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I. ABSTRACT 

Deep learning is a subfield of machine learning that deals with modeling human brains and 

implementing them as neural networks. Video games are one application of deep learning. Older 

games, such as for the Atari 2600, provide great environments for testing reinforcement learning 

algorithms. Through reinforcement learning, an agent learns about its environment through the 

delivery of periodic rewards. One such algorithm is known as Q-learning. Q-learning is a form of 

reinforcement learning that allows an agent to act on a quality-function, defined as Q(s,a), that 

denotes the sum of rewards from state s onwards if an action a is taken. Q-learning has shown 

great results in training agents to play Atari 2600 games like Space Invaders and Breakout. In 

this project, we train a neural network that learns control policies for Ms. PacMan and find that it 

is able to score 3700 points and almost win the first map outright through this process.  

Keywords: Deep learning, Q-Learning, Video games, Atari, Reinforcement learning 

II. INTRODUCTION 

For my project, I aim to learn more about applications of reinforcement learning and how 

deep learning networks can leverage this to implement agents that can play video games at a 

near-superhuman level. I will then build agents of my own that are able to play video games of 

increasing complexity. We now discuss the organization of the rest of this paper. In the next 

section, we discuss the Q-learning algorithm and how it may be utilized to train an agent to learn 

the dirt-generation policies of a 5x5 “vacuum-world” game of our own design. The section after 

that elaborates how the same agent can use a deep Q-network to learn the shortest path among 

dirt positions across a varying size of grids. These two approaches can encompass the scope of 

the first two deliverables of this semester.  
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Over the next two sections (Deliverables 3 and 4), agents that leverage the deep Q-network 

defined in [1] will be trained and tested on the classic Atari game, “Ms PacMan”. For 

Deliverable 3, an agent trained with the simple network from Deliverable 2 will be deployed to 

play the game using the Arcade Learning Environment (ALE) on Python. Deliverable 4 will 

utilize a deep Q-Network, based on [1], to do the same. The agent for Deliverable 4 will be 

trained over several thousand episodes and tested to see if it is able to break 3000 points on Ms 

PacMan. The paper closes with discussion of the technical requirements of the project, the 

timeline and a conclusion summarizing the results of the semester and what we plan to do with 

them in the future.  

III. DELIVERABLE I: Q-LEARNING IN THE VACUUM WORLD 

Deep learning was invented around the 1960s, when Alexey Ivakhnenko devised one of the 

first “neural networks” [6]. Deep learning utilizes multi-layered neural networks to perform 

predictions on or analyze data. Neural networks are artificial structures that are composed of 

interconnected node layers, representing the neurons of the brain. The models used in deep 

learning are usually trained by huge sets of labeled data. 

 Deep neural networks (DNNs) can be used to interpret game frames as a set of raw pixels 

[1], to learn a control policy that achieves the maximum amount of reward. The policy dictates 

which action an agent should take given a specific state within the game, i.e., a set of pixel 

values. The networks then output a probability for each of the actions to take. The reinforcement 

learning feedback loop works such that an agent is presented with an observation of the 

environment at a given time step. The agent performs an action on the environment based on this 

state and the environment returns a reward. For the purposes of vacuum world, the reward is 100 

if a dirty square is encountered or 0 if the cell is clean.  
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The popular "vacuum world" is a common introductory problem into the world of artificial 

intelligence. This is a search problem where our agent is a vacuum that must traverse a world (a 

grid, in our case) and locate and clean as many dirty cells as possible. Our implementation of 

vacuum world builds upon this classic problem and attempts to solve for k-many dirty squares 

utilizing Q-learning.   

The agent is trained over 5000 episodes, with each episode consisting of a 100 steps. An 

exploration probability, 𝜀, is assigned to the agent. The value of 𝜀 is set to 0.5. This value 

determines the chance that the agent explores in a random direction or uses the q-table to predict 

which direction returns the maximum potential reward. Additionally, a discount factor, 𝛾, is used 

to discount (scale down) future rewards. Initially, each square of the grid is initialized to a 

reward of -1, with only dirty squares having a reward of 100. The lookup table is updated for 

each choice taken to transition from state s to state s’. The updated q value is computed as the 

sum reward of the new state s’ and the discounted maximum reward of actions for s’. In this 

manner, the agent can traverse the grid over a number of “random walks” and learn what actions 

produce maximum reward, given a state observation s. This is of particular importance, as we 

ultimately want to replace this q-table with a neural net that outputs a tensor of values that do 

essentially the same thing.  

IV. DELIVERABLE II: DEEP Q-LEARNING IN THE VACUUM WORLD 

Over the course of Deliverable 2, the deep q-learning algorithm from [1] is implemented 

through means of a deep neural network. Neural networks, convolutional neural networks (CNN) 

in particular, have historically been great at image classification tasks [2]. The neural network for 

this task has 3 layers, each fully connected to the next. The first 2 layers both contain 32 neurons, 

with the first layer accepting an input of the game screen (n x n grid). The final fully connected 
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layer has 4 outputs, corresponding to the actions that an agent can take within the world (up, 

down, left or right).   

To train this network, the state space array (possible states of the game) is initialized to zero. 

Each visited state is marked as 1. Random walks with a pre-determined set of steps are executed 

within the vacuum world. Each step is chosen with the same exploration probability from the 

first deliverable, otherwise, the network predicts a set of actions for the agent to take. The action 

is executed within the game environment and each state, new state and reward is added to 

memory. The walk terminates if dirt is found (reward of 100), or if the number of steps for the 

walk are completed. 

Once the memory exceeds a specified number of frames, the frames are replayed with the 

reward updated in the same manner as deliverable 1. As there is no longer a q-table in this 

deliverable, the neural network is trained on these sample frames and rewards. Over time, the 

network is able to determine the path with the highest reward, as demonstrated in Figures 1 and 

2. 

 

Figure 1. Deep Q-agent searching for dirt, located at square G, starting from square S. The neural network outputs the shortest path to goal. 
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Figure 2. Similar to figure 1, the neural network outputs the shortest path to goal. 

V. DELIVERABLE III: Q-LEARNING AGENT FOR MS. PAC-MAN 

The neural networks outlined in the previous section are derived from the work of Mnih et al. 

[1]. The goal of their paper was to learn control policies similar to the approach for vacuum 

world, but for classic Atari 2600 video games instead. The Deep Q-Learning algorithm proposed 

in their paper was ultimately able to reach superhuman levels of gameplay on Space Invaders, 

Breakout, Pong, Beam Rider and Seaquest.   

 They utilize convolutional neural networks to interpret video data, broken down into a 

series of frames. These frames are provided to the neural network as input in the form of pixel 

values. The agent’s experiences are stored in memory and replayed in batches of random 

samples. The q-values for these random samples are updated after replay. The samples are 

chosen at random to boost efficiency and reduce the chance of getting stuck at a local minima 

due to the correlation between linked consecutive frame samples.  

 Ultimately, the network is a resounding success at playing the Atari games because of 

their finite action spaces and relatively simple game environments. For most of these games, like 

Space Invaders or Breakout, an action taken has an easy observable state change which is 

measurable by the reward of the new state. The Arcade Learning Environment [4] provides a 

great package within Python for executing actions within the Stella Atari 2600 emulator and 

receiving a reward in return. As it turns out, the ALE also returns the new game state after 
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executing an action and this is of particular importance as it allows the Deep Q-Learning 

network to be set up. The OpenAI Gym API provides a wide variety of reference environments 

ALE has native support for, including several hundred classic Atari games. Ms. PacMan, the 

target game for the scope of the third and fourth deliverable of this semester, is also available as 

a potential game environment in Gym. PacMan has been studied using deep reinforcement 

models before. However, a search of the internet and research articles and journals indicates that 

it has not been the subject of a comprehensive reinforcement learning approach like [1], and as 

such it is a perfect environment for the purposes of this project.  

In Deliverable 3, an agent is trained using the neural network from Deliverable 2, based on a 

running reward system. In Ms Pacman, the reward is 1 if food was present on the cell and 0 

otherwise. The network is initialized with a state space of 500. The running reward is the mean 

of all rewards across the episodes that the net has been trained. Initially, we expect to see the 

running reward fluctuate around a low value. Over time, as the agent learns the proper Q-values 

for the PacMan map, we expect the running reward to rise. Training for a running reward of 110, 

the agent takes 170 episodes to converge and is able to score a mean of 90 over 10 trials. While 

this is promising, it does not tell us much about whether the agent is potentially able to solve the 

game of PacMan or not. However, there are a few observations from this deliverable that will 

prove to be key in the next section. Pac-Man provides a different, albeit interesting sandbox for 

testing the deep Q-learning algorithm proposed in [1] for a number of reasons:  

i) The reward signal from consuming food is consistently high at the beginning of the 

game but becomes sparser as the food around the map gets consumed, akin to 

Breakout.  

ii) The reward signal can provide a high reward in cases where an alien is consumed 
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after powering-up, however, the correlation might not necessary reflect in training the 

network due to random sampling.  

iii) Certain inputs might not always work as the agent is always navigating a narrow 

space in the maze. Often, only two or three of the total actions available might result 

in movement, which means there may be timesteps where the agent stays still even 

though a movement action is executed.  

iv) The ghosts get “better” at playing as the game goes on, i.e., they chase more smartly 

and become faster.  

v) The state space of PacMan is undefinable due to the randomness of the AI, the size of 

the map, the variations of movement pattern of the agent across episodes. Therefore, 

initializing the model with a state space of 500 is not a feasible approach.  

Due to these observations, our initial working hypothesis is to build and train a deep learning 

model that is different from the one in Deliverable 2 and more similar to the one proposed in 

[1], that is able to score at least 3000 points on Ms. Pac-Man or win a map outright. 

VI. DELIVERABLE IV: DEEP Q-NETWORK FOR MS. PAC-MAN 

The approach will be to build a deep Q-network that aggregates the learning across the first 

two deliverables and [1] and then apply that to the game of PacMan. The network 

implemented is a convolutional neural network as defined in the DeepMind paper and 

consists of: 

1. 3 convolutional layers: 

i) 32 filters of 8x8, stride of 4, activated by ReLU 

ii) 64 filters of 4x4, stride of 2, activated by ReLU 

iii) 64 filters of 3x3, stride of 1, activated by ReLU 
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2. 2 dense layers: 

i) 512 neurons, activated by ReLU 

ii) 5 neurons (size of the action space for the agent), with a linear activation function 

The network takes the raw pixels of the game screen as input. Figure 3 describes the results 

of agent, in terms of score vs the number of episodes it was trained for.  

  
Figure 3. The agent demonstrates increasing performance over training episodes. 

The agent is trained on the full move set here, with includes joystick actions that correspond 

to diagonal input, like UPLEFT, UPRIGHT, DOWNLEFT, DOWNRIGHT. The agent also has a 

FIRE command, which is not used in the PacMan game. Additionally, the fire command is 

combined into the directional moves to create moves like UPFIRE, UPLEFTFIRE, etc. 

Downsizing the list of valid actions to from the original 18 to just UP, DOWN, LEFT, RIGHT 

and NOOP might help make training more efficient and as a result, create a smarter agent for our 

game. Figure 4 illustrates the performance of the agent on the reduced moveset in terms of score, 

while Figure 5 charts data for training episodes vs time steps survived.  
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Figure 4. Agent performance with the reduced move set. 

 

Figure 5. Agent survival in terms of time steps vs episodes trained. 
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The results over these two deliverables are quite promising. The deep Q-network is able to 

reach scores of 3000 and, even more impressively, it almost won the game on one instance – 

with just 6 pieces of food remaining. Further, the agent is observed to be playing to win the 

game. Due to limited compute power, there is a limit to the amount of episodes the neural 

network can be trained for. However, we observe the agent's performance is improving as the 

number of episodes increase and the game is certainly solvable with enough training. 

VII. REQUIREMENTS 
 
The requirements to complete the tasks outlined in the proposal are described below: 

• The model for this project will be developed on the Python language and programming 

environment.  

• The Open AI Gym Environment, “Frozen Lake”, will be implement the vacuum world 

environment for Deliverables 1 and 2. 

• The initial training dataset will be composed of frames of images from playing Atari 

games using the ALE.   

• The Open AI Gym Environment for Ms. PacMan will be used to train and test the 

network, across Deliverables 3 and 4. 

• The Keras API within TensorFlow will be used to implement the deep neural networks.   

• The software and technologies listed above are available for use, free of cost.  

 

 

 

 

 



DEEP LEARNING GAME PLAYING 

 

 11 

VIII. PROGRESSION TIMELINE 
 
 

Week 1: Aug. 23 – Aug. 30 Finalize project proposal and find relevant research papers 

Week 2: Aug. 30 – Sep. 6 Read [5] and find sample datasets for training 

Week 3: Sep. 6 – Sep. 13 Read [5] and demo understanding on Q-learning 

Week 4: Sep. 13 – Sep. 20 Deliverable #1: Q-learning 

Week 5: Sep. 20 – Sep. 27 Research implementing Deliverable #1 on a neural network 

Week 6: Sep. 27 – Oct. 4 Read [2] 

Week 7: Oct. 4 – Oct. 11 Read [3] and demo progress on Deliverable #2 

Week 8: Oct. 11 – Oct. 18 Deliverable #2: Neural network 

Week 9: Oct. 18 – Oct. 25 Read [1] and study PacMan game mechanics 

Week 10: Oct. 25 – Nov. 1 Complete reading [1] and demo understanding of 
reinforcement learning within game 

Week 11: Nov. 1 – Nov. 8 Present understanding of DeepMind paper and neural net-
based learning for video games 

Week 12: Nov. 8 – Nov. 15 Read [11] and research enhancing Deliverable #2 to play a 
simple version of PacMan 

Week 13: Nov. 15 – Nov. 22 Deliverable #3: Game-playing agent for PacMan 

Week 14: Nov 22 – Nov. 29 Deliverable #4: PacMan with reinforcement learning 

Week 15: Nov. 29 – Dec. 6 Deliverable #5: CS 297 Report 

 
IX. CONCLUSION 

The results of the deliverables over this semester have been promising. The Q-learning 

approach proved able to solve the vacuum world game described in this report. The neural 

network version of the vacuum world agent was able to predict shortest paths to reward squares 

across the grid. Aggregating the results from the first 2 deliverables and the research of [1], a 

deep Q-network was implemented to solve Ms. PacMan. The network is able to score 3700 

points on Ms. PacMan on the hardest difficulty and is able to nearly win the first stage with only 

6 pieces of food remaining.  Due to limitations in compute power on the MacBook Air M1, we 
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are currently unable to train the model past 50000 episodes. However, observing the trend in 

increasing performance against a higher number of training episodes, it is safe to say the game 

(at least on the first map) is solvable.  

The results also bode well for further research into varying difficulties for games. There is 

scope to experiment with varying frame rates across the neural networks being used to predict 

the optimal action to take. Beyond this, we want to experiment with some form of transfer 

learning to test models across different games and observe results. To evaluate the dynamic 

difficulty adjustment of the AI, a simplified version of PacMan could be implemented with the 

ghosts actually being controllable. In this kind of game, two neural networks could be pit against 

each other to evaluate how the AI gets better and worse over time in reaction to the player or the 

agent’s actions.  
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