11 b12 b13 

b20 b21 b22 b23 

b30 b31 b32 b33 

ByteSub 



AES “S-box” 

First 4 
bits of 
input 

Last 4 bits of input 



AES ShiftRow 

a00 a01 a02 a03 

a10 a11 a12 a13 

a20 a21 a22 a23 

a30 a31 a32 a33 

a00 a01 a02 a03 

a11 a12 a13 a10 

a22 a23 a20 a21 

a33 a30 a31 a32 

ShiftRow 

cyclic shift - linear operation 



AES MixColumn 

a0i 

a1i 

a2i 

a3i 

b0i 

b1i 

b2i 

b3i 

MixColumn for 1 = 0, 1, 2, 3 

•  invertible 
•  linear 
•  applied to each column 
•  implemented as lookup table 



AES AddRoundKey 

• RoundKey (subkey) determined 
by key schedule algorithm 

•  XOR subkey with block 

Block Subkey 



AES Decryption 

•  To decrypt, process must be invertible 
•  Inverse of MixAddRoundKey is easy 
– ⊕ is its own inverse 

•  MixColumn is invertible 
–  inverse also implemented as a lookup table 

•  Inverse of ShiftRow is easy 
– cyclic shift the other direction 

•  ByteSub is invertible 
–  inverse also implemented as a lookup table 



A Few Other Block Ciphers 

• Briefly… 
– IDEA 
– Blowfish 
– RC6 

• More detailed… 
– TEA 



IDEA 

•  International Data Encryption 
Algorithm 
•  Invented by James Massey 
– One of the giants of modern crypto 

•  64-bit block, 128-bit key 
•  Uses mixed-mode arithmetic 
•  Combines different math operations 
– IDEA the first to use this approach 
– Frequently used today 



Blowfish 

•  Blowfish encrypts 64-bit blocks 
•  Key is variable length, up to 448 bits 
•  Invented by Bruce Schneier 
•  Almost a Feistel cipher 

Ri = Li-1 ⊕ Ki
Li = Ri-1 ⊕ F(Li-1 ⊕ Ki)

•  The round function F uses 4 S-boxes 
–  Each S-box maps 8 bits to 32 bits 

•  Key-dependent S-boxes 
–  S-boxes determined by the key 



RC6 
•  Invented by Ron Rivest 
•  Variables 
–  Block size 
–  Key size 
–  Number of rounds 

•  An AES finalist 
•  Uses data dependent rotations  
–  Unusual for algorithm to depend on plaintext 

•  Possibly NSA's algorithm of choice 
[Jacob Appelbaum 2014] 



Time for TEA 

•  Tiny Encryption 
Algorithm  (TEA) 
•  64 bit block, 128 bit key 
•  Assumes 32-bit arithmetic 
•  Number of rounds is variable 
– 32 is considered secure 

•  Uses “weak” round function 
– large number of rounds required 



TEA Encryption 

Assuming 32 rounds:
(K[0],K[1],K[2],K[3]) = 128 bit key
(L,R) = plaintext (64-bit block)
delta = 0x9e3779b9
sum = 0
for i = 1 to 32
     sum += delta
     L += ((R<<4)+K[0])^(R+sum)^((R>>5)+K[1])

 R += ((L<<4)+K[2])^(L+sum)^((L>>5)+K[3])
next i
ciphertext = (L,R) 



TEA Decryption 

Assuming 32 rounds: 
(K[0],K[1],K[2],K[3]) = 128 bit key
(L,R) = ciphertext (64-bit block)
delta = 0x9e3779b9
sum = delta << 5
for i = 1 to 32
     R -= ((L<<4)+K[2])^(L+sum)^((L>>5)+K[3])
     L -= ((R<<4)+K[0])^(R+sum)^((R>>5)+K[1])

 sum -= delta
next i
plaintext = (L,R) 



TEA Comments 

• Almost a Feistel cipher 
– Uses + and - instead of ⊕ (XOR) 

•  Simple 
•  Easy to implement 
•  Fast 
•  Low memory requirement 
•  Possibly a “related key” attack 



TEA Variations 

•  eXtended TEA (XTEA) 
– eliminates related key attack 
– slightly more complex 

•  Simplified TEA (STEA) 
– insecure version 
– used as an example for cryptanalysis 



Block Cipher Modes 



Multiple Blocks 
•  How to encrypt multiple blocks? 
•  Do we need a new key for each block? 
–  As bad as (or worse than) a one-time pad! 

•  Encrypt each block independently? 

•  Make encryption depend on previous block? 
–  That is, can we “chain” the blocks together? 

•  How to handle partial blocks? 
–  We won’t discuss this issue 



Modes of Operation 
•  Many modes: we discuss 3 most popular 
•  Electronic Codebook (ECB) mode 
–  Encrypt each block independently 
–  Most obvious, but has a serious weakness 

•  Cipher Block Chaining (CBC) mode 
–  Chain the blocks together 
–  More secure than ECB, virtually no extra work 

•  Counter Mode (CTR) mode 
–  Block ciphers acts like a stream cipher 
–  Popular for random access 



ECB Mode 

•  Notation: C = E(P,K)
•  Given plaintext P0, P1, …, Pm, …
•  Most obvious way to use a block cipher: 

 Encrypt     Decrypt 
C0 = E(P0, K) P0 = D(C0, K) 
C1 = E(P1, K) P1 = D(C1, K)
C2 = E(P2, K)  … P2 = D(C2, K)  …

•  For fixed key K, this is “electronic” version of a 
codebook cipher (without additive) 
–  With a different codebook for each key 



ECB Cut and Paste 
•  Suppose plaintext is  

Alice luvs Bob. Trudy luvs Joe.

•  Assuming 64-bit blocks and 8-bit ASCII: 
P0 = “Alice lu”, P1 = “vs Bob. ”,
P2 = “Trudy lu”, P3 = “vs Joe. ”

•  Ciphertext: C0,C1,C2,C3
•  Trudy cuts and pastes: C0,C3,C2,C1
•  Decrypts as 

Alice luvs Joe. Trudy luvs Bob.



ECB Weakness 

•  Suppose Pi = Pj

•  Then Ci = Cj and Trudy knows Pi = Pj 
•  This gives Trudy some information, 

even if she does not know Pi or Pj

•  Trudy might know Pi

•  Is this a serious issue? 



Alice Hates ECB Mode 
•  Alice’s uncompressed image, and ECB encrypted (TEA) 

•  Why does this happen? 
•  Same plaintext yields same ciphertext! 



Alice Hates ECB Mode 
•  Alice’s uncompressed image, and ECB encrypted (TEA) 

•  Why does this happen? 
•  Same plaintext yields same ciphertext! 



CBC Mode 

•  Blocks are “chained” together 
•  A random initialization vector, or IV, is required to 

initialize CBC mode 
•  IV is random, but not secret 

 Encryption Decryption
C0 = E(IV ⊕ P0, K), P0 = IV ⊕ D(C0, K),
C1 = E(C0 ⊕ P1, K), P1 = C0 ⊕ D(C1, K),
C2 = E(C1 ⊕ P2, K),… P2 = C1 ⊕ D(C2, K),…

•  Analogous to classic codebook with additive 



CBC Mode 

•  Identical plaintext blocks yield different 
ciphertext blocks 

•  If C1 is garbled to, say, G then 
P1 ≠ C0 ⊕ D(G, K), P2 ≠ G ⊕ D(C2, K)

•  But P3 = C2 ⊕ D(C3, K), P4 = C3 ⊕ D(C4, K),…
•  Automatically recovers from errors! 
•  Cut and paste is still possible, but more 

complex (and will cause garbles) 



Alice Likes CBC Mode 
•  Alice’s uncompressed image, Alice CBC encrypted (TEA) 

•  Why does this happen? 
•  Same plaintext yields different ciphertext! 



Counter Mode (CTR) 

• CTR is popular for random access 
• Use block cipher like a stream cipher 
 Encryption   Decryption 
C0 = P0 ⊕ E(IV, K), P0 = C0 ⊕ E(IV, K),
C1 = P1 ⊕ E(IV+1, K), P1 = C1 ⊕ E(IV+1, K),
C2 = P2 ⊕ E(IV+2, K),… P2 = C2 ⊕ E(IV+2, K),…



Integrity 



Data Integrity 

•  Integrity ⎯ detect unauthorized writing 
(i.e., modification of data) 

•  Example: Inter-bank fund transfers 
– Confidentiality may be nice, integrity is critical 

•  Encryption provides confidentiality 
– prevents unauthorized disclosure 

•  Encryption alone does not provide integrity 
– One-time pad, ECB cut-and-paste, etc. 



MAC 

• Message Authentication Code 
(MAC) 
– Used for data integrity  
– Integrity not the same as 

confidentiality 
• MAC is computed as CBC residue 
– That is, compute CBC encryption, 

saving only final ciphertext block, the 
MAC



MAC Computation 

•  MAC computation (assuming N 
blocks)
C0 = E(IV ⊕ P0, K),
C1 = E(C0 ⊕ P1, K),
C2 = E(C1 ⊕ P2, K),…
CN-1 = E(CN-2 ⊕ PN-1, K) = MAC

•  MAC sent with IV and plaintext 
•  Receiver does same computation and 

verifies that result agrees with MAC 
•  Note: receiver must know the key K 



Does a MAC work? 
•  Suppose Alice has 4 plaintext blocks 
•  Alice computes
C0 = E(IV⊕P0,K), C1 = E(C0⊕P1,K),
C2 = E(C1⊕P2,K), C3 = E(C2⊕P3,K) = MAC

•  Alice sends IV,P0,P1,P2,P3 and MAC to Bob  
•  Suppose Trudy changes P1 to X  
•  Bob computes 
C0 = E(IV⊕P0,K), C1 = E(C0⊕X,K),
C2 = E(C1⊕P2,K), C3 = E(C2⊕P3,K) = MAC' ≠ MAC

•  That is, error propagates into the MAC 
•  Trudy can’t make MAC' == MAC without K 



Confidentiality and Integrity 
•  Encrypt with one key, MAC with another key  
•  Why not use the same key? 
–  Send last encrypted block (MAC) twice?  
–  This cannot add any security! 

•  Using different keys to encrypt and compute MAC 
works, even if keys are related 
–  But, twice as much work as encryption alone 
–  Can do a little better – about 1.5 “encryptions” 

•  Confidentiality and integrity with same work as one 
encryption is a research topic 



Uses for Symmetric Crypto 

• Confidentiality 
– Transmitting data over insecure 

channel 
– Secure storage on insecure media 

•  Integrity (MAC) 
• Authentication protocols (later…) 
• Anything you can do with a hash 

function (upcoming chapter…) 



Lab: Alternate CTR mode 

•  Suppose we use encrypt using the 
following formula: 
       Ci = Pi ⊕ E(K, IV+i) 
•  Is this secure?  Why or why not? 
– If so, how does this relate to CTR 

mode?  
– If not, what type of attacks would be a 

concern? 


