
Unconditional-to-conditional Transfer and 
Optimization for

Web-based Skybox GAN

Crystal Kwong



Introduction: Project Goal

● Overall goal is to build an AI skybox generator application
○ Use transfer learning to train conditional StyleGAN2-ADA model, given a 

pre-trained unconditional model
○ Optimize the StyleGAN2-ADA model by quantizing it
○ Deploy model on web page
○ Use model to generate an image usable for a 3D skybox



Introduction: Generative AI
“Using AI effectively often starts with clearly defining your 
goal. What problem are you trying to solve or what task 
are you trying to accomplish? Once you have a clear 
objective, explore different AI tools and platforms that align 
with your needs, whether it's for writing, image generation, 

data analysis, or automation” (AI-generated text)

Everything on this 
page is AI generated. 
Images, text - AI can 
generate a lot of 
different content!



Introduction: AI in Games

Potentially use for:

● Characters
● Dialogue
● Behavior
● Visual effects
● Stylized environments

“Using AI effectively often starts 
with clearly defining your goal. 
What problem are you trying to 
solve or what task are you trying to 
accomplish? Once you have a 
clear objective, explore different AI 
tools and platforms that align with 
your needs, whether it's for writing, 
image generation, data analysis, or 
automation” (AI-generated text)



Introduction: AI in Games

Implementing ‘true’ AI in games comes with problems:

● High effort, cost prohibitive
○ Need more programmers to dedicate effort to set up the AI

● Performance expensive
○ Games want to be fast and responsive

● Unexpected results or AI misinterpretation
○ Not desired in video games
○ "If you care more about ‘plausibility’ than ‘intelligence’, experience shows 

that hand-tuned solutions go a long way further than emergent ones" 
[Pfau et al. (2020)]
■ hand-tuned solutions such as hard-coded if-statements



Introduction: AI in Games

Viable possibilities: visual effects? Environments?

An environment could be generated in the form of a skybox…



Introduction: Skybox
● A skybox:

○ helps build an environment
○ renders an illusion of an infinite 3D environment

■ is implemented by wrapping a six-sided texture over a cube, or a panoramic image over 
a sphere

● view is from ‘inside’ the cube/sphere

Since a skybox is basically an image, a skybox can be created using an AI image 
generator.

source: freepik.com





Presentation Overview

● Related Work
○ Hyper-modulation, quantization of GANs, quantization of sequential StyleGAN2, 

StyleGAN2-ADA Web deployment, Existing AI Skybox Generator Websites
● Background

○ GANs/cGANs, StyleGAN/StyleGAN2/StyleGAN2-ADA, Training a model, Frechet Inception 
Distance Score (FID score), Transfer learning, Quantization, Open Neural Network Exchange 
(ONNX) model, skybox, Unity

● Experiments
○ Transfer learning and Quantization

● Web page deployment
● Results

○ Demonstration of using generated skybox in Unity



Related Work - Unconditional to conditional GAN Transfer 
with Hyper-modulation
● Laria et al. (2022) proposes hyper-modulation to facilitate 

unconditional-to-conditional knowledge transfer for GANs, using StyleGAN 
as their example model

○ Unconditional-to-conditional GAN knowledge transfer is not as 
thoroughly researched

○ Hyper-modulation idea: on-the-fly weight modulation by the hypernetwork 
to produce target conditional model weights



Related Work - Quantization of GANs

● Andreev and Fritzler (2022) simulated 
StyleGAN quantization using PyTorch 
fake quantization library and recorded 
the results of 4-bit, 8-bit quantization
○ Demonstrated effect on image 

quality
■ Falls short of truly quantizing the 

GAN, since fake quantization only 
simulates quantization

source: https://arxiv.org/pdf/2108.13996



Related Work - Quantization of Sequential StyleGAN2

● An example of quantizing StyleGAN2
● Script to quantize StyleGAN2, by a project managed by Intel

○ However, not for original StyleGAN2 model; only quantized a 
rewritten sequential version of the StyleGAN2 model



Related Work - StyleGAN2-ADA model Web Deployment

● A web page example 
(https://www.guidodejong.nl/hack/running
-stylegan2-ada-in-browser/) used ONNX 
Runtime to deploy a StyleGAN2-ADA 
model that was converted into ONNX 
format



Related Work - AI Skybox Generator Websites

● Two notable sites: Skybox AI (by Blockade Labs) and Rosebud.ai
● Both generators accept a text prompt and generate a skybox along with a 3D 

preview
● Text prompt input allows content of generated skyboxes to include more detail 

than just skies, such as landscapes, trees, or castles.
● These examples demonstrate the boundless potential of AI skybox generation

As for my project: aim to fulfill a use case of choice-based skybox generator, 
rather than text-based (why: see next slide)



Related Work - AI Skybox Generator Websites

Skybox AI sample (left); Rosebud.ai sample (right)



Background

This section defines:

● Generative Adversarial Network (GAN) and conditional GAN (cGAN)
● StyleGAN, StyleGAN2, StyleGAN2-ADA
● Training a model
● Frechet Inception Distance (FID) Score
● Transfer Learning
● Quantization
● Open Neural Network Exchange (ONNX) model
● Skybox
● Unity



Background - Generative Adversarial Network (GAN)

● GAN is a type of generative AI model particularly useful for generating high 
quality images

● GAN architecture consists of two models:
○ Generator - synthesizes output
○ Discriminator - classifies whether output is ‘real’ or ‘fake’, given a dataset of 

‘real’ data



Background - Generative Adversarial Network (GAN)

Generator (synthesizes output) and discriminator (classifies output as ‘real’ or ‘fake’).

How GAN works:

1. ‘z’ (random noise) 
is input into the 
generator

2. Generator outputs 
content

3. Discriminator 
classifies the 
generator output 
as ‘real or ‘fake’



Background - Conditional GAN

● Conditional GAN (cGAN) is a 
type of GAN
○ Conditional GAN can 

generate class-conditional 
outputs, as opposed to 
random outputs of a GAN

○ To obtain a cGAN, a 
conditioning label can be 
added to the input of both the 
generator and the 
discriminator



Background - StyleGAN

● GAN with redesigned generator 
architecture

○ Traditional GAN: latent code fed to 
input layer

○ StyleGAN: map the input latent 
code to an intermediate latent 
space ‘w’

○ StyleGAN disentangles image 
attributes (i.e. hair style, face shape) 
through mapping styles inside 
intermediate latent space

○ How is this style mapping done?



Background - StyleGAN

● Learned affine transforms 
convert the mapped input into 
styles

○ converted styles are fed into the 
adaptive instance normalization 
(AdaIN) operations

● AdaIN: aligns mean and 
variance of the style features 
(pixel values) to the target image 
features, effectively drawing the 
target image in the new style



Background - StyleGAN

image source: https://medium.com/data-science/an-intuitive-understanding-to-neural-style-transfer-e85fd80394be



Background - StyleGAN

● StyleGAN generator also adds 
noise at each layer

○ noise helps create random-like 
features such as freckles

● Progressive growing (smaller 
-> larger resolution) until final 
high resolution output image is 
reached

● Overall, with these changes to 
the traditional generator, 
StyleGAN generates higher 
quality images than a traditional 
GAN

Upsample -> progressive growing



Background - StyleGAN2 and StyleGAN2-ADA

● Built on StyleGAN with improvements
○ StyleGAN2: fixed blob-like artifact in StyleGAN by removing 

normalization (AdaIN)
■ replaced AdaIN with demodulation, a weaker version of scaling down 

output feature maps that resulted in no artifact

image source: adapted from https://arxiv.org/pdf/1912.04958



Background - StyleGAN2 and StyleGAN2-ADA

● Built on StyleGAN with improvements
○ StyleGAN2-ADA allows small training datasets - even just a few 

thousand training images - to produce good results
■ achieved this by introducing “adaptive discriminator augmentation” 

(ADA) to dynamically reduce discriminator overfitting



Background - Training a model

● Training a model refers to an iterative 
process of feeding an input through the 
model’s layers to obtain an output
○ Through feedback from the loss 

function, backpropagation, and 
repeated iterations, weights are 
gradually adjusted closer toward 
the ‘correct’ value

Source: https://www.geeksforgeeks.org/backpropagation-in-neural-network/



Background - Frechet Inception Distance (FID) Score

● Metric to measure quality and diversity of images generated by a GAN
● Calculates “distance between images in pixel space”, comparing the model’s 

generated images against the true dataset images
● Lower FID score is preferable

○ lower score = more diverse and high quality images
● The FID score is calculated according to the formula below:

𝜇 = the mean, ‘Tr’ = the function of summing the main diagonal (top left to bottom right elements) of the 
matrix, 𝛴 = covariance matrix for feature vector. ‘X’ is the true image and ‘g’ is the model-generated image



Background - Frechet Inception Distance (FID) Score

source: https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/

Correlation between 
FID score with image 
quality.
Ideally, FID score of 
0 means the GAN’s 
generated images 
are exactly the same 
as the dataset’s 
images.



Background - Transfer Learning

● Transfer learning is a method of utilizing weights of a pre-trained model to 
speed up training of another model

● When training from scratch, a model is initialized with completely random 
weights
○ Transfer learning bypasses random weight initialization by using 

pre-trained weights
○ The model starts training from a state of partial knowledge, needing less 

time to train than if it had started from a randomized state of no 
knowledge



Background - Transfer Learning

● Transfer learning is a broad term, and there are specific methods to apply 
transfer learning, such as fine-tuning

● Fine-tuning
○ Retrains every weight of a pre-trained model, gradually adapting the 

entire model to the new data
○ Can be used to adapt a model’s domain to another domain (i.e. images 

of cars to people)



Background - Quantization

● Quantization replaces higher-precision computations (such as 32-bit float) 
with lower-precision computations (such as 8-bit int)

○ Reduces model size and computation load during inference
■ Downside: model accuracy loss from lower precision 

weights/computations

● Quantization of GANs is also more difficult and not as thoroughly researched 
compared to quantization of classifier models



Background - Open Neural Network Exchange (ONNX) 
Model

● Open Neural Network Exchange (ONNX) is an 
interoperability tool that can represent 
models from various frameworks, such as 
PyTorch and TensorFlow, as a common file 
format



Background - Skybox

● In 3D graphics, a skybox is a technique used to create the illusion of an 
encompassing environment

● Making a skybox:
○ Cubemap texture wrapped around the inside of a cube

■ six texture sides must blend at the seams to create a smooth 3D environment look
○ Panorama image wrapped inside a sphere

■ a 360 panorama image naturally wraps smoothly around the inside of a sphere

source: freepik.com



Background - Unity

● Unity is a game engine that 
allows adding objects and 
lighting to a scene

● Skyboxes are supported in 
Unity



Experiments

In this section:

● Fine-tuning a Pre-trained Model
● Unconditional to conditional transfer

○ Hyper-modulation
○ Direct weight transfer

● Quantization



Experiments

Environment:

● Most experiments were performed in a conda virtual environment with Python 
3.9.20 and PyTorch 1.7.1+cu102

● Hyper-modulation experiment was performed in a conda virtual environment 
with Python 3.8.8 and PyTorch 1.9.1+cu102.

● All model training was done with two K40m GPUs



Experiments - Fine-tuning a Pre-trained Model

● Goal: Obtain a model that generates sky images, given a pre-trained model of 
texture images
○ Achieve by fine-tuning the pre-trained texture image model
○ To compare training speed vs fine-tuning, also trained a second model 

from scratch
● Dataset used for fine-tuning: Cirrus Cumulus Stratus Nimbus (CCSN) dataset 

of 2543 cloud images sized 512x512 pixels
● Fine-tuned for 100 “kimg”, where “kimg” is defined as “thousands of real 

images shown to the discriminator”
● The total training time was approximately twenty hours
● Results on the next slides



Experiments - Fine-tuning a Pre-trained Model
Fine-tuned 
(100 kimg)



Experiments - Fine-tuning a Pre-trained Model

Trained from 
scratch (100 
kimg)



Experiments - Fine-tuning a Pre-trained Model
● Results (FID Scores) FID scores per 20 kimg of fine-tuned GAN

FID scores per 20 kimg of GAN trained from scratch

100-kimg 
image 
samples



Experiments - Fine-tuning a Pre-trained Model

● Overall: fine-tuning is efficient compared to training from scratch
○ Experiment showed that it is viable to use a pre-trained model to help 

train the final model for generating a skybox



Experiments - Unconditional-to-conditional Transfer

● Why: because most pre-trained GAN models are unconditional. So, transfer 
from unconditional GAN is especially relevant.

● 1. Hyper-modulation
○ Hyper-modulation implementation was built in StyleGAN

■ could not easily apply to final model (StyleGAN2-ADA)
■ still useful for seeing unconditional-to-conditional transfer in action



Experiments - Unconditional-to-conditional Transfer

● Main idea of hyper-modulation: utilize a hypernetwork (generator that aims to 
generate parameters for other models) to generate the weights for all classes
○ Hypernetwork takes in a given source model weight along with a class 

embedding and outputs the desired target weight
○ This process is done in real time during training

- class embedding + source 
weight fed into the 
modulator, g, which will 
produce target weight used 
for class-specific generation



Experiments - Unconditional-to-conditional Transfer

● We observe the effect of hyper-modulation by training the base unconditional 
model on the AFHQ dataset (containing 15,000 512x512 images of animal 
faces divided into 3 classes) for ~38,000 iterations
○ Training duration: 57 hours



Experiments - Unconditional-to-conditional Transfer

● Latent interpolation of classes from 
‘cat’ to ‘wild’ to ‘dog’

● Animal classes are clearly 
distinguishable, showing success in 
transferring from unconditional to 
conditional GAN

○ some artifacts in the lower images; 
perhaps related to StyleGAN issue

● While effective, this method 
involves modification of the 
StyleGAN architecture

○ simpler method may be preferred as 
rewriting a model to implement 
unconditional to conditional knowledge 
transfer may not always be feasible



Experiments - Unconditional-to-conditional Transfer

● 2. Direct weight transfer
○ Motivation: In a paper on GAN transfer, Wang et al. demonstrated that 

simply initializing the weights of a conditional GAN by “copying the values 
from the unconditional GAN” is sufficient to improve model training

○ Taking inspiration from this, we conduct an experiment where we transfer 
the desired weights from the pre-trained model generator into the 
generator of an untrained conditional model
■ Then, the conditional model will continue training after receiving the 

new weights (like fine-tuning)



Experiments - Unconditional-to-conditional Transfer
● Steps:

○ Obtain fresh conditional StyleGAN2-ADA model
○ Obtain pre-trained unconditional StyleGAN2-ADA model
○ Extract weights from source pre-trained generator

■ Unconditional model’s state_dict (containing weights and layer 
mappings) does not exactly match the state_dict of the target 
conditional generator. To bypass this issue, non-matching keys are 
excluded when transferring pre-trained weights into filtered_dict.



Experiments - Unconditional-to-conditional Transfer

● Steps:
○ Transfer weights by loading state_dict that contains pre-trained 

unconditional weights into the conditional generator



Experiments - Unconditional-to-conditional Transfer

● Steps:
○ Before and after weight transfer:



Experiments - Unconditional-to-conditional Transfer

● Next, save the generator (now containing transferred weights) inside a 
complete model in a .pkl file
○ Resume training as if fine-tuning a conditional model normally

Create two more models as an experiment:

● We create another model which contains transferred weights from both the 
pre-trained unconditional generator and the discriminator

● Trained third conditional model from scratch (base case)



Experiments - Unconditional-to-conditional Transfer

● Training for all three models is performed for 100 kimg
● Results (left to right): G only (FID 196.47), G & D (FID 29.01), trained-from-scratch (FID 134.51)

● Best model is obtained from having both G & D weights transferred



Experiments - Unconditional-to-conditional Transfer

● Transferring only generator weights hurts the GAN's training performance, 
compared to training from scratch
○ Reasonable considering GAN training: ideally, generator and discriminator 

train at the same rate in order for both to learn well



Experiments - Unconditional-to-conditional Transfer

● Note: in this experiment, there is an untested case of transferring the 
discriminator weights only

○ Wang et al. (2018) suggested that transferring only discriminator weights produces inferior results, 
compared to transferring weights of both the generator and the discriminator, which also produced 
the best results in their research

○ With satisfactory results already obtained from transferring both of the generator and discriminator 
weights, the discriminator-only transfer case was deemed unnecessary



Experiments - Quantization

● Converted model into ONNX format before applying quantization
○ Used ONNX Neural Compressor tool to quantize the ONNX model using 

weight-only quantization (specifying n_bits = 4 bits) with 
round-to-nearest (RTN) algorithm



Experiments - Quantization

● After quantization, model size shrunk slightly from 120 megabytes to 117 
megabytes

● Inference speed was roughly timed on Google Colab using time() function. 
Over several runs, there seemed to be no significant difference in inference 
speed between the original and quantized models

time: quantized
time2: unquantized



Experiments - Quantization

● It may be noted that the quantization tool’s use was largely promoted for 
Large Language Models (LLMs)

● With this in mind, we tested a pre-trained LLM model “bigbird_Opset16.onnx” 
obtained from an ONNX model zoo (https://github.com/onnx/models)
○ Original model size: 498,094 kb
○ Quantized model size: 486,563 kb

■ Suggests that, even for LLMs, this tool does not reduce model size 
significantly with round-to-nearest weight-only quantization



Experiments - Quantization

● With the weight-only RTN quantization not effective for either StyleGAN2-ADA 
or LLM, we tried another quantization tool: ONNX quantize_dynamic 
(provided by ONNX Runtime)

● Used same StyleGAN2-ADA model converted to ONNX



Experiments - Quantization

● Result: model size changed even less, from 120,261 kb to 120,058 kb
● However, noticed a warning stating the model opset does not support node fusions, thus 

leading to not as optimized performance

● Issue: StyleGAN2-ADA model conversion fails when using any model opset > 10

conversion code of StyleGAN2-ADA to ONNX; uses 
opset_version=10

Conclusion: ONNX Runtime quantization 
may not work on ONNX-converted 
StyleGAN2-ADA model



Experiments - Quantization

● When testing ONNX Runtime dynamic quantization on LLM, model size was 
reduced greatly from 498,094 kb to 125,161 kb

○ Much better result than using RTN weight-only quantization provided by ONNX neural 
compressor

○ Unfortunately, ONNX-converted StyleGAN2-ADA model cannot make use of the ONNX 
Runtime quantization

■ We keep the StyleGAN2-ADA model quantized using ONNX neural compressor

Quantized LLM model size (top)
Original LLM model size (bottom)



Web Page Deployment





Web Page Deployment

● Deployed to a web page through ONNX Runtime Web, a Javascript library that enables 
ONNX model web application deployment
○ Output data obtained from model inference is accessed through Javascript
○ Class selection for the conditional model is done through a dropdown menu 

interface that offers a selection of available cloud types
○ To give an idea of what each selection might generate, sample labeled images are 

displayed on the right side column
○ After a cloud type is selected, the user can click the “generate image” button to 

start model inference



Web Page Deployment

● The model’s generated output consists of numerical data that must be 
converted into pixel values
○ Through a conversion formula, the output array values are converted into 

red, green, and blue (RGB) values, which are used to display the 
resulting image on an HTML Canvas



Web Page Deployment

Conversion 
formula from 
model output 
to RGB pixel 
values

And code to 
put the color 
pixels onto the 
HTML Canvas 
context (ctx)



Web Page Deployment

● The displayed image, being a two-dimensional flat image, must be modified 
before it can be used as a skybox (since a skybox is typically created from 
either a 6-sided texture or a panoramic image)

● First attempt was with a 6-sided texture:

● 6-sided texture did not work because the 
seams must be blended together, ideally 
with image editing software



Web Page Deployment

Above: the seams that must 
be blended together



Web Page Deployment

Above: Unity preview of poor quality skybox with manually blended seams using simple 
gradients (to simulate HTML Canvas blending)



Web Page Deployment

● Since obtaining a seamless 6-sided texture from a 2D image did not seem 
feasible, we chose to use panoramic images for the skybox

● A panoramic image must wrap smoothly from left to right. To achieve this, one 
half of the image was taken and stitched against the same half but flipped, 
resulting in an image where the image wraps seamlessly from left to right

● This resulting panorama image can be downloaded by clicking on it.

● A 3D preview of the generated 
skybox can be viewed directly on 
the webpage by clicking on the 
A-Frame icon.



Results

See demo using the website, the website’s 3d preview, and then the skybox in 
Unity



Conclusion

● We trained a conditional StyleGAN2-ADA model using transferred weights 
from a pre-trained unconditional generator and discriminator
○ achieved an FID score of 29.01 after 100 kimg of training, outperforming 

the FID score of 134.51 obtained from the model trained from scratch for 
the same duration

● Next, we converted the model into ONNX format and quantized the model 
using weight-only round-to-nearest number (RTN) quantization provided by 
the ONNX Neural Compressor tool
○ Resulted in file size reduction of 3 megabytes down from 120 megabytes.
○ No noticeable inference speedup when timed using time() function



Conclusion

● Finally, we deployed the final model to a webpage which converts the model’s 
generated output into a panoramic-like image
○ Image can be downloaded and used to create a skybox
○ Webpage fulfills a use case of choice-based content generation as 

opposed to the already existing text-based prompt AI skybox generators



Future Work

● Quantization
○ measure beyond model size; check resource usage of the quantized 

model using a tool that analyzes CPU or GPU usage
○ measure inference time using a tool instead of using the convenient but 

unreliable time() method



Future Work

● Adopt new method of converting 2D image to panorama image
○ current method of taking one image half and stitching it with the flipped image half wastes 

unique pixels on the right half of the image
○ Ideally, only a smaller stripe of the image is taken from one side, flipped, and blended in with 

the other side (but this is hard to do in HTML Canvas)

Converted panorama (left) versus original image (right)



Future Work

Ideal converted panorama image (pre-blended)



Future Work

● Combine generator model with an image upscaling model
○ Reduces problem of model’s generated images appearing blurry (due to 

originally blurry dataset images and small 512x512 image resolution)
○ Possible to train a new model on higher resolution images, but training 

time grows as resolution increases
○ Therefore, instead of attempting to train a model on higher resolution 

images, can combine current model with a second ready-to-use model 
that upscales the image, which will produce a higher quality skybox



Future Work

Example upscaled image:



References
Pfau, J., Smeddinck, J. D., & Malaka, R. (2020, November). The case for usable ai: What industry professionals make of academic ai in video 
games. In Extended abstracts of the 2020 annual symposium on computer-human interaction in play (pp. 330-334).

Bengesi, S., El-Sayed, H., Sarker, M. K., Houkpati, Y., Irungu, J., & Oladunni, T. (2024). Advancements in Generative AI: A Comprehensive Review of 
GANs, GPT, Autoencoders, Diffusion Model, and Transformers. IEEe Access.



Sample generated images

8 - stratus


