

Clustering and Classification in Machine Learning

in Python

Swathi MVS

Topics

- 1. Clustering
- 2. Classification
- 3. Clustering vs. Classification
- 4. Application of Clustering
- 5. Applications of Classification

Clustering

- Imagine big bag of different colored marbles
- Clustering sorting marbles and categorizing them into groups based on colors and patterns
- Marbles in same group are more alike, and those in different groups are less alike
- Organize and understand the marbles without knowing their names or labels in advance.
- In Python, clustering algorithms sort data points automatically
- Goal: discover hidden patterns or groups in data

Clustering

Clustering Methods:

- Density-Based Methods
 - consider the clusters as the dense region having some similarities and differences from the lower dense region of the space
 - OPTICS , DBSCAN
- Hierarchical Based Methods

clusters formed in this method form a tree-type structure based on the hierarchy. New clusters are formed using the previously formed one.

- Agglomerative (bottom-up approach)
- **Divisive** (top-down approach
- Partitioning Methods
- Grid-based Methods

- Imagine big pile of fruits, such as blueberries, oranges, and grapes
- Differentiate between fruits
- Provide computer examples of each fruit, with colors, shapes, and sizes.
- Show computer a new fruit not seen before
- Uses previous knowledge to decide if it's a blueberry, orange, or grape.
- Classification in Python make computer a smart fruit identifier
- Make decisions based on characteristics learned from the examples provided.
- Goal: recognize and label things automatically

1. Binary Classification: Classify the input into one of two classes or categories.

Example – On the basis of the given health conditions of a person, we have to determine whether the person has a certain disease or not.

2. Multiclass Classification: Classify the input into one of several classes or categories.

For Example – On the basis of data about different species of flowers, we have to determine which specie our observation belongs to.

Clustering vs. Classification

Clustering vs. Classification

	Classification	Clustering
Objective	To assign pre-defined classes or labels to instances	To group similar instances based on similarities
Purpose	Predicting the class or label of unseen instances	Discovering inherent patterns or structures
Supervision	Supervised learning	Unsupervised learning
Training	Requires labeled data for training	Does not require labeled data
Output	Class or label assignments	Cluster assignments
Example	Predicting whether an email is spam or not	Grouping customers based on purchasing behavior

1.Logistic Regression:

Logistic regression is a linear classification algorithm used for binary and multiclass classification tasks. It models the probability of an instance belonging to a particular class.

2.Support Vector Machines (SVM):

SVMs are used for binary classification tasks and aim to find a hyperplane that maximizes the margin between classes.

Classification – Logistic Regression

Clustering

1.K-Means Clustering:

K-Means is one of the most popular clustering algorithms. It partitions data into K clusters, with each data point assigned to the nearest cluster center.

2. Hierarchical Clustering:

Hierarchical clustering builds a tree-like structure of clusters, either bottom-up (agglomerative) or top-down (divisive), allowing for different levels of granularity in cluster assignments.

Clustering – K-Means

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: warnings.warn(

