
Ayan Abhiranya
Singh

CS 298
Navigating Classic Atari Games

with Deep Learning

Project Advisor:
• Dr. Chris Pollett

• Dr. Mark Stamp

• Dr. Kevin Smith

Committee Members:

Outline

• Introduction

• Background

• Ms. PacMan

• Deep Q-Learning

• Experiments

• Conclusion

Introduction

• Project Goals:
• Develop a reinforcement learning agent that is capable of playing Ms. PacMan.

• Perform comparably, or beat, known benchmarks for RL agents for Ms. PacMan.

• Modify the agent to perform up to a reasonable standard under conditions of
latency.

• Experiment with transfer learning with different mazes.

Background

• Reinforcement learning
• Addresses decision-making problems that usually have some degree of uncertainty.

• RL agents learn the best strategy for taking sequential decisions across time by
interacting with a constantly changing environment.

• A strategy to take repeated sequential decisions across time in a dynamic system is
also called as a policy.

• Generally, RL problems are structured within a framework that contains a state
space, action space and a reward signal.

Background

• DQN (Deep Q Network)
• Developed by DeepMind in 2013.

• Able to reach superhuman performance on Space Invaders and Breakout.

• Also able to provide good results on Pong, Seaquest, Beam Rider, Enduro and
Q*bert.

• Famously, learned (and mastered) a real human strategy in Breakout of breaking a
portion of the wall and pushing the ball through to the other side. The ball then
destroys the wall from the other side while the agent does nothing.

• Struggles with games that tend to have longer trials and more of an exploration
aspect, like Ms. PacMan.

DQN

• First deep learning model to learn directly from high-dimensional input.

• Variant on Q-Learning, an RL algorithm.

• Pivotal paper as it detailed a deep reinforcement learning model that solved a
multitude of problems (games).

• Later research has built off this paper.

DQN playing Breakout and Lunar
Lander

Breakout Lunar Lander

The credit-assignment problem

• Essentially, they developed the first deep learning model that was able to learn
efficient control policies for classic Atari games from high-dimensional input, i.e.,
image frames from the game.

• Trials of these games (or episodes) usually run for many steps (sometimes to the
order of tens of thousands of frames) and the reward returned, per-frame, often
becomes very sparse.

• Credit assignment is a big challenge under this condition, i.e., learning what the
right action should be given an observation.

• To solve this problem, Deep Q- Learning combines the Q-Learning algorithm with
convolutional neural networks (CNNs).

Sparse rewards in Ms. PacMan
• Ms. PacMan is a game of exploration. The game involves

collecting all the food pellets in the maze without the ghosts
catching you.

• Over time, as more of the map is eaten away, the rewards
become harder to find (the sparse rewards problem).

• Ultimately, as seen in the figure on the right, there may be no
immediate reward available to the agent no matter the
action it takes.

• However, the agent always prioritizes immediate rewards to
speed up the learning process.

The Reward Maximization Problem

• Record observations and rewards at each time step.

• Q-Agent executes actions, which modify the environment and return an
observation and a reward (which could be zero).

• We want to maximize that reward value at each time-step, t.

• Additionally, we want to discount future rewards with a discount factor, 𝛾. Given
an action a and state s at time t, the total future rewards from time t onwards, 𝑅,
is given by the equation.

• 𝑅! = ∑!!"!
(𝛾!!$!𝑟!%)

Deep Q-Learning

• This approach entails training a Q-function that accepts the state as input and
outputs the predicted reward if action a is taken at state s. The function Q(s, a)
is given by:

• 𝑄 𝑠, 𝑎 → 	𝑅

• Where R is the total future reward after an action a has been taken.

• It follows that a perfect Q-function will exactly predict the reward from a given
time step onwards till the end of the episode.

• A neural network can output Q-values for all legal actions.

Online Q-Learning

• Since the perfect Q-function does not exist in practice, the Q-function for this
neural network must be trained.

• Online reinforcement learning - given a state s, the Q-function can be
estimated by simply playing through an episode and recording all the rewards.

• While the game is being played, the DNN is trained at the same time.

• Over time, if this training process is conducted iteratively, the Q-function will
converge upon an optimal Q-function for the given environment.

Q-Function

• The Q-function models the Bellman recurrence equation. This means that the Q-
function for a state s can be represented in terms of Q functions for states s’ and
onwards.

• The star policy, 𝑄∗ 𝑠, 𝑎 → 	𝑅, returns the highest Q-value possible given an action
and state, and can be defined as:

• 𝑄∗ 𝑠, 𝑎 = 	𝔼"!~	% 	[𝑟 + 𝛾max&'
𝑄∗ 𝑠', 𝑎' 	|	𝑠, 𝑎]

• Thus, we have a recurrence relation where the optimal policy 𝑄∗ 𝑠, 𝑎 may be frames
in terms of 𝑄∗ 𝑠, 𝑎 for subsequent states. This recurrence relation lays the basis on
which we can train the neural network.

Loss function

• The loss function for the neural network is defined as such:

• 𝐿& 𝜃& =	𝔼',)~	,(.)	[𝑦& − 	𝑄 𝑠, 𝑎; 𝜃&
0]

• ρ(s,a) is a probability distribution over the states (s, a), known as the behavior
distribution..

Loss function

• The “true” labels for the loss function:

• 𝑦& =	𝔼'!~	1 	[𝑟 + 𝛾max)!
𝑄∗ 𝑠%, 𝑎%	; 	𝜃&$3 	|	𝑠, 𝑎]	

• is the target for time step i .

• Thus, the DQN itself is used to compute both true and predicted labels to
compute the squared loss in this deep reinforcement learning algorithm.

Model-Free

• This algorithm is model-free. This means that the algorithms itself simply learns
a function that outputs a Q-value for each state-action tuple. There is no
interaction with external components like the model or an emulator, to learn
specifics about the reinforcement learning task.

Off-Policy

• The model learns what is known as the ε-greedy strategy:

• 𝑎 = max
)
𝑄(𝑠, 𝑎; 	𝜃)

• The agent will randomly explore the environment with ε degree of probability
and request Q-values from the DNN the remaining 1-ε amount of time.

• This helps mitigate exploitation of the neural network and also can speed up
the training phase by reducing the number of calls to obtain Q-values.

Experience Replay

• Successive frames across the game’s environment are often extremely similar
and correlated.

• Instead of using data samples as they are generated, a better approach to
boost training performance is to store observations, actions and rewards in an
“experience replay buffer” and samples those at random.

• Inherently, this implies some samples might never get selected for play, while
others might get selected more than once. A good analogy for this is the
process of randomly selecting or shuffling data prior training a model under
supervised learning.

Experience Replay

• The input state to the neural network comprises of a buffer of 4 frames
(observations).

• Following the ε-greedy strategy from above, the agent either takes a random
action with probability ε, or the model suggests the action to be taken that has
the highest future reward.

• Once this action is executed, the next state of the game’s environment is
obtained, with a new observation and reward. This transition, from state st to
state st+1 is stored in the experience replay buffer.

Convolutional Neural Networks
(CNNs)
• Convolutional neural networks (CNNs) are neural networks that work great with

problems involving learning local structures, for example, object detection in
images.

• The CNN consists of convolutional layers, which act as filter matrices of some
set size, where the elements of the filters are the weights for that layer.

• These convolutional layers are usually followed by an activation function, which
determines what the final output will be from one neuron in the network to the
next, or, in some cases whether the neuron is on or off.

CNNs

• First convolutional layer might take an image as input.
The filter applied on it may extract simple shapes like
lines, diagonals, triangles.

• Subsequent convolutional layers will then be applied
on the output from the previous convolutional layer
The final layer of the CNN is fully connected and
enables it to make classifications.

• The filter weights and biases of the CNN are learned
as part of the training.

CNN Implementation
• 3 convolutional layers:

• 32 filters of 8x8, stride of 4, activated by ReLU

• 64 filters of 4x4, stride of 2, activated by ReLU

• 64 filters of 3x3, stride of 1, activated by ReLU

• 2 dense layers:
• 512 neurons, activated by ReLU

• 5 neurons (size of the action space for the agent), with a linear activation function

• The model for this project was developed in Python and the Keras API in TensorFlow was
used to implement the deep neural network described above. Game emulated via ALE &
OpenAI Gym.

• Hardware: MacBook Air M1 8 GB of LPDDR4 memory. TensorFlow executes computations
on the M1 GPU, which has 8 cores and supports the Apple Metal graphics optimization
technology.

Experiment 1: Input Lag

• One use case for an AI agent like this might be to deploy it over an internet
connection to play similar games or even different mazes within Ms. PacMan.

• A setup like this could involve input lag with transfer learning.

• This would require some sort of exploratory analysis into packet loss and stuttering,
which explains our motivations for the experiments in this section.

• To simulate lag within the program environment, we first need to experiment with
the frames of Ms. PacMan running on the Arcade Learning Environment (ALE).

Experiment 1: Input Lag

• Measuring the time elapsed per frame is of particular importance in this
experiment as that is the single control parameter that measures how much of
lag we are inserting into the simulation.

• The approach is to time gameplay in the Stella Atari 2600 emulator (which is
the emulator that powers the ALE rendering of Atari games) versus how many
frames the agent in the Gym environment takes to move the same distance.

• One frame comes to represent approximately 0.085 seconds of gameplay.
Thus, if we simulate a frame skip of 2 frames, we are effectively simulating a loss
of 0.17 seconds of user gameplay.

Input buffer

• Input state buffer, after playing 1 move à [1112].

Experiment 1: Input Lag

• The baseline agent is trained over 5000 episodes, working on the reduced move
set (NO-OP, UP, DOWN, LEFT, RIGHT).

• The agent scores 850 points. This sets a baseline model for the next experiment.

• Next, we duplicate frames for every pair of 2 moves. For example, input may look
like [1111] à [1122] à [2233] à [3344], and so on.

• Under the condition of latency, the agent scores 530 points, a considerable drop off
of 37.65% from the previous score of 850 which was obtained by the base model.

• This tells us that the agent needs training for more episodes and perhaps with a
“gap” between frames as an adjustable training parameter.

Experiment 2: Input Lag Modifiers

• Frame skipping is an important hyperparameter used in training the agent to
play Atari games.

• The frame skip value represents the number of frames that should be
“skipped”, or ignored, between the agent’s actions, during the training phase.

• Our motivation behind selecting a frame skip value:
• Speeds up training the agent, since the time between frames is quite small.

• Could potentially also improve performance with an input at an inconsistent frame
rate.

• We select a frame-skip parameter of 4.

Experiment 2: Input Lag Modifiers

• An agent moving completely randomly scores an average of 307 points [18]
per trial.

• This is the average we hope to beat over our experiments, as this would
demonstrate an agent that is learning over time and playing better than simply
moving randomly across the board.

Average agent lifespan

Experiment 2: Input Lag Modifiers

3 Frame Cache With Coin-Toss 2 Frame Cache With Coin-Toss 8-Frame Input Buffer 4-Frame Input Buffer

Trial 1 470 510 1310 590

Trial 2 370 470 870 1740

Trial 3 810 440 730 700

Trial 4 990 470 350 970

Trial 5 540 470 600 440

Trial 6 450 660 710 1050

Trial 7 430 550 710 590

Trial 8 1140 520 1140 1300

Trial 9 770 520 750 740

Trial 10 530 310 870 900

Average 650 492 804 902

STDEV 262.7630957 88.6691729 269.0394436 389.0672607

Experiment 3: Optimizing Q-
Function
• Through stochastic gradient descent, we aim to minimize the loss function over

the iterations of the training process.

• The learning rate dictates how large of a “step” is taken towards the minimum.
For the DQN training process, since we aim to learn an optimal Q-function, the
gradient descent is minimizing loss on the Q-function.

• By changing the learning rate, we change the weight updates per iteration of
the training process. The goal of the experiments in this section is to find an
adequate learning rate to converge upon the optimal Q-function, thereby
ensuring an efficient training process and high-performance agent.

Experiment 3: Optimizing Q-
Function

5k eps, LR=0.001 5k eps,

LR=0.0001

5k eps,

LR=0.00005

10k eps,

LR=0.0001

5k eps,

LR=0.00025

Trial 1 330 550 70 390 1310

Trial 2 1820 400 70 990 870

Trial 3 370 950 70 940 730

Trial 4 330 550 70 480 350

Trial 5 330 680 70 490 600

Trial 6 370 800 70 420 710

Trial 7 330 850 70 990 710

Trial 8 340 560 70 520 1140

Trial 9 370 390 70 600 750

Trial 10 330 520 70 520 870

Average 492 625 70 634 804

STDEV 466.9713291 189.22356 0 241.3020238 269.0394436

Experiment 4: Frame-Diff

• The novel “Frame-Diff” approach involves building a quasi-attention technique
for the CNN model by computing the difference between successive frames.

• By computing the difference between successive frames, we often obtain a
result (due to the similarity between successive frames) where the frames only
highlight what changed in the time lapse between them.

• States that are saved in the experience replay buffer consist only of the pixel
values across frames that have changed – thereby reducing noise to the neural
network.

Experiment 4: Frame-Diff

• Sample of a derived frame using Frame-Diff

Experiment 4: Frame-Diff

• Sample of a derived frame using Frame-Diff

Experiment 4: Frame-Diff

• Sample Frame-Diff State Buffer

• Regular state buffer with 4 frames

Experiment 4: Frame-Diff

Base model, 10k eps,

LR=0.00025

Frame-Diff,

10k eps,

LR=0.0001

Frame-Diff,

10k eps,

LR=0.00025

Frame-Diff,

30k eps,

LR=0.00025

Frame-Diff,

50k eps,

LR=0.00025

Trial 1 660 350 2370 1210 2020

Trial 2 2070 820 1960 1410 2400

Trial 3 1070 380 1770 1800 2300

Trial 4 910 570 1710 1400 3730

Trial 5 940 460 1470 1400 2390

Trial 6 1210 480 2540 2000 2560

Trial 7 1360 670 2370 1380 2390

Trial 8 2170 460 1170 1840 2990

Trial 9 1170 460 990 1780 1240

Trial 10 670 570 2060 1100 3260

Average 1223 522 1841 1532 2528

STDEV 522.8352194 140.7756292 521.1834823 300.0666593 684.6377793

• The Frame-Diff model, at the same learning
rate, is able to score 1841 points on
average while maintaining a mostly similar
standard deviation of 521 among scores.

• 50.53% increase in average agent
performance, highly promising since the
model was only trained for around 1 hour
for 10,000 episodes.

• DQN trained for over 10 million frames,
Frame-Diff reaches comparable results with
around 1.82 million frames for 50,000
episodes.

Experiment 4: Frame-Diff
RL Method Average Score Source
Frame-Diff 2528

DQN 2311 Minh et al. [18]

Dueling
Architecture

DQN (DuDQN) 2250 Wang et al. [21]

Deep Recurrent
Q-Network

(DRQN) 2048 Hausknecht and Stone [19]

Proximal Policy
Optimization

Algorithm
(PPO) 2096.5 Schulman et al. [20]

DQN with
Linear Q-
Function 1692 Minh et al. [18]

Frame-Diff Agent Demos

• 10k eps, high score: 2540. • 30k eps, high score: 2000.

Frame-Diff Agent Demo

• Single highest score achieved at 50,000 episodes: 3730.

• The agent learns the strategy of obtaining invincibility
before traversing across the ghost cage (the center of the
map), which is the most dangerous area on the map.

Experiment 5: Transfer Learning

• Transfer learning refers to the problem of using a machine learning model in a
different context than what it was trained on.

• As the weights of the CNN are learned as part of the training process, it is possible
to “connect” different types of input to the CNN and observe the results.

• Time and resource efficient.

• In Ms. PacMan, an agent could be trained on the first maze of Ms. PacMan and then
deployed on subsequent mazes to evaluate its performance on mazes it has not
encountered before.

• Maze 2 is an improved version of Maze 1 with faster ghosts that are also better at
swarming the agent. Maze 3 is a completely different maze altogether.

Experiment 5: Transfer Learning

Maze 1 and 2 on the left and Maze 3 on the right.

Experiment 5: Transfer Learning

Maze 1, 10k eps, LR=0.00025 Maze 2, 10k eps, LR=0.00025 Maze 3, 10k eps, LR = 0.00025

Trial 1 660 620 470

Trial 2 2070 720 390

Trial 3 1070 1150 280

Trial 4 910 540 240

Trial 5 940 490 390

Trial 6 1210 710 300

Trial 7 1360 430 200

Trial 8 2170 380 150

Trial 9 1170 470 340

Trial 10 670 610 300

Average 1223 612 306

STDEV 522.8352194 220.5951546 95.93979594

Experiment 6: Transfer Learning
with User-Gameplay
• This approach entails isolating and contouring the Ms PacMan character and

tracing its movement across the screen.

• Remove all other ghosts, maze walls, food pellets, score and life indicators, etc.
via a “yellow mask”, i.e., isolate the yellow color on the screen so that
everything disappears except for the Ms. PacMan character.

• Converting the image from Red-Green-Blue (RGB) values to Hue Saturation
Values (HSV) is helpful since HSV represents colors in a cylindrical model, which
means we can specify ranges easily.

Experiment 6: Transfer Learning
with User-Gameplay
• Yellow masking.

Experiment 6: Transfer Learning
with User-Gameplay
• After the yellow masking step, the Ms PacMan character is isolated moving

across the screen. OpenCV’s Canny contouring library provides a handy API for
edge detection in images.

Experiment 6: Transfer Learning
with User-Gameplay
• Once the contours are obtained, computing the largest contour by area returns

the edge for the biggest shape detected on the screen – which, if the yellow
mask has been implemented correctly, is Ms. PacMan on the screen.

• To obtain a reward signal, the PyTesseract library is used to convert the score to
text.

• The episode completion signal, in the naïve case, is when the frames have all
been exhausted.

Experiment 6: Transfer Learning
with User-Gameplay

User-trained, 1

episode

User-trained, 5

episodes

User-trained, 10

episodes

User-trained, 60 episodes

Trial 1 250 210 310 420

Trial 2 340 230 450 300

Trial 3 260 230 250 300

Trial 4 210 230 310 1000

Trial 5 240 230 260 380

Trial 6 240 210 250 360

Trial 7 340 120 250 360

Trial 8 310 230 450 180

Trial 9 340 120 310 180

Trial 10 340 210 310 290

Average 287 202 315 377

STDEV 51.86520992 44.1713834 76.19419634 232.7635901

Experiment 6: Transfer Learning
with User-Gameplay
• 1000 points, trained for 60 episodes.
• Agent demonstrates strategy of consuming

power-ups and waiting in a corner to eat
ghosts.

Experiment 6: Transfer Learning
with User-Gameplay

Base model, 1 episode Base model, 5

episodes

Base model, 10

episodes

Base model, 60 episodes

Trial 1 130 90 120 320

Trial 2 130 220 120 220

Trial 3 230 160 140 700

Trial 4 130 90 190 210

Trial 5 170 180 110 210

Trial 6 210 70 110 260

Trial 7 170 90 120 210

Trial 8 230 70 190 330

Trial 9 190 90 110 210

Trial 10 170 220 120 190

Average 176 128 133 286

STDEV 38.93013686 60.69962475 31.28720008 153.4202652

Conclusion

• Classic Atari 2600 games provide great environments for the application of
reinforcement learning algorithms.

• Our approach in implementing a Deep Q-Agent for one such game, Ms. Pac-Man,
has shown promising results across multiple mazes, latency and transfer learning.

• Ultimately, there are a number of thrilling applications of reinforcement learning to
solve problems in the real world, not just limited to the use cases that have been
described in this project. Our experiments in this project have shown favorable
results in adapting DNNs to learn control policies for Ms. PacMan. Further research
and innovation in this domain of artificial intelligence only needs a confluence of
curious minds and determined effort.

Future Work

• Guided Training:
• There is scope to experiment with augmenting training data to obtain more gameplay

videos. One possibility might be to train a generative deep Q network that is trained over
far more episodes on a high-performance computing (HPC) cluster.

• Game Modification:
• There are a number of interesting ideas that could be explored if the game itself is

modified in some way. For example – if the ghosts were controllable - could dueling Q-
agents be trained for the ghosts and the Ms. PacMan character, fighting each other on
one game at one time? What if we train the Q-agent on different mazes, maybe even
custom mazes, and then try to transfer that to the base PacMan game?

• Transfer learning from Similar Games:
• User gameplay videos of similar games like the original PacMan (1982), or the console

version of Ms. PacMan could be used to train an agent for Ms. PacMan.

References

• [1] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning.” arXiv, Dec. 19, 2013 [Online]. Available:

http://arxiv.org/abs/1312.5602. [Accessed: May 02, 2023]

• [2] O. Alsing, “Mobile Object Detection using TensorFlow Lite and Transfer Learning,” diva-portal.org, 2018 [Online]. Available:

https://www.diva-portal.org/smash/record.jsf?pid=diva2:1242627. [Accessed: May 02, 2023]

• [3] G. Brockman et al., “OpenAI Gym.” arXiv, Jun. 05, 2016 [Online]. Available: http://arxiv.org/abs/1606.01540. [Accessed: May 02,

2023]

• [4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning environment: An evaluation platform for general

agents,” vol. 47, pp. 253–279, 2013.

• [5] "Part V, Machine Learning, Chapter 22 Reinforcement Learning" in Artificial Intelligence: A Modern Approach. S. Russell and P.

Norvig. Fourth Edition, New Jersey: Pearson Education, Inc. 2021, pp. 789-821.

References

• [6] A. P. Badia et al., “Agent57: Outperforming the Atari Human Benchmark.” arXiv, Mar. 30, 2020 [Online]. Available:

http://arxiv.org/abs/2003.13350. [Accessed: Apr. 29, 2023]

• [7] "Part V, Machine Learning, Chapter 22 Reinforcement Learning" in Artificial Intelligence: A Modern Approach. S. Russell and P.

Norvig. Fourth Edition, New Jersey: Pearson Education, Inc. 2021, pp. 789-821.

• [8] "Mobile Object Detection using Tensorflow Lite and Transfer Learning.". Alsing, Oscar. 2018

• [9] "Deep Learning for Real-Time Atari Game Play using Offline Monte-Carlo Tree Search Planning." Guo, Xiaoxiao, Satinder Singh,

Honglak Lee, Richard L. Lewis, and Xiaoshi Wang. Advances in Neural Information Processing Systems 27. 2014

• [10] "Transfer Learning for Related Reinforcement Learning Tasks Via Image-to-Image Translation.". Gamrian, Shani and Yoav Goldberg.

PMLR, .2019

References

• [11] "AlphaDDA: Game Artificial Intelligence with Dynamic Difficulty Adjustment using AlphaZero.". Fujita, Kazuhisa. arXiv Preprint

arXiv:2111.06266.2021

• [12] "Dynamic Difficulty Adjustment through an Adaptive AI. Silva, Mirna Paula, Victor do Nascimento Silva, and Luiz Chaimowicz.".

IEEE. 2015.

• [13] Badia, Adrià Puigdomènech, et al. Agent57: Outperforming the Atari Human Benchmark. arXiv, 30 Mar. 2020. arXiv.org,

https://doi.org/10.48550/arXiv.2003.13350.

• [14] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition.” arXiv, Apr. 10, 2015

[Online]. Available: http://arxiv.org/abs/1409.1556. [Accessed: Apr. 22, 2023]

• [15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition.” arXiv, Dec. 10, 2015 [Online]. Available:

http://arxiv.org/abs/1512.03385. [Accessed: Apr. 22, 2023]

https://doi.org/10.48550/arXiv.2003.13350

References

• [16] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the Impact of Residual Connections on

Learning,” arXiv [cs.CV], Feb. 23, 2016 [Online]. Available: http://arxiv.org/abs/1602.07261

• [17] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

• [18] M. Hausknecht and P. Stone, “Deep Recurrent Q-Learning for Partially Observable MDPs.” arXiv, Jan. 11, 2017 [Online]. Available:

http://arxiv.org/abs/1507.06527. [Accessed: Apr. 29, 2023]

• [19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algorithms.” arXiv, Aug. 28, 2017

[Online]. Available: http://arxiv.org/abs/1707.06347. [Accessed: Apr. 29, 2023]

• [20] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Dueling Network Architectures for Deep

Reinforcement Learning.” arXiv, Apr. 05, 2016 [Online]. Available: http://arxiv.org/abs/1511.06581. [Accessed: Apr. 29, 2023]

http://arxiv.org/abs/1602.07261

References

• [21] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney, “Recurrent

experience replay in distributed reinforcement learning,” International, Jan. 23, 2023

[Online]. Available: https://openreview.net/pdf?id=r1lyTjAqYX. [Accessed: May 02, 2023]

• [22] A. P. Badia et al., “Never Give Up: Learning Directed Exploration Strategies.” arXiv,

Feb. 14, 2020 [Online]. Available: http://arxiv.org/abs/2002.06038. [Accessed: May 02,

2023]

