
Credit Score-Based Lending System On Ethereum Platform

A Project

Presented to

The Faculty of the Department of Computer Science San

José State University

In Partial Fulfillment

of the Requirements for the Degree Master

of Science

by

Mayuri Shimpi

May 2024



© 2024

Mayuri Shimpi

ALL RIGHTS RESERVED



The Designated Project Committee Approves the Project Titled

Credit Score-Based Lending System On Ethereum Platform

by

Mayuri Shimpi

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2024

Dr. Chris Pollett Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Mr. Bhushan Sonawane Qualcomm



ABSTRACT

Credit Score-Based Lending System On the Ethereum Platform by

Mayuri Shimpi

Traditional banking systems act as intermediaries, assessing risks and profiting from

interest rate differentials. Credit scores, provided by trusted bureaus, are commonly used

to evaluate the creditworthiness of borrowers. Cryptocurrencies have emerged as a

significant and innovative medium due to their decentralized nature, operating without

reliance on a central authority, such as a government.

This report describes a project to implement the Autonomous Lending system on the

Ethereum Platform (ALOE), as proposed in [1], aiming to seamlessly integrate traditional

credit scoring methodologies for evaluating a borrower's risk of default. The objective of

this project report is to establish a robust understanding of cryptocurrencies and the

Ethereum platform and describe the implementation of pivotal components of the ALOE

system, as presented by Austin, Potika, and Pollett in 2023. Specifically, the report aims

to incorporate essential functionalities of the Credit Bureau Smart Contract (CBSC). This

entails the creation of a Notary tasked with verifying borrowers using real-world FICO

scores, SSNs, and Ethereum Addresses. The Notary further divides the user's identity

among various auditors and invokes the initializeLedger function to establish a credit

score for the borrower. The CBSC plays a pivotal role in connecting lenders and

borrowers. Finally, in cases of loan repayment failure, lenders have the option to engage

auditors to disclose the client's identity.

Keywords: DeFi, Blockchain, Ethereum, Smart Contracts



ACKNOWLEDGMENTS

I'd like to extend my heartfelt thanks to Professor Chris Pollett for his unwavering

support, patience, and insightful feedback. His guidance has been pivotal to my growth

over the past two semesters. Our weekly brainstorming and whiteboarding sessions have

significantly contributed to the enhancement and refinement of my project. His consistent

availability to answer my questions and steer me in the right direction has been

invaluable.

I also want to acknowledge the Department of Computer Science at SJSU for

offering comprehensive courses and resources that were instrumental in accomplishing

my project goals.

My gratitude extends to my committee members and all faculty for sharing their

knowledge and expertise. Additionally, I'm grateful to my peers and family for their

unwavering support and encouragement throughout this journey.



TABLE OF CONTENTS

1 Introduction…………………………………………………………….………1

2 Related works…..………………………………………………………………3

3 Preliminary works……………………………………………………………... 6

3.1 Test and Deploy Smart Contracts………………………………..…………. 6

3.2 Decentralization…………………………………………………………….. 7

3.3 Credit Score calculation……..……………………………………………... 8

3.4 Smart Contract on Solidity…………………………………………………10

4 Architecture and Implementation………………….………………………. 12

4.1 Borrower Registration ………………………………………………………13

4.1.1 Architecture …………………………………………………………13

4.1.2 Implementation ……………………………………………………..14

4.2 Loan Smart Contract ………………………………………………………..15

4.2.1 Architecture ………………………………………………………...15

4.2.2 Implementation ……………………………………………………..16

4.3 Borrowing and Lending …………………………………………………….20
4.4 Credit Score System ………………………………………………………...21

4.4.1 Calculating Borrower Scores ……………………………………….22

4.4.2 Coordinates and ratios ………………………………………………22

4.4.3 Implementation ……………………………………………………..23

5 Experiement and Result……………………………………………………28



6 Conclusion……………………………………………………………………..35

7 Future work……………………………………………………………………36

7.1 Credit Scoring models……………………………………………………..36

7.2 Implementation …………………………………………………………….36

LIST OF REFERENCES



I. Introduction

In the fast-changing field of financial technology, new cryptocurrencies such as Ethereum have

offered game-changing features beyond simple digital transactions. At the heart of this breakthrough are

smart contracts, which are the self-executing contracts with the agreement's terms explicitly put into

code. These smart contracts are more than just theoretical constructions; they are strong instruments that

can algorithmically execute and verify a wide range of transactions, profoundly altering how we think

about financial agreements.

Money lending is an excellent example of a real-world application that will profit greatly from

this technology. Historically, this process has been thoroughly embedded in a system in which banks act

as mediators. Banks play an important role in moving cash from depositors to borrowers while

benefitting from the interest rate disparity. They methodically examine borrowers' trustworthiness using

credit scores, which are numerical representations that assist them gauge the likelihood of payback and,

as a result, the risk and profitability of a loan.

Even though this conventional banking paradigm has been helpful to us for a long time, it has

drawbacks. Dependence on centralized organizations may result in inefficiencies, higher expenses, and

restricted accessibility, particularly for people without collateral or credit histories. This is the domain of

blockchain technology and systems such as the Ethereum Platform's Autonomous Lending System

(ALOE), which was suggested in [1].

ALOE, which is based on the Ethereum blockchain, eliminates the need for traditional banks by

facilitating direct, unsecured fund borrowing between people or organizations. Through the utilization of

blockchain technology's openness, security, and efficiency, ALOE presents a decentralized option that is

inventive and comprehensive.

This project's primary goal is to thoroughly investigate the Autonomous Lending System on the



Ethereum Platform (ALOE), as it was suggested in [1]. Understanding its unique qualities and functions

as well as how ALOE handles identity verification in a transparent and safe manner will be the main

topics of discussion. Furthermore, the project intends to investigate how ALOE facilitates seamless

interactions between borrowers and lenders on a decentralized platform and assesses borrower

creditworthiness through on-chain credit scoring. The order of this project report is as follows: The

preparatory work and research completed during the project's first half, as well as a quick summary of

the findings, are covered in the next chapter. The relevant work in the DeFi and loan systems is then

covered in the following chapter.

Following related works, the system architecture is explained along with the implementation

strategies used. The results and experiments chapter then overviews the unit testing and other

observations drafted from the functioning lending system. Lastly, the future scope of the project has

been mentioned along with the concluding remarks.

2



II. Related work

This chapter delineates various conventional peer-to-peer lending platforms alongside

blockchain-based systems such as Banksocial.

Conventional peer-to-peer (P2P) lending sites, such as LendingClub (2007), Prosper

Marketplace (2006), and Zopa (2005), rely on users to post personal information and loan amounts. The

platform evaluates creditworthiness, sets an interest rate, and makes the loan available for funding to

investors. Interest on loans is earned by investors, and origination and service fees are profitable for P2P

platforms. P2P platforms purchase loans that are first issued by banks and then take over the collection

process in the event of defaults.

Still, difficulties are present. Problems with loan criteria not meeting investor expectations have

been documented; examples include LendingClub in 2016 and Prosper Marketplace in 2008.

Furthermore, borrowers have experienced adverse interest rates as a result of misdated loans; this was

most noticeable at LendingClub in 2016. These difficulties emphasize the demand for loan alternatives

that are more efficient and transparent

Using blockchain technology, decentralized finance, or DeFi, refers to financial services that aim

to reconstruct traditional financial systems in a decentralized fashion. The Decentralized Autonomous

Organization (DAO) is a major participant in this ecology. A decentralized autonomous organization

(DAO) is essentially a type of cryptocurrency that is frequently referred to as the DAO coin.

Specifically, it can purchase DAO coins using other cryptocurrencies and activate voting processes. It

runs on a system of smart contracts.

To cast votes on different issues, members of a DAO utilize its native currencies, called

governance tokens. They might include choices about how to allocate funds or the organization's

strategic orientation. These monies frequently consist of the money used to buy DAO currencies in the

3



context of blockchain-based lending.

Some well-known DAOs in the DeFi space include:

MakerDAO (2017) Known for its stablecoin DAO,

which is backed by collateral in the

form of other cryptocurrencies.

Compound (2018) A lending platform where users can

lend and borrow various

cryptocurrencies.

Aave (2020) Offers lending and borrowing

services with features like flash loans

and interest rate swaps.

Table 1 Some existing DAOs

Figure 1: Evolution of Lending on Ethereum

While DAOs are a novel way to lend money, some lenders built on blockchain, such as

4



2022-founded Banksocial, provide more conventional loan services.

Banksocial enables investors to buy coins in the platform's cryptocurrency, facilitating

loans that are both secured and unsecured. Loans are then financed with the money produced

from these investments. The credit assessment algorithm of Banksocial sets the terms of these

loans. Investors get a passive income stream in the form of interest payments, which are

contingent on the performance of these loans.

The initial success of overcollateralized borrowing was demonstrated by Ethereum

apps such as Compound, Aave, and MakerDAO [14]. Subsequent versions of these systems

included features like yield farming, composability, and pooled liquidity as they gained

popularity. These improvements were made in an effort to increase market share and capitalize

on favorable market conditions, particularly during bullish trends.

5



III. Preliminary works

The project’s initial phase was mainly focused on research work and trying to

implement a few essential components of the system. This chapter briefly describes the work

carried out during the first half of the project, along with its applications and benefits to the

outcome. The chapter includes a description of the basic implementation of a smart contract,

the concept of decentralization that is central to the blockchain, the credit score calculations,

and the local setup of the blockchain.

3.1 Test and deploy smart contacts on Remix IDE

Web3.js stands as a pivotal JavaScript library in the realm of blockchain development,

specifically designed to facilitate interactions with the Ethereum blockchain. It’s extensive

feature set enables developers to build solid and dynamic decentralized apps (dApps) that take

advantage of the Ethereum blockchain's potential. Remix IDE is an online integrated

development environment that provides a full suite of tools to make creating, evaluating, and

implementing smart contracts easier.

Figure 2: CoinFlip Smart Contract
6



A sender can start a basic coin-flipping game between two players, player1 and

player2, with the use of the CoinFlip smart contract. It uses the Ethereum blockchain to build

a simple coin-flipping game in which two participants can join by adding ether to the contract.

The final digit of the block timestamp determines the distribution of the ether balance,

introducing a random component to the gameplay. Despite having a straightforward design, it

shows how smart contracts can run decentralized apps.

Figure 3: Compile and deploy the smart contract

Figure 4: Deploy the smart contract

7



Choosing the contract, entering the necessary parameters (Sender, player1, player2),

and hitting the Transact button to start deployment in the selected test environment are

the simple steps involved in deploying a smart contract on Remix IDE. By using this

method, developers may ensure functionality and security prior to real-world deployment

by testing and validating their smart contracts in a simulated environment before

releasing them to the Ethereum mainnet.

3.2 Decentralization

The idea of decentralization is crucial to the architecture and tenets of Bitcoin,

according to Satoshi Nakamoto's groundbreaking essay "Bitcoin: A Peer-to-Peer Electronic

Cash System" [2]. The lack of a central body or middleman in charge of the Bitcoin network

and transactions is referred to in this sense as decentralization.

The blockchain, a decentralized ledger, is introduced in this paper. All Bitcoin

transactions are transparently and permanently recorded on this ledger. It is preserved by the

nodes in the network using a consensus process known as Proof-of-Work (PoW). The

decentralization of the Bitcoin system is further enhanced by this consensus mechanism,

which guarantees that transactions are verified and added to the blockchain in a decentralized

and secure manner.

Unlike traditional financial systems, where the currency is controlled and regulated by

a central authority, such as banks or governments, Bitcoin is decentralized. The network

jointly manages the creation of new Bitcoins and transaction validation, ensuring the currency

system's decentralization and democratization.

Additionally, decentralization improves the Bitcoin network's resilience and security.

By dispersing control and decision-making across the network, Bitcoin becomes more

8



resistant to attacks, censorship, and system failure. This distributed architecture protects

Bitcoin's integrity and continuity, giving it a strong and safe alternative to established financial

systems.

Although the main use of Bitcoin is as a digital money or store of value, it is not as

capable as Ethereum when it comes to smart contracts. Vitalik Buterin proposed Ethereum at

the end of 2013, and the platform was introduced in 2015 with an expanded goal [3].

Ethereum was intended to be a decentralized platform where programmers could create and

implement smart contracts and decentralized applications (dApps). In contrast to Bitcoin,

which functions primarily as virtual money, Ethereum acts as a flexible framework for a range

of blockchain-related uses. Ethereum first employed a PoW consensus algorithm akin to that

of Bitcoin. With the release of Ethereum 2.0, it has started to switch to a Proof-of-Stake (PoS)

consensus process that uses less energy. Compared to Bitcoin, Ethereum's programming

language is more programmable and adaptable, enabling developers to design a wide range of

functionalities, including token creation, decentralized finance (DeFi) applications,

non-fungible tokens (NFTs), and much more.

9



3.3 Credit Score Calculation

Ensuring that organizations are accurately identified is a crucial component of credit

scores. Preventing situations where a single entity—a person or a company—can pose as

several different entities is crucial. Furthermore, safeguards need to be put in place to stop bad

actors from ruining the credit histories of well-behaved people. By preserving trust and equity

for all parties involved, this guarantees the accuracy and dependability of credit scoring

systems.

The FICO Score 8, which is frequently used for house loans, is covered in the

reference paper. It was created by the Fair Isaac Corporation (now FICO) [1]. Payment

history, debt burden, length of credit history, types of credit used, and recent credit searches

make up its five foundational elements. A weighted score formula, which is written as

follows, is used to integrate these elements:

WS = 0.35 X PH + 0.3 X DB + 0.15 X LoCH + 0.1 X ToC + 0.1 X RCS

The resulting WS is then transformed using a proprietary function to produce a final

credit score between 350 and 850, reflecting the probability of non-default.

The computational simplicity of the WS formula, involving only addition and

multiplication, makes it suitable for homomorphic encryption. The Paillier cryptosystem is

specifically highlighted for its cost-effectiveness in terms of computational resources. This

encryption method allows for operations to be performed on encrypted data, maintaining

borrower privacy on public blockchains.

The project's implementation, inspired by [1], includes a model in the smart contract

that tracks two main ratios motivated by the component of FICO 8 as well as a set of window

ratios, and additional bookkeeping information is maintained for incremental updates.
10



The Underpay Ratio (UPR) measures the ratio of time that the amount an individual

owes is more than the amount that they should owe versus the total period of all loans that

individual has ever carried. It captures an individual’s payment history as a single number,

calculated as TOT divided by the period from the first loan to the present.

The Current Debt Burden Ratio (CDBR) is a metric used to assess an individual's

current level of debt relative to their average debt burden over time. It is calculated by

dividing the current outstanding debt (COB) by the sum of the average outstanding debt

(AOB) and three "pseudo" standard deviations.

11



3.4 Smart Contract Using Solidity

Setting up a local blockchain environment is crucial, particularly during the

development and testing phases of blockchain applications. The Web3.js JavaScript library

was utilized to provide an interface for interacting with the Ethereum blockchain. This library

enables developers to build applications capable of interacting with smart contracts, querying

blockchain data, and sending transactions.

The _coinFlip.sol file was compiled to test and deploy the smart contract. The essential

properties obtained from the compiled file are the Application Binary Interface (ABI) and the

bytecode. The bytecode is deployed to the blockchain to facilitate the smart contract's

functionality, while the ABI serves as a human-readable map of the bytecode.

To compile the Solidity code, the ‘solc’ Solidity compiler was installed. In the project's

root directory, the command npm install --save solc was executed. Subsequently, a compile.js

file was created in the root directory to handle the compilation process. Node.js modules such

as path and fs, along with the solc compiler, were used in the compile.js file to read and

compile the _coinFlip.sol file.

The source variable in the compile.js file contains the raw Solidity code from the

_coinFlip.sol file. The compile() function was then invoked on this source code, specifying

that a single contract is being compiled. This process outputs the compiled bytecode and ABI

for the CoinFlip smart contract.

Executing node compile.js in the terminal displays the compiled bytecode and ABI,

providing the necessary components to deploy and interact with the CoinFlip smart contract on

the Ethereum blockchain.

12



Figure 5: Compiling a smart contract using the ‘solc’ compiler

The smart contract was tested using the Mocha Testing framework, a feature-rich

JavaScript test framework compatible with both Node.js and browser environments. Mocha

facilitates asynchronous testing and provides flexible and accurate reporting of test results.

In addition to Mocha, Ganache and Web3 were utilized for testing. Ganache offers a

set of unlocked accounts for local testing, eliminating the need for public or private keys to

access them. Web3 provides libraries for interacting with Ethereum nodes, and for testing, a

local node provided by Ganache was connected.

13



IV Architecture and implementation

This system is based on the paper by Thomas Austin, et. al. from [1] and is developed

within the Ethereum blockchain ecosystem, leveraging its smart contract functionality

executed through its virtual machine and developed using Solidity as the high-level

language. Within Ethereum, two primary account types exist:

● Externally Owned Accounts (EOA), owned by external users and associated with

public keys

● Contract Accounts, which execute specific code.

This architecture comprises four core processes:

● Borrower Registration

● Loan Creation

● Borrowing and Lending

● Credit Score calculation

These processes are designed to interact within the Ethereum blockchain environment,

ensuring secure and transparent execution of lending operations while leveraging the

decentralized nature of blockchain technology.

Figure 6: Core processes of the Lending system
14



The architecture of the project involves a borrower registering with a notary in the real world,

who verifies their information and interacts with the Credit Bureau Smart Contract (CBSC). The CBSC

handles tasks such as verifying unused addresses, initializing score ledgers, and facilitating loan

contracts. Auditors receive shares of identity, i.e., the Ethereum address of the Borrower. Loan smart

contracts enable borrowers to borrow and lenders to invest, with funds managed securely until loan

conditions are met. Borrowers interact with loan contracts through methods like ‘isReady()’ and

‘makePayment()’, updating credit scores via the CBSC.

4.1 Borrower Registration

During the registration phase, the client provides their real-world identity, such as their

social security number (SSN), to the credit bureau. This process involves several entities. This

section includes the architecture of the Borrower Registration and its implementation.

4.1.1 Architecture

The Borrower Registration phase consists of the following entities along with their

purpose:

● Borrower: A real person with a unique SSN and an Ethereum address.

● Notary: A trusted entity that validates the user's identity, credit score, and Ethereum

address. It divides the user's identity among auditors and initializes a credit score for

the borrower in the credit bureau smart contract.

● Auditors: Responsible for storing shares of the borrower's real-world identity. They

ensure the confidentiality of their share of the secret.

● Credit Bureau Smart Contract (CBSC): Stores a mapping between Ethereum addresses

and associated credit scoring information. It connects lenders and borrowers, tracks

loans and repayments, and updates the borrower's credit score. The notary is the only

15



entity authorized to invoke certain methods of this smart contract.

Figure 7: Borrower Registration

Significant trust is placed in the notary during the registration phase. If not performed

accurately, a borrower's credit score may be misrepresented, compromising anonymity. The

auditors collectively tie a user's Ethereum address to their real-world identity, but no

individual auditor can do so. The registration process involves the borrower providing their

SSN and Ethereum address to the notary for verification, followed by the notary initiating the

registration process in the CBSC and distributing the borrower's SSN among auditors using

secret sharing schemes. Finally, the notary registers the borrower with an initial credit score in

the CBSC.

4.1.2 Implementation

The Solidity code for the Register smart contract implements a secret sharing

algorithm, drawing inspiration from Shamir's secret sharing algorithm as proposed in the

referenced paper [1]. Specifically, the distribute secret function utilizes a polynomial

16



secret-sharing scheme inspired by Shamir's algorithm. This scheme divides the borrower's

SSN into shares distributed among auditors, ensuring no single auditor has access to the

complete SSN. By generating random coefficients and evaluating the polynomial at each

auditor's index, the algorithm effectively distributes the secret while preserving its integrity.

Figure 8: Distribute Identity slice

The ‘reconstructSecret’ function then enables the reconstruction of the original secret

from these shares, leveraging principles from Shamir's algorithm to maintain data privacy and

confidentiality. This implementation underscores the practical implications and applications of

Shamir's secret sharing algorithm within blockchain-based systems, enhancing security and

privacy in sensitive data management. In case of a loan default, the system implements a

ReconstructSecret function aimed at revealing the borrower's identity.

17



Figure 9: Reconstruct Borrower

4.2 Loan Smart Contract

Initiating a new loan must be done by an Externally Owned Account (EOA), which

assumes the role of the loan creator and defines the loan terms. As this process involves ether

from the creator, they can charge a fee from borrower interest. If extra ether accrues due to an

early lender fund claim, the additional interest also benefits the loan creator.

4.2.1 Architecture

Figure 10: Loan Smart Contract
18



At the center is the "Loan Smart Contract" (LoanSC), which serves as the primary

component responsible for managing loans. It offers functionalities such as investing funds,

borrowing loans, calculating interest, and processing withdrawals.

4.2.2 Implementation

This section presents the implementation of the Loan Smart Contract, facilitating

connections between lenders and borrowers. The Credit Bureau Smart Contract initializes

loans for the association by borrowers and lenders. Lenders invest funds, borrowers specify

their needs, and interest rates are calculated based on terms set by the initiating EOA.

Borrowers can make payments and monitor credit scores, with updates to the Credit Bureau

smart contract reflecting changes. Lenders can also withdraw funds.

The constructor initializes crucial variables for the Loan smart contract, defining

parameters such as the total loan amount, interest rate, number of payments, time intervals

between payments, and minimum credit score requirement. Additionally, it sets

‘_amountInvested’ and ‘_amountBorrowed’ to 0, which serve to track investment and

borrowing activities within the contract. These initializations establish the framework for

managing loan transactions and ensure accurate tracking of financial interactions between

lenders and borrowers.

Figure 11: Loan Smart Contract: Constructor

19



The invest() function allows lenders to deposit funds into the Loan smart contract. It

withdraws the specified amount from the lender's account and adds it to the contract balance.

If enough funds are received, the transaction timestamp marks the start of the loan. This

timestamp is used to calculate accrued interest, ensuring accurate interest calculations based

on the loan's initiation time.

Figure 12: Loan Smart Contract: Invest function

Testing the invest() function requires evaluating different scenarios to confirm its

accuracy. This includes ensuring the investment amount is within the allowed total and

verifying the loan's readiness after the investment.

Figure 13: Loan Smart Contract: Testing the Invest function

The borrow() function allows the borrower (msg.sender) to request a loan, contingent

20



upon meeting the loan requirements including the borrower's credit score and the requested

amount. It involves a call to getScore() which may incur gas costs. Additionally, the function

checks whether the loan has already been funded to prevent unnecessary recomputations,

potentially caching previous results. The isReady() function determines if the loan has been

fully funded.

Testing the borrow(uint amount) function entails examining different scenarios to

ascertain its accuracy. This includes ensuring that a borrower cannot borrow twice and

verifying that the borrower cannot request an amount exceeding the total available amount.

Figure 14: Loan Smart Contract: Borrow function

21



The calculateInterest(uint owed, uint numPayments) function computes the accrued

interest on a loan based on the provided parameters. It first checks if the number of payments

is greater than zero. Then, it calculates the interest rate per payment interval and uses it to

determine the augmented interest. This augmented interest is then used to calculate the new

amount owed after all payments. Finally, it returns the difference between the new amount

owed and the original amount owed, representing the accrued interest on the loan.

Figure 15: Loan Smart Contract: Calculate Interest function

The withdraw(uint amount) function enables an investor to withdraw a specified

amount of ether from the contract. It first checks if the contract balance is sufficient to fulfill

the withdrawal request. Then, it calculates the number of payments made since the last

withdrawal and updates the investor's balance by adding the accrued interest. After ensuring

that the investor's balance is adequate for withdrawal, it deducts the withdrawn amount from

22



the investor's balance and updates the timestamp of the last withdrawal. Finally, it transfers the

specified amount of ether to the investor's address.

Figure 16: Loan Smart Contract: Withdraw function

These functions and some helper functions like isReady() (returns whether or not the

loan has been funded) conclude the implementation and unit testing of the Loan Smart

Contract. Next, I will continue to examine the procedure of a borrower acquiring a loan and

subsequently repaying it as defined in the ALOE system [1]. We presume that the loan has

already been established but has not yet received full funding or gathered the required number

of borrowers. To monitor credit scores, we incorporate the following functions into the

CreditBureau smart contract. The function updateScoreBorrow notifies the credit bureau of a

loan being issued for a specified amount. Similarly, the function updateScoreRepayment

informs the Credit Bureau smart contract that a loan has received a repayment payment of a

certain amount. Furthermore, the function getScore retrieves the credit score of a client based

on the given parameters such as the requested amount, interest rate per mil, number of

payments, and seconds between payments.

23



4.3 Borrowing and Lending

The Credit Bureau Smart Contract's (CBSC) findLoan method, though not currently

implemented in the project, is planned for future integration. This method will enable

borrowers and lenders to search for Loan smart contracts based on specific criteria. Borrowers

will still call the borrow(uint amount) method, and lenders will use the invest method, while

the findLoan method will be added later to facilitate loan discovery.

Borrowers initiate the borrow(uint amount) method, which involves verifying their

credit score via the CBSC's getScore method. Lenders utilize the invest method to transfer

funds to the Loan smart contract, where access to funds is limited until the fund_date. Upon

reaching the totalAmount threshold, triggering loan funding, the timestamp is employed to

compute the owed interest. Borrowers employ isReady() to ascertain loan readiness, get$$$ to

retrieve funds, and makePayment to repay loans, both of which prompt credit score updates in

the Credit Bureau Smart Contract.

Figure 17: Borrower: Make Payment

After the fund_date, lenders can withdraw funds from the Loan smart contract using

the withdraw(uint amount) function, limited to the smaller of the invested amount plus interest

or the current balance of the contract. The owed amount to an investor is updated with each

withdrawal, considering accrued interest since the previous withdrawal or the loan fund time if

none. If the owed amount reaches 0, lenders can no longer receive funds. In case of loan

default, an external process can trigger a CreditBureau method with the Ethereum address
24



involved. The CreditBureau verifies the default, and contacts auditors with proof, who respond

with user identity slices. Lenders can then retrieve these slices from the CreditBureau to

pursue collection off-chain. The implementation includes the distributeSecret and

reconstructSecret functions for this purpose. These functions enable CreditBureau to distribute

proof of default to auditors and collect user identity slices in response. They can be extended

further to accommodate additional features or requirements in the future.

4.4 Credit Scoring System

Figure 18: General Diagram of Credit Scoring

The credit system typically involves three main participants: users, credit bureaus,

and creditors. Users engage in credit and loan activities, which are reported to credit

bureaus. These bureaus are responsible for collecting, recording, and distributing credit

data, such as new accounts, balances, inquiries, and payment history. Creditors then

request this credit data to compute the user's credit score, which serves as a reference for

trust assessment. Credit scores are generated using algorithms analyzing credit data, with

25



factors like payment history, owed amounts, credit history length, new credit, and credit

mix influencing the final score. For instance, FICO scores consider payment history

(35%), amounts owed (30%), credit history length (15%), new credit (10%), and credit

mix (10%).

4.4.1 Architecture

The credit scoring system operates on-chain, enabling transparent and verifiable credit

scoring procedures. For each Ethereum borrower address, the system maintains and updates a

set of ratios, including Underpay Ratio (UPR), Current Debt Burden Ratio (CDBR), and

Current Payment Burden Ratio (CPBR), which are stored in the smart contract using integer

pairs to avoid Ethereum dust. These ratios are inspired by the components detailed in the

ALOE system[1].

4.4.2 Coordinates and Ratios

The UPR represents the ratio of time a borrower's owed amount exceeds the expected

amount compared to their total loan duration. On the other hand, the CDBR calculates the ratio

of current outstanding debt to the average outstanding debt plus three "pseudo" standard

deviations [1].

To illustrate incremental updates, let's consider the UPR. The Credit Bureau Smart

Contract (CBSC) stores the timestamp of a borrower's first loan, FLT, and determines the

current time, NOW. With each payment made, the CBSC updates TOT, the total time the

borrower owed more than expected, and calculates the UPR as TOT divided by NOW minus

FLT. For borrowers with no credit history, a loan amount below a certain threshold, and a
26



payment below another threshold, the getScore function returns the original FICO score

associated with the account divided by 1000 [1].

The chosen k-nearest neighbor implementation involves storing points in a hash table

indexed by the borrower's address. This ensures that updating a score during payment is an

efficient O(1) operation, minimizing gas costs. However, retrieving a score requires a linear

scan of the table, which can be more costly. To keep costs comparable to real-world credit

scoring, the number of points should remain relatively low.

4.4.3 Implementation

The Credit Bureau Smart Contract (CBSC) maintains a mapping linking Ethereum

addresses with corresponding credit scoring data. This supplementary data includes the credit

score linked with the hashed identity, a timestamp marking when this linkage was established,

and a position in our credit scoring spectrum. The CBSC facilitates the connection between

lenders and borrowers, monitors loan transactions and repayments, and manages updates to the

borrower's credit score. Exclusive authority to invoke specific methods of this smart contract

rests with the notary.

The Credit Bureau Smart Contract (CBSC) includes fields to store the notary's address,

available loans, number of loans, credit score initialization status, credit scores mapped to

addresses, and timestamps of score associations. The constructor initializes the notary address

upon deployment.

27



Figure 19: CBSC: Constructor

This function, initScoreLedger, is a public function in the CreditBureau smart contract.

Its purpose is to initialize the FICO score ledger for a specific borrower. It checks if the

credit score for the given borrower has not already been initialized. If it has been

initialized, the function reverts with an error message.

Figure 20: CBSC: Initialize Ledger

The calculateUPR function within the CreditBureau smart contract serves the purpose

of determining the Underpay Ratio (UPR) for a specific borrower. This function takes three

parameters: the borrower's Ethereum address (borrower), the current amount owed

(amountOwed), and the expected amount that the borrower should owe (amountShouldOwe).

Upon invocation, the function retrieves the current timestamp and the timestamp of the

borrower's first loan from the _scoreTimestamps mapping. It then increments the current

timestamp by 3600 seconds (1 hour) to simulate the passage of time since the last update.
28



Subsequently, the function calculates the difference in time between the current time and the

time of the borrower's first loan, representing the total time span of all loans carried by the

borrower.

To compute the UPR, the function checks if the current amount owed exceeds the

expected amount. If so, it increments the total overpaid time by the difference in time since the

last update. After updating the last update time of the borrower's data to the current time, the

function calculates the UPR by dividing the total overpaid time by the total time span of all

loans carried by the borrower. The resulting UPR is then stored in the _upr mapping for the

borrower, and the function returns this calculated UPR value.

Figure 21: CBSC: Calculate UPR

The following function calculates the Current Debt Burden Ratio (CDBR) for a

borrower based on their current outstanding debt and the total ever loaned. It computes the

average outstanding debt (AOB) and "pseudo" standard deviation in AOB, considering the

Total Approximate Error (TAE). Finally, it computes the CDBR and adjusts it if it exceeds 1.

29



Figure 22: CBSC: Calculate CDBR

Next, in the getScore function, we examine the k nearest neighbors based on their

underpay ratio and credit debt burden ratio, along with the values of their Odds Stay Current

w-day window (OSC-w). These ratios and values help determine the likelihood of borrowers

staying current on their loans. We calculate the average of these values across the k nearest

neighbors, considering various window periods (w) ranging from 1 day to 214 days. This

average represents the credit score and likelihood of staying current on future payments,

Figure 22: CBSC: getScore method
30



V . Experiment and Results

In order to ensure the reliability and functionality of the lending system I developed,

rigorous testing was essential. I employed a local blockchain environment for testing,

leveraging various tools and frameworks to conduct comprehensive unit and integration tests.

For testing the smart contract, I employed the Mocha JavaScript test framework along

with Ganache and Web3. Mocha simplifies asynchronous testing and provides detailed

reporting capabilities. Ganache, on the other hand, furnishes a set of unlocked accounts for

local testing purposes, eliminating the need for public or private keys. Web3 facilitates access

to local or remote Ethereum nodes, and for testing, I connected to a local node provided by

Ganache.

Figure 24: Local Blockchain: a sample test case

31



Figure 25: Local Blockchain: Test case output

The registration phase of the lending system involves several key entities and

processes to establish a borrower's identity and credit score. Functions implemented in the

Registration smart contract:

● initScoreLedger: Initializes the credit score ledger for a borrower with their FICO

score and timestamp. This function can only be called once per address.

● verifyUnusedAddress: Checks if a borrower's address has already been initialized

with a credit score.

● getScore: Retrieves the credit score associated with a borrower's address.

32



● addAuditor: Adds an auditor to the system.

● distributeSecret: Implements a polynomial secret-sharing scheme inspired by

Shamir's secret-sharing algorithm to distribute the borrower's SSN among auditors.

This function ensures that no single auditor has access to the complete SSN by

dividing it into shares.

● reconstructSecret: Enables the reconstruction of the original secret from the

distributed shares using principles from Shamir's algorithm. This function preserves

data privacy and confidentiality by reconstructing the SSN only when necessary, such

as in the case of a loan default.

Figure 26: Borrower Registration: Test cases

Unit tests were conducted to validate the registration phase functionalities. They

33



include verifying the successful deployment of the contract and ensuring the proper

initialization of account balances. These tests are vital for securely managing borrower

identities and credit scores within the system. Additionally, a test case was developed to

validate the distribution of secrets, implementing a polynomial secret-sharing scheme

inspired by Shamir's algorithm.

Figure 27: Borrower Registration: test cases

The Loan Smart Contract serves as a vital intermediary, linking lenders and

borrowers within the system. Implemented functionalities include invest, borrow, and

interest calculation methods. The constructor initializes essential variables such as the

total loan amount, interest rate, and minimum credit score requirement. Testing the invest

function involves scenarios to verify correct fund allocation and timestamp initialization.

Similarly, the borrow function undergoes tests to ensure proper loan requests and credit

score validation. Additionally, the calculateInterest function is rigorously tested to

validate accurate interest computation based on specified parameters. Lastly, the withdraw

34



function permits investors to withdraw funds from the contract, adding a crucial layer of

functionality to the lending system.

Figure 28: Loan Smart Contract: Test Suite

Transaction fees associated with deploying the Smart Contracts and implementing some

functions are as follows:

Deploying contract 1383180 gas

Borrow() (involves a call to isReady()) 119606 gas

Invest() 107126 gas

isReady() (involves a call to getScore()) 38552 gas

_amountInvested() 2495 gas

initScoreLedger() 211681 gas

35



get$$$() 27965 gas

getScore() 29396 gas

Table 2. Transaction costs measured in gas

Figure 29: Transaction costs when deploying a Smart Contract

In conclusion, this report describes the successful implementation and testing of

essential functionalities within the lending system. Leveraging smart contracts and blockchain

technology, a robust framework for managing borrower identities, credit scores, and loan

transactions has been established. Rigorous testing, including unit and integration tests,

ensures the reliability and correctness of the system. As mentioned before, the Credit Bureau

Smart Contract (CBSC) is a pivotal component, in managing the association between

Ethereum addresses and credit scoring data. This includes the hashed identity, timestamp of

linkage, and credit score position. Implemented functionalities, including updateScoreBorrow,

updateScoreRepayment, and getScore methods, to ensure seamless borrower-lender

connections and credit score management. Emphasis is placed on rigorous testing, with

36



scenarios covering various use cases. For instance, the getScore function is meticulously tested

to ensure accurate adjustments to the client's credit score based on the requested amount.

Figure 29: Credit Bureau Smart Contract: Testing getScore()

Additionally, basic versions of updateScoreBorrow and updateScoreRepayment are

implemented and tested to guarantee the proper functioning of credit score updates during loan

acquisition and repayment.

Figure 30: Deploying Credit Bureau Smart Contrat

37



VI. Conclusion

This lending system implements the Autonomous Lending Organization on Ethereum

with Credit Scoring as outlined by Thomas Austin, et. al. in [1]. The purpose of the project

was to both understand the system’s intricacies and the challenges of a Decentralized finance

(DeFi) product that is built on the Ethereum platform. Upon establishing the foundation for

programming smart contracts for the Ethereum blockchain platform using Solidity, In the first

phase, I studied how Ethereum provides a system for electronic transactions without relying

on a trusted third party. To gain a better understanding of Blockchain, I studied Merkle trees

and Byzantine agreement for Bitcoin. I then set up a local blockchain, that facilitated the

testing and deployment of the smart contract, using Web3.js JavaScript library and Ganache

that simulates the Ethereum network. Phase 2 began with the implementation of the borrower

registration phase, the borrower discloses their real-world identity, specifically their social

security number (SSN), to the credit bureau. This contract aims to provide a secure and

decentralized method for initializing borrowers and managing credit scores, ensuring

confidentiality through encryption, and sharing the information with designated auditors. Next

was the implementation of the Loan Smart Contract. A loan smart contract object is created by

calling the creatLoan() method in the Credit Bureau Smart Contract. To engage with a Loan

smart contract, the borrower or lender initiates the borrow(uint amount) or invest method,

respectively.

Credit Bureau Smart Contract (CBSC) plays a pivotal role within the system by

maintaining a mapping that correlates Ethereum addresses with pertinent credit scoring data.

This supplementary information encompasses the credit score associated with the hashed

identity, along with a timestamp denoting the inception of this linkage and a position within

our credit scoring spectrum. Acting as a vital intermediary, the CBSC fosters connections

between lenders and borrowers, oversees loan transactions and repayments, and orchestrates

38



updates to the borrower's credit score. Noteworthy is the fact that exclusive authority to trigger

designated methods of this smart contract is vested in the notary, ensuring governance and

oversight over critical operations within the system.

The system is set to empower borrowers to initiate loan requests and facilitates

seamless interaction between borrowers and lenders, offering lenders the capability to assess

and engage with loan requests effectively. It ensures seamless connectivity and communication

among all stakeholders involved in the lending process. In addition, this system permits the

disclosure of borrowers' identities in the event of loan default, while simultaneously

safeguarding the anonymity of borrowers who adhere to loan repayment terms.

A comprehensive suite of unit test cases has been devised and executed to rigorously

evaluate the functionality and integrity of the developed codebase within this project.

39



VII. Future Work

In future development, the project aims to extend the system by implementing the

generalized Shamir's secret sharing algorithm to enhance borrower identity protection, while

maintaining auditor access in case of default. Another approach would be to take the

implementation of the secret sharing algorithm off-chain, to enhance the security and privacy

of the borrower. There are various independently audited, zero-dependency TypeScript

implementations of Shamir's Secret Sharing algorithm.

7.1 Credit Scoring Model

Further, refining the nearest neighbor model by including additional metrics such as the

Current Payment Burden Ratio and Repayment Age Ratio (RAR) to provide deeper insights

into borrower behavior and credit history. Next, introducing the Average Number of Credit

Lines (ANCL) metric to assess borrower credit diversity and history. Exploring the integration

of an off-chain oracle to reduce computation costs for the nearest neighbor model, while

ensuring security standards are upheld.

7.2 Implementation

In the upcoming phase, the React framework will be leveraged to construct the user

interface (UI) for the lending system based on the paper by Thomas Austin et. al. [1]. By

harnessing React's component-based architecture, we can create modular and reusable UI

elements, streamlining the development process and fostering code maintainability.

Additionally, React's virtual DOM ensures optimal performance, enabling seamless rendering

of UI components and enhancing the overall user experience. Through the utilization of React,

we aim to craft a sophisticated and intuitive UI that empowers users to interact with our

system effortlessly while delivering a visually appealing and engaging interface for lenders

and borrowers.

40



REFERENCES

[1] T. H. Austin, K. Potika and C. Pollett, 'Autonomous Lending Organization on Ethereum

with Credit Scoring,' 2023 Silicon Valley Cybersecurity Conference (SVCC), San Jose, CA,

USA, 2023.

[2] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008 [Online]

[3] V. Buterin, Ethereum white paper, 2013. Available online:

https://github.com/ethereum/wiki/wiki/White-Paper

[4] C. Busayatananphon and E. Boonchieng, 'Financial Technology DeFi Protocol: A Review,'

2022 Joint International Conference on Digital Arts, Media and Technology with ECTI

Northern Section Conference on Electrical, Electronics, Computer and Telecommunications

Engineering (ECTI DAMT and NCON), Chiang Rai, Thailand, 2022.

[5] L. Andolfo, L. Coppolino, S. DAntonio, G. Mazzeo, L. Romano,M. Ficke, A. Hollum, and

D. Vaydia, 'Privacy-preserving credit scoring via functional encryption,' in International

Conference on Computational Science and Its Applications, 2021

[6] 'The solidity contract-oriented programming language.' https://github.com/ethereum/,

accessed November 2020

[7] C. Lin, M. Luo, X. Huang, K.-K. R. Choo, and D. He, “An efficient privacy-preserving

credit score system based on noninteractive zero knowledge proof,” IEEE systems journal,

2021.

[8] Ahmed, Mamun & Reno, Saha & Akter, Salma & Chowdhury, A., “ Decentralized Finance

41



and Crypto Banking System Using Ethereum-based Blockchain Technology”. 2. 33-51 (2022).

[9] Yang, S. and Cui, W, “An Evaluation System for DeFi Lending Protocols”, 2023 42nd

Chinese Control Conference (CCC)

[10] Huber, M., & Treytl, V. (2022), “ Risks in DeFi-Lending Protocols - An Exploratory

Categorization and Analysis of Interest Rate Differences” Communications in Computer and

Information Science, 1633 CCIS, 258–269.

[11] Legowo, N., Hawari, N., Karlina, T., Tanuwijaya, E., & Mahendra, K., “ Design Smart

Contract Based on Blockchain for Peer-To-Peer Lending Platform”, 10th International

Conference on ICT for Smart Society, ICISS 2023

[12]Ta, M. T., & Do, T. Q. (2024). A study on gas cost of Ethereum smart contracts and

performance of blockchain on simulation tool. Peer-to-Peer Networking and Applications,

17(1), 200–212. https://doi-org.libaccess.sjlibrary.org/10.1007/s12083-023-01598-3

[13] Chaleenutthawut, Yatipa, et al. “Loan Portfolio Dataset From MakerDAO Blockchain

Project.” IEEE Access, vol. 12, 2024, pp. 24843–54,

https://doi.org/10.1109/ACCESS.2024.3363225.

[14] Qin, Kaihua, et al. “An Empirical Study of DeFi Liquidations.” Proceedings of the 21st

ACM Internet Measurement Conference, ACM, 2021, pp. 61–350,

https://doi.org/10.1145/3487552.3487811.

42

https://doi-org.libaccess.sjlibrary.org/10.1007/s12083-023-01598-3


43


