
CS 166: Information Security

Prof. Tom Austin
San José State University

Symmetric
Key Crypto

Stream Ciphers & Block Ciphers

• Stream ciphers
– based on the one-time pad
• Block ciphers
– based on codebook ciphers

Symmetric Key Notation

Encrypt the plaintext P with the key
K to produce the ciphertext C.
 E(P,K) = C
Decrypt the ciphertext C with the
key K to produce the plaintext P.
 D(C,K) = P

Stream Ciphers

• Based on one time pad (OTP)
• Not provably secure
• More usable

than OTP

One-Time Pad Review

0101 1010 0101 1011 0101 Plaintext:

1011 0010 1101 1001 0001 Key:

1110 1000 1000 0010 0100 Ciphertext:

⨁

Provably secure!

One-Time Pad Review

0101 1010 0101 1011 0101 Plaintext:

1011 0010 1101 1001 0001 Key:

1110 1000 1000 0010 0100 Ciphertext:

⨁

Key is as long as the original message

Replacing the key with a keystream

1001 1110 Key: Keystream
Generator

Keystream:

1001 0011 1101 1000 …
0101 1010 0101 1011 P:

⨁

1100 0001 1000 0011 C:

Two Stream Ciphers

• A5/1
– Based on shift registers
– Used in GSM mobile phones

• RC4
– Based on changing lookup table
– Used many places

A5/1: Shift Registers

• Uses three shift registers
– Efficient in hardware
– Often slow if implemented in software

• The A5/1 shift registers:
– X: 19 bits (x0,x1,x2, …,x18)
– Y: 22 bits (y0,y1,y2, …,y21)
– Z: 23 bits (z0,z1,z2, …,z22)

A5/1: Keystream
•  At each step: m = maj(x8, y10, z10)
–  Examples: maj(0,1,0) = 0 and maj(1,1,0) = 1

•  If x8 = m then X steps
–  t = x13 ⊕ x16 ⊕ x17 ⊕ x18
–  xi = xi-1 for i = 18,17,…,1 and x0 = t

•  If y10 = m then Y steps
–  t = y20 ⊕ y21
–  yi = yi-1 for i = 21,20,…,1 and y0 = t

•  If z10 = m then Z steps
–  t = z7 ⊕ z20 ⊕ z21 ⊕ z22
–  zi = zi-1 for i = 22,21,…,1 and z0 = t

•  Keystream bit is x18 ⊕ y21 ⊕ z22

A5/1

•  Each variable here is a single bit
•  Key is used as initial fill of registers
•  Each register steps (or not) based on maj(x8, y10, z10)
•  Keystream bit is XOR of rightmost bits of registers

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 z19 z20 z21 z22

X

Y

Z

⊕

⊕

⊕

⊕

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

A5/1

•  In this example, m = maj(x8, y10, z10) = maj(1,0,1) = 1
•  Register X steps, Y does not step, and Z steps
•  Keystream bit is XOR of right bits of registers
•  Here, keystream bit will be 0 ⊕ 1 ⊕ 0 = 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1

1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1

X

Y

Z

⊕

⊕

⊕

⊕

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Lab 3: A5/1 exercise
For the A5/1 cipher, on average how often
1.  does the X register step?
2.  does the Y register step?
3.  does the Z register step?
4.  do all 3 registers step?
5.  do exactly 2 registers step?
6.  does exactly 1 register step?
7.  does no register step?

Still useful for resource-
constrained devices.

Shift Register Crypto

Efficient in hardware, but is often slow
in software.

With faster processors, this
approach is used less often.

Rivest Cipher 4 (RC4)

•  Stream cipher
•  Used in wireless protocols
– WEP, WPA, etc.

•  Designed to be implemented efficiently
in software.
•  Uses a self-modifying lookup table
– vs. A5/1 shift registers.

•  Generates a byte at a time
– vs. A5/1 bit at a time.

RC4 Design

•  Self-modifying lookup table always
contains a permutation of the byte
values 0,1,…,255.
•  Key determines initial permutation
•  At each step, RC4

1.  Swaps elements in current lookup table
2.  Selects a keystream byte from table

RC4 Initialization
•  S[] is permutation of 0,1,...,255
•  key[] contains N bytes of key

for i = 0 to 255

S[i] = i

K[i] = key[i (mod N)]

next i

j = 0

for i = 0 to 255

j = (j + S[i] + K[i]) mod 256

swap(S[i], S[j])

next i

i = j = 0

RC4 Keystream
•  For each keystream byte, swap elements in table and

select byte
i = (i + 1) mod 256

j = (j + S[i]) mod 256

swap(S[i], S[j])

t = (S[i] + S[j]) mod 256

keystreamByte = S[t]

•  Use keystream bytes like a one-time pad
•  Note: first 256 bytes should be discarded
–  Otherwise, related key attack exists

RC4 fading from popularity

• Used incorrectly in WEP
– related key attack

• vulnerable to distinguishing
attacks
– random data distinguishable from

RC4 encrypted data
• prohibited for TLS by RFC 7465

Death of Stream Ciphers?
•  Popular in the past
–  Efficient in hardware

–  Speed was needed to keep up with voice, etc.

•  Today, processors are fast
–  Software-based crypto is usually fast enough

•  Future of stream ciphers?
–  Shamir declared “the death of stream ciphers”

–  May be greatly exaggerated…

Block Ciphers

Review of codebook ciphers

Word Codeword
Apple 00123
Banana 11439
Citrus 92340
Cranberry 87642
Durian 58629
Orange 66793
Strawberry 88432
Watermelon 90210

Apple Durian Orange
Plaintext:

Ciphertext:

00123 58629 66793

Block Ciphers: Codebooks of Bytes

Input Output
… …
9E CB
9F 80
A0 4F
A1 ED
A2 62
A3 9A
… …

OK, they are a bit
more complicated
than that…

(Iterated) Block Cipher

•  Plaintext and ciphertext consist of
fixed-sized blocks
• Ciphertext obtained from plaintext

by iterating a round function
•  Input to round function consists of

key and output of previous round
• Usually implemented in software

Feistel Ciphers
• A type of cipher.
• Easy to reverse

encryption.
– i.e. you get decryption for

free
• Most modern block

ciphers are "Feistel-ish" if
not strict Feistel ciphers.

Horst
Feistel

Feistel Cipher: Encryption

•  Split plaintext block into left and right
halves:
P = (L0,R0)
•  For each round i = 1, 2, ..., n, compute

Li= Ri-1
Ri= Li-1 ⊕ F(Ri-1,Ki)
 where F is round function and Ki is
subkey
•  Ciphertext: C = (Ln,Rn)

Feistel Cipher: Decryption

•  Start with ciphertext C = (Ln,Rn)
•  Each round i = n,n-1,…,1, compute

 Ri-1 = Li
 Li-1 = Ri ⊕ F(Ri-1,Ki)
•  F is round function and Ki is subkey
•  Plaintext: P = (L0,R0)

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Data Encryption Standard (DES)

• Developed in 1970’s
• Based on IBM’s Lucifer
cipher
• U.S. government standard

DES Controversy

• NSA secretly involved
– changes made without explanation

• Key length reduced 128 to 56 bits
• Subtle changes to Lucifer

algorithm

DES Numerology

•  Feistel cipher with…
–  64 bit block length

–  56 bit key length
–  16 rounds
–  48 bits of key used each round (subkey)

•  Each round is simple (for a block cipher)
•  Security depends heavily on “S-boxes”
–  Each S-boxes maps 6 bits to 4 bits

Odds of guessing key: roughly
the same as winning the lottery
& getting struck by lightning
the same day. [Schneier 1996]

L R

expand shiftshift

key

key

S-boxes

compress

L R

28 28

28 28

28 28

48

32

48

32

32

32

32

One
Round

 of
DES

48

32

Ki

P box

⊕

⊕

DES Expansion Permutation

•  Input 32 bits
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• Output 48 bits
31 0 1 2 3 4 3 4 5 6 7 8

 7 8 9 10 11 12 11 12 13 14 15 16

15 16 17 18 19 20 19 20 21 22 23 24

23 24 25 26 27 28 27 28 29 30 31 0

DES S-box

• 8 “substitution boxes” or S-boxes
• Each S-box maps 6 bits to 4 bits
• S-box number 1

input bits (0,5)
↓ input bits (1,2,3,4)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
00 | 1110 0100 1101 0001 0010 1111 1011 1000 0011 1010 0110 1100 0101 1001 0000 0111
01 | 0000 1111 0111 0100 1110 0010 1101 0001 1010 0110 1100 1011 1001 0101 0011 1000
10 | 0100 0001 1110 1000 1101 0110 0010 1011 1111 1100 1001 0111 0011 1010 0101 0000
11 | 1111 1100 1000 0010 0100 1001 0001 0111 0101 1011 0011 1110 1010 0000 0110 1101

DES P-box

•  Input 32 bits
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

• Output 32 bits
15 6 19 20 28 11 27 16 0 14 22 25 4 17 30 9

 1 7 23 13 31 26 2 8 18 12 29 5 21 10 3 24

DES Subkey

•  56 bit DES key, numbered 0,1,2,…,55
•  Left half key bits, LK

49 42 35 28 21 14 7

 0 50 43 36 29 22 15

 8 1 51 44 37 30 23

16 9 2 52 45 38 31

•  Right half key bits, RK
55 48 41 34 27 20 13

 6 54 47 40 33 26 19

12 5 53 46 39 32 25

18 11 4 24 17 10 3

DES Subkey

•  For rounds i=1,2,...,16
– Let LK = (LK circular shift left by ri)
– Let RK = (RK circular shift left by ri)

– Left half of subkey Ki is of LK bits
13 16 10 23 0 4 2 27 14 5 20 9

22 18 11 3 25 7 15 6 26 19 12 1

– Right half of subkey Ki is RK bits
12 23 2 8 18 26 1 11 22 16 4 19

15 20 10 27 5 24 17 13 21 7 0 3

DES Subkey

•  For rounds 1, 2, 9 and 16 the shift ri is 1,
and in all other rounds ri is 2

•  Bits 8,17,21,24 of LK omitted each round
•  Bits 6,9,14,25 of RK omitted each round
•  Compression permutation yields 48 bit

subkey Ki from 56 bits of LK and RK
•  Key schedule generates subkey

DES Last Word (Almost)

•  Initial permutation before round 1
• Halves swapped after last round
•  Final permutation applied to

(R16,L16)
• None of this serves security

purpose

Security of DES

•  Security depends heavily on S-boxes
– Everything else in DES is linear

•  Thirty+ years of intense analysis has
revealed no “back door”

•  Attacks, essentially exhaustive key search
•  Inescapable conclusions
– Designers knew what they were doing
– Way ahead of their time

Block Cipher Notation
•  P = plaintext block
•  C = ciphertext block
•  Encrypt P with key K to get ciphertext C
–  C = E(P, K)

•  Decrypt C with key K to get plaintext P
–  P = D(C, K)

•  Note: P = D(E(P, K), K) and C = E(D(C, K), K)
–  But P ≠ D(E(P, K1), K2) and C ≠ E(D(C, K1), K2) when K1
≠ K2

Triple DES
•  Today, 56 bit DES key is too small
–  Exhaustive key search is feasible

•  But DES is everywhere, so what to do?
•  Triple DES or 3DES (112 bit key)
–  C = E(D(E(P,K1),K2),K1)
–  P = D(E(D(C,K1),K2),K1)

•  Why Encrypt-Decrypt-Encrypt with 2 keys?
–  Backward compatible: E(D(E(P,K),K),K) = E(P,K)
–  And 112 bits is enough

Alternate Strategy to 3DES

• Why not C = E(E(P,K),K) ?
– Trick question: it’s still just 56 bit key

• Why not C = E(E(P,K1),K2) ?
• A (semi-practical) known plaintext

attack exists

Known Plaintext Attack AgainstAlternate 3DES

•  Pre-compute table of E(P,K1) for every
possible key K1
– resulting table has 256 entries.

•  For each possible K2 compute D(C,K2) until a match in table is found.
•  When match is found, have:

 E(P,K1) = D(C,K2)
•  Result gives us keys: C = E(E(P,K1),K2)
•  Worst case to break? 256 + 256 = 257

REVIEW: A5/1 lab

•  Each variable here is a single bit
•  Key is used as initial fill of registers
•  Each register steps (or not) based on maj(x8, y10, z10)
•  Keystream bit is XOR of rightmost bits of registers

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 z19 z20 z21 z22

X

Y

Z

⊕

⊕

⊕

⊕

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

Advanced Encryption Standard (AES)

•  Replacement for DES
•  AES competition (late 90’s)
– NSA openly involved
– Transparent process
– Many strong algorithms proposed
– Rijndael Algorithm ultimately selected

(pronounced like “Rhine Doll”)

•  Iterated block cipher (like DES)
•  Not a Feistel cipher (unlike DES)

AES Overview
•  Block size: 128 bits (others in Rijndael)
•  Key length: 128, 192 or 256 bits

(independent of block size)
•  10 to 14 rounds (depends on key length)
•  Each round uses 4 functions (3 “layers”)

–  ByteSub (nonlinear layer)
–  ShiftRow (linear mixing layer)
–  MixColumn (nonlinear layer)
–  AddRoundKey (key addition layer)

AES ByteSub

•  ByteSub is AES’s “S-box”
–  details next slide

•  Can be viewed as either
1.  a nonlinear (but invertible) composition of 2 math operations; or
2.  a lookup table

•  Treat 128 bit block as 4x6 byte array
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

ByteSub

AES “S-box”

First 4
bits of
input

Last 4 bits of input

AES ShiftRow

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

a00 a01 a02 a03

a11 a12 a13 a10

a22 a23 a20 a21

a33 a30 a31 a32

ShiftRow

cyclic shift - linear operation

AES MixColumn

a0i

a1i

a2i

a3i

b0i

b1i

b2i

b3i

MixColumn for 1 = 0, 1, 2, 3

•  invertible
•  linear
•  applied to each column
•  implemented as lookup table

AES AddRoundKey

• RoundKey (subkey) determined
by key schedule algorithm

•  XOR subkey with block

Block Subkey

AES Decryption

•  To decrypt, process must be invertible
•  Inverse of MixAddRoundKey is easy
– ⊕ is its own inverse

•  MixColumn is invertible
–  inverse also implemented as a lookup table

•  Inverse of ShiftRow is easy
– cyclic shift the other direction

•  ByteSub is invertible
–  inverse also implemented as a lookup table

A Few Other Block Ciphers

• Briefly…
– IDEA
– Blowfish
– RC6

• More detailed…
– TEA

IDEA

•  International Data Encryption
Algorithm
•  Invented by James Massey
– One of the giants of modern crypto

•  64-bit block, 128-bit key
•  Uses mixed-mode arithmetic
•  Combines different math operations
– IDEA the first to use this approach
– Frequently used today

Blowfish

•  Blowfish encrypts 64-bit blocks
•  Key is variable length, up to 448 bits
•  Invented by Bruce Schneier
•  Almost a Feistel cipher

Ri = Li-1 ⊕ Ki
Li = Ri-1 ⊕ F(Li-1 ⊕ Ki)

•  The round function F uses 4 S-boxes
–  Each S-box maps 8 bits to 32 bits

•  Key-dependent S-boxes
–  S-boxes determined by the key

RC6
•  Invented by Ron Rivest
•  Variables
–  Block size
–  Key size
–  Number of rounds

•  An AES finalist
•  Uses data dependent rotations
–  Unusual for algorithm to depend on plaintext

•  Possibly NSA's algorithm of choice
[Jacob Appelbaum 2014]

Time for TEA

•  Tiny Encryption
Algorithm (TEA)
•  64 bit block, 128 bit key
•  Assumes 32-bit arithmetic
•  Number of rounds is variable
– 32 is considered secure

•  Uses “weak” round function
– large number of rounds required

TEA Encryption

Assuming 32 rounds:
(K[0],K[1],K[2],K[3]) = 128 bit key
(L,R) = plaintext (64-bit block)
delta = 0x9e3779b9
sum = 0
for i = 1 to 32
 sum += delta
 L += ((R<<4)+K[0])^(R+sum)^((R>>5)+K[1])

 R += ((L<<4)+K[2])^(L+sum)^((L>>5)+K[3])
next i
ciphertext = (L,R)

TEA Decryption

Assuming 32 rounds:
(K[0],K[1],K[2],K[3]) = 128 bit key
(L,R) = ciphertext (64-bit block)
delta = 0x9e3779b9
sum = delta << 5
for i = 1 to 32
 R -= ((L<<4)+K[2])^(L+sum)^((L>>5)+K[3])
 L -= ((R<<4)+K[0])^(R+sum)^((R>>5)+K[1])

 sum -= delta
next i
plaintext = (L,R)

TEA Comments

• Almost a Feistel cipher
– Uses + and - instead of ⊕ (XOR)

•  Simple
•  Easy to implement
•  Fast
•  Low memory requirement
•  Possibly a “related key” attack

TEA Variations

•  eXtended TEA (XTEA)
– eliminates related key attack
– slightly more complex

•  Simplified TEA (STEA)
– insecure version
– used as an example for cryptanalysis

Block Cipher Modes

Multiple Blocks
•  How to encrypt multiple blocks?
•  Do we need a new key for each block?
–  As bad as (or worse than) a one-time pad!

•  Encrypt each block independently?

•  Make encryption depend on previous block?
–  That is, can we “chain” the blocks together?

•  How to handle partial blocks?
–  We won’t discuss this issue

Modes of Operation
•  Many modes: we discuss 3 most popular
•  Electronic Codebook (ECB) mode
–  Encrypt each block independently
–  Most obvious, but has a serious weakness

•  Cipher Block Chaining (CBC) mode
–  Chain the blocks together
–  More secure than ECB, virtually no extra work

•  Counter Mode (CTR) mode
–  Block ciphers acts like a stream cipher
–  Popular for random access

ECB Mode

•  Notation: C = E(P,K)
•  Given plaintext P0, P1, …, Pm, …
•  Most obvious way to use a block cipher:

 Encrypt Decrypt
C0 = E(P0, K) P0 = D(C0, K)
C1 = E(P1, K) P1 = D(C1, K)
C2 = E(P2, K) … P2 = D(C2, K) …

•  For fixed key K, this is “electronic” version of a
codebook cipher (without additive)
–  With a different codebook for each key

ECB Cut and Paste
•  Suppose plaintext is

Alice luvs Bob. Trudy luvs Joe.

•  Assuming 64-bit blocks and 8-bit ASCII:
P0 = “Alice lu”, P1 = “vs Bob. ”,
P2 = “Trudy lu”, P3 = “vs Joe. ”

•  Ciphertext: C0,C1,C2,C3
•  Trudy cuts and pastes: C0,C3,C2,C1
•  Decrypts as

Alice luvs Joe. Trudy luvs Bob.

ECB Weakness

•  Suppose Pi = Pj

•  Then Ci = Cj and Trudy knows Pi = Pj
•  This gives Trudy some information,

even if she does not know Pi or Pj

•  Trudy might know Pi

•  Is this a serious issue?

Alice Hates ECB Mode
•  Alice’s uncompressed image, and ECB encrypted (TEA)

•  Why does this happen?
•  Same plaintext yields same ciphertext!

Alice Hates ECB Mode
•  Alice’s uncompressed image, and ECB encrypted (TEA)

•  Why does this happen?
•  Same plaintext yields same ciphertext!

CBC Mode

•  Blocks are “chained” together
•  A random initialization vector, or IV, is required to

initialize CBC mode
•  IV is random, but not secret

 Encryption Decryption
C0 = E(IV ⊕ P0, K), P0 = IV ⊕ D(C0, K),
C1 = E(C0 ⊕ P1, K), P1 = C0 ⊕ D(C1, K),
C2 = E(C1 ⊕ P2, K),… P2 = C1 ⊕ D(C2, K),…

•  Analogous to classic codebook with additive

CBC Mode

•  Identical plaintext blocks yield different
ciphertext blocks

•  If C1 is garbled to, say, G then
P1 ≠ C0 ⊕ D(G, K), P2 ≠ G ⊕ D(C2, K)

•  But P3 = C2 ⊕ D(C3, K), P4 = C3 ⊕ D(C4, K),…
•  Automatically recovers from errors!
•  Cut and paste is still possible, but more

complex (and will cause garbles)

Alice Likes CBC Mode
•  Alice’s uncompressed image, Alice CBC encrypted (TEA)

•  Why does this happen?
•  Same plaintext yields different ciphertext!

Counter Mode (CTR)

• CTR is popular for random access
• Use block cipher like a stream cipher
 Encryption Decryption
C0 = P0 ⊕ E(IV, K), P0 = C0 ⊕ E(IV, K),
C1 = P1 ⊕ E(IV+1, K), P1 = C1 ⊕ E(IV+1, K),
C2 = P2 ⊕ E(IV+2, K),… P2 = C2 ⊕ E(IV+2, K),…

Integrity

Data Integrity

•  Integrity ⎯ detect unauthorized writing
(i.e., modification of data)

•  Example: Inter-bank fund transfers
– Confidentiality may be nice, integrity is critical

•  Encryption provides confidentiality
– prevents unauthorized disclosure

•  Encryption alone does not provide integrity
– One-time pad, ECB cut-and-paste, etc.

MAC

• Message Authentication Code
(MAC)
– Used for data integrity
– Integrity not the same as

confidentiality
• MAC is computed as CBC residue
– That is, compute CBC encryption,

saving only final ciphertext block, the
MAC

MAC Computation

•  MAC computation (assuming N
blocks)
C0 = E(IV ⊕ P0, K),
C1 = E(C0 ⊕ P1, K),
C2 = E(C1 ⊕ P2, K),…
CN-1 = E(CN-2 ⊕ PN-1, K) = MAC

•  MAC sent with IV and plaintext
•  Receiver does same computation and

verifies that result agrees with MAC
•  Note: receiver must know the key K

Does a MAC work?
•  Suppose Alice has 4 plaintext blocks
•  Alice computes
C0 = E(IV⊕P0,K), C1 = E(C0⊕P1,K),
C2 = E(C1⊕P2,K), C3 = E(C2⊕P3,K) = MAC

•  Alice sends IV,P0,P1,P2,P3 and MAC to Bob
•  Suppose Trudy changes P1 to X
•  Bob computes
C0 = E(IV⊕P0,K), C1 = E(C0⊕X,K),
C2 = E(C1⊕P2,K), C3 = E(C2⊕P3,K) = MAC' ≠ MAC

•  That is, error propagates into the MAC
•  Trudy can’t make MAC' == MAC without K

Confidentiality and Integrity
•  Encrypt with one key, MAC with another key
•  Why not use the same key?
–  Send last encrypted block (MAC) twice?
–  This cannot add any security!

•  Using different keys to encrypt and compute MAC
works, even if keys are related
–  But, twice as much work as encryption alone
–  Can do a little better – about 1.5 “encryptions”

•  Confidentiality and integrity with same work as one
encryption is a research topic

Uses for Symmetric Crypto

• Confidentiality
– Transmitting data over insecure

channel
– Secure storage on insecure media

•  Integrity (MAC)
• Authentication protocols (later…)
• Anything you can do with a hash

function (upcoming chapter…)

Lab: Alternate CTR mode

•  Suppose we use encrypt using the
following formula:
 Ci = Pi ⊕ E(K, IV+i)
•  Is this secure? Why or why not?
– If so, how does this relate to CTR

mode?
– If not, what type of attacks would be a

concern?

