
DEEP LEARNING GAME PLAYING

Deep Reinforcement Learning for Game-Playing Agents

Project Report

Presented to

Dr. Chris Pollett

Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Class

CS 297

By

Ayan Abhiranya Singh

December, 2022

DEEP LEARNING GAME PLAYING

 i

TABLE OF CONTENTS

I. Abstract………….………………………………………………………………….…1

II. Introduction……………………………………………………………………………1

III. Deliverable I: Q-Learning in the Vacuum World …….………………………………2

IV. Deliverable II: Deep Q-Learning in the Vacuum World.………..…………………....3

V. Deliverable III: Q-Learning Agent for Ms. Pac-Man...……………………...………..5

VI. Deliverable IV: Deep Q-Network for Ms. Pac-Man……………..……………………7

VII. Requirements………………………………………………………………………...10

VIII. Progression Timeline.……………………………………………………………..…11

IX. Conclusion…………………………………………………………………………...11

References…………………………………………………………………………………....13

DEEP LEARNING GAME PLAYING

 1

I. ABSTRACT

Deep learning is a subfield of machine learning that deals with modeling human brains and

implementing them as neural networks. Video games are one application of deep learning. Older

games, such as for the Atari 2600, provide great environments for testing reinforcement learning

algorithms. Through reinforcement learning, an agent learns about its environment through the

delivery of periodic rewards. One such algorithm is known as Q-learning. Q-learning is a form of

reinforcement learning that allows an agent to act on a quality-function, defined as Q(s,a), that

denotes the sum of rewards from state s onwards if an action a is taken. Q-learning has shown

great results in training agents to play Atari 2600 games like Space Invaders and Breakout. In

this project, we train a neural network that learns control policies for Ms. PacMan and find that it

is able to score 3700 points and almost win the first map outright through this process.

Keywords: Deep learning, Q-Learning, Video games, Atari, Reinforcement learning

II. INTRODUCTION

For my project, I aim to learn more about applications of reinforcement learning and how

deep learning networks can leverage this to implement agents that can play video games at a

near-superhuman level. I will then build agents of my own that are able to play video games of

increasing complexity. We now discuss the organization of the rest of this paper. In the next

section, we discuss the Q-learning algorithm and how it may be utilized to train an agent to learn

the dirt-generation policies of a 5x5 “vacuum-world” game of our own design. The section after

that elaborates how the same agent can use a deep Q-network to learn the shortest path among

dirt positions across a varying size of grids. These two approaches can encompass the scope of

the first two deliverables of this semester.

DEEP LEARNING GAME PLAYING

 2

Over the next two sections (Deliverables 3 and 4), agents that leverage the deep Q-network

defined in [1] will be trained and tested on the classic Atari game, “Ms PacMan”. For

Deliverable 3, an agent trained with the simple network from Deliverable 2 will be deployed to

play the game using the Arcade Learning Environment (ALE) on Python. Deliverable 4 will

utilize a deep Q-Network, based on [1], to do the same. The agent for Deliverable 4 will be

trained over several thousand episodes and tested to see if it is able to break 3000 points on Ms

PacMan. The paper closes with discussion of the technical requirements of the project, the

timeline and a conclusion summarizing the results of the semester and what we plan to do with

them in the future.

III. DELIVERABLE I: Q-LEARNING IN THE VACUUM WORLD

Deep learning was invented around the 1960s, when Alexey Ivakhnenko devised one of the

first “neural networks” [6]. Deep learning utilizes multi-layered neural networks to perform

predictions on or analyze data. Neural networks are artificial structures that are composed of

interconnected node layers, representing the neurons of the brain. The models used in deep

learning are usually trained by huge sets of labeled data.

 Deep neural networks (DNNs) can be used to interpret game frames as a set of raw pixels

[1], to learn a control policy that achieves the maximum amount of reward. The policy dictates

which action an agent should take given a specific state within the game, i.e., a set of pixel

values. The networks then output a probability for each of the actions to take. The reinforcement

learning feedback loop works such that an agent is presented with an observation of the

environment at a given time step. The agent performs an action on the environment based on this

state and the environment returns a reward. For the purposes of vacuum world, the reward is 100

if a dirty square is encountered or 0 if the cell is clean.

DEEP LEARNING GAME PLAYING

 3

The popular "vacuum world" is a common introductory problem into the world of artificial

intelligence. This is a search problem where our agent is a vacuum that must traverse a world (a

grid, in our case) and locate and clean as many dirty cells as possible. Our implementation of

vacuum world builds upon this classic problem and attempts to solve for k-many dirty squares

utilizing Q-learning.

The agent is trained over 5000 episodes, with each episode consisting of a 100 steps. An

exploration probability, 𝜀, is assigned to the agent. The value of 𝜀 is set to 0.5. This value

determines the chance that the agent explores in a random direction or uses the q-table to predict

which direction returns the maximum potential reward. Additionally, a discount factor, 𝛾, is used

to discount (scale down) future rewards. Initially, each square of the grid is initialized to a

reward of -1, with only dirty squares having a reward of 100. The lookup table is updated for

each choice taken to transition from state s to state s’. The updated q value is computed as the

sum reward of the new state s’ and the discounted maximum reward of actions for s’. In this

manner, the agent can traverse the grid over a number of “random walks” and learn what actions

produce maximum reward, given a state observation s. This is of particular importance, as we

ultimately want to replace this q-table with a neural net that outputs a tensor of values that do

essentially the same thing.

IV. DELIVERABLE II: DEEP Q-LEARNING IN THE VACUUM WORLD

Over the course of Deliverable 2, the deep q-learning algorithm from [1] is implemented

through means of a deep neural network. Neural networks, convolutional neural networks (CNN)

in particular, have historically been great at image classification tasks [2]. The neural network for

this task has 3 layers, each fully connected to the next. The first 2 layers both contain 32 neurons,

with the first layer accepting an input of the game screen (n x n grid). The final fully connected

DEEP LEARNING GAME PLAYING

 4

layer has 4 outputs, corresponding to the actions that an agent can take within the world (up,

down, left or right).

To train this network, the state space array (possible states of the game) is initialized to zero.

Each visited state is marked as 1. Random walks with a pre-determined set of steps are executed

within the vacuum world. Each step is chosen with the same exploration probability from the

first deliverable, otherwise, the network predicts a set of actions for the agent to take. The action

is executed within the game environment and each state, new state and reward is added to

memory. The walk terminates if dirt is found (reward of 100), or if the number of steps for the

walk are completed.

Once the memory exceeds a specified number of frames, the frames are replayed with the

reward updated in the same manner as deliverable 1. As there is no longer a q-table in this

deliverable, the neural network is trained on these sample frames and rewards. Over time, the

network is able to determine the path with the highest reward, as demonstrated in Figures 1 and

2.

Figure 1. Deep Q-agent searching for dirt, located at square G, starting from square S. The neural network outputs the shortest path to goal.

DEEP LEARNING GAME PLAYING

 5

Figure 2. Similar to figure 1, the neural network outputs the shortest path to goal.

V. DELIVERABLE III: Q-LEARNING AGENT FOR MS. PAC-MAN

The neural networks outlined in the previous section are derived from the work of Mnih et al.

[1]. The goal of their paper was to learn control policies similar to the approach for vacuum

world, but for classic Atari 2600 video games instead. The Deep Q-Learning algorithm proposed

in their paper was ultimately able to reach superhuman levels of gameplay on Space Invaders,

Breakout, Pong, Beam Rider and Seaquest.

 They utilize convolutional neural networks to interpret video data, broken down into a

series of frames. These frames are provided to the neural network as input in the form of pixel

values. The agent’s experiences are stored in memory and replayed in batches of random

samples. The q-values for these random samples are updated after replay. The samples are

chosen at random to boost efficiency and reduce the chance of getting stuck at a local minima

due to the correlation between linked consecutive frame samples.

 Ultimately, the network is a resounding success at playing the Atari games because of

their finite action spaces and relatively simple game environments. For most of these games, like

Space Invaders or Breakout, an action taken has an easy observable state change which is

measurable by the reward of the new state. The Arcade Learning Environment [4] provides a

great package within Python for executing actions within the Stella Atari 2600 emulator and

receiving a reward in return. As it turns out, the ALE also returns the new game state after

DEEP LEARNING GAME PLAYING

 6

executing an action and this is of particular importance as it allows the Deep Q-Learning

network to be set up. The OpenAI Gym API provides a wide variety of reference environments

ALE has native support for, including several hundred classic Atari games. Ms. PacMan, the

target game for the scope of the third and fourth deliverable of this semester, is also available as

a potential game environment in Gym. PacMan has been studied using deep reinforcement

models before. However, a search of the internet and research articles and journals indicates that

it has not been the subject of a comprehensive reinforcement learning approach like [1], and as

such it is a perfect environment for the purposes of this project.

In Deliverable 3, an agent is trained using the neural network from Deliverable 2, based on a

running reward system. In Ms Pacman, the reward is 1 if food was present on the cell and 0

otherwise. The network is initialized with a state space of 500. The running reward is the mean

of all rewards across the episodes that the net has been trained. Initially, we expect to see the

running reward fluctuate around a low value. Over time, as the agent learns the proper Q-values

for the PacMan map, we expect the running reward to rise. Training for a running reward of 110,

the agent takes 170 episodes to converge and is able to score a mean of 90 over 10 trials. While

this is promising, it does not tell us much about whether the agent is potentially able to solve the

game of PacMan or not. However, there are a few observations from this deliverable that will

prove to be key in the next section. Pac-Man provides a different, albeit interesting sandbox for

testing the deep Q-learning algorithm proposed in [1] for a number of reasons:

i) The reward signal from consuming food is consistently high at the beginning of the

game but becomes sparser as the food around the map gets consumed, akin to

Breakout.

ii) The reward signal can provide a high reward in cases where an alien is consumed

DEEP LEARNING GAME PLAYING

 7

after powering-up, however, the correlation might not necessary reflect in training the

network due to random sampling.

iii) Certain inputs might not always work as the agent is always navigating a narrow

space in the maze. Often, only two or three of the total actions available might result

in movement, which means there may be timesteps where the agent stays still even

though a movement action is executed.

iv) The ghosts get “better” at playing as the game goes on, i.e., they chase more smartly

and become faster.

v) The state space of PacMan is undefinable due to the randomness of the AI, the size of

the map, the variations of movement pattern of the agent across episodes. Therefore,

initializing the model with a state space of 500 is not a feasible approach.

Due to these observations, our initial working hypothesis is to build and train a deep learning

model that is different from the one in Deliverable 2 and more similar to the one proposed in

[1], that is able to score at least 3000 points on Ms. Pac-Man or win a map outright.

VI. DELIVERABLE IV: DEEP Q-NETWORK FOR MS. PAC-MAN

The approach will be to build a deep Q-network that aggregates the learning across the first

two deliverables and [1] and then apply that to the game of PacMan. The network

implemented is a convolutional neural network as defined in the DeepMind paper and

consists of:

1. 3 convolutional layers:

i) 32 filters of 8x8, stride of 4, activated by ReLU

ii) 64 filters of 4x4, stride of 2, activated by ReLU

iii) 64 filters of 3x3, stride of 1, activated by ReLU

DEEP LEARNING GAME PLAYING

 8

2. 2 dense layers:

i) 512 neurons, activated by ReLU

ii) 5 neurons (size of the action space for the agent), with a linear activation function

The network takes the raw pixels of the game screen as input. Figure 3 describes the results

of agent, in terms of score vs the number of episodes it was trained for.

Figure 3. The agent demonstrates increasing performance over training episodes.

The agent is trained on the full move set here, with includes joystick actions that correspond

to diagonal input, like UPLEFT, UPRIGHT, DOWNLEFT, DOWNRIGHT. The agent also has a

FIRE command, which is not used in the PacMan game. Additionally, the fire command is

combined into the directional moves to create moves like UPFIRE, UPLEFTFIRE, etc.

Downsizing the list of valid actions to from the original 18 to just UP, DOWN, LEFT, RIGHT

and NOOP might help make training more efficient and as a result, create a smarter agent for our

game. Figure 4 illustrates the performance of the agent on the reduced moveset in terms of score,

while Figure 5 charts data for training episodes vs time steps survived.

DEEP LEARNING GAME PLAYING

 9

Figure 4. Agent performance with the reduced move set.

Figure 5. Agent survival in terms of time steps vs episodes trained.

DEEP LEARNING GAME PLAYING

 10

The results over these two deliverables are quite promising. The deep Q-network is able to

reach scores of 3000 and, even more impressively, it almost won the game on one instance –

with just 6 pieces of food remaining. Further, the agent is observed to be playing to win the

game. Due to limited compute power, there is a limit to the amount of episodes the neural

network can be trained for. However, we observe the agent's performance is improving as the

number of episodes increase and the game is certainly solvable with enough training.

VII. REQUIREMENTS

The requirements to complete the tasks outlined in the proposal are described below:

• The model for this project will be developed on the Python language and programming

environment.

• The Open AI Gym Environment, “Frozen Lake”, will be implement the vacuum world

environment for Deliverables 1 and 2.

• The initial training dataset will be composed of frames of images from playing Atari

games using the ALE.

• The Open AI Gym Environment for Ms. PacMan will be used to train and test the

network, across Deliverables 3 and 4.

• The Keras API within TensorFlow will be used to implement the deep neural networks.

• The software and technologies listed above are available for use, free of cost.

DEEP LEARNING GAME PLAYING

 11

VIII. PROGRESSION TIMELINE

Week 1: Aug. 23 – Aug. 30 Finalize project proposal and find relevant research papers

Week 2: Aug. 30 – Sep. 6 Read [5] and find sample datasets for training

Week 3: Sep. 6 – Sep. 13 Read [5] and demo understanding on Q-learning

Week 4: Sep. 13 – Sep. 20 Deliverable #1: Q-learning

Week 5: Sep. 20 – Sep. 27 Research implementing Deliverable #1 on a neural network

Week 6: Sep. 27 – Oct. 4 Read [2]

Week 7: Oct. 4 – Oct. 11 Read [3] and demo progress on Deliverable #2

Week 8: Oct. 11 – Oct. 18 Deliverable #2: Neural network

Week 9: Oct. 18 – Oct. 25 Read [1] and study PacMan game mechanics

Week 10: Oct. 25 – Nov. 1 Complete reading [1] and demo understanding of
reinforcement learning within game

Week 11: Nov. 1 – Nov. 8 Present understanding of DeepMind paper and neural net-
based learning for video games

Week 12: Nov. 8 – Nov. 15 Read [11] and research enhancing Deliverable #2 to play a
simple version of PacMan

Week 13: Nov. 15 – Nov. 22 Deliverable #3: Game-playing agent for PacMan

Week 14: Nov 22 – Nov. 29 Deliverable #4: PacMan with reinforcement learning

Week 15: Nov. 29 – Dec. 6 Deliverable #5: CS 297 Report

IX. CONCLUSION

The results of the deliverables over this semester have been promising. The Q-learning

approach proved able to solve the vacuum world game described in this report. The neural

network version of the vacuum world agent was able to predict shortest paths to reward squares

across the grid. Aggregating the results from the first 2 deliverables and the research of [1], a

deep Q-network was implemented to solve Ms. PacMan. The network is able to score 3700

points on Ms. PacMan on the hardest difficulty and is able to nearly win the first stage with only

6 pieces of food remaining. Due to limitations in compute power on the MacBook Air M1, we

DEEP LEARNING GAME PLAYING

 12

are currently unable to train the model past 50000 episodes. However, observing the trend in

increasing performance against a higher number of training episodes, it is safe to say the game

(at least on the first map) is solvable.

The results also bode well for further research into varying difficulties for games. There is

scope to experiment with varying frame rates across the neural networks being used to predict

the optimal action to take. Beyond this, we want to experiment with some form of transfer

learning to test models across different games and observe results. To evaluate the dynamic

difficulty adjustment of the AI, a simplified version of PacMan could be implemented with the

ghosts actually being controllable. In this kind of game, two neural networks could be pit against

each other to evaluate how the AI gets better and worse over time in reaction to the player or the

agent’s actions.

DEEP LEARNING GAME PLAYING

 13

REFERENCES

[1] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013.

[2] O. Alsing, “Mobile object detection using tensorflow lite and transfer learning,” 2018

[3] G. Brockman et al., “Openai gym,” 2016.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning

environment: An evaluation platform for general agents,” vol. 47, pp. 253–279, 2013.

 [5] "Part V, Machine Learning, Chapter 22 Reinforcement Learning" in Artificial

Intelligence: A Modern Approach. S. Russell and P. Norvig. Fourth Edition, New Jersey:

Pearson Education, Inc. 2021, pp. 789-821.

[6] J. Bird, K. Colburn, L. Petzold, and P. Lubin, “Model Optimization for Deep Space

Exploration via Simulators and Deep Learning,” 2020.

[7] "Part V, Machine Learning, Chapter 22 Reinforcement Learning" in Artificial

Intelligence: A Modern Approach. S. Russell and P. Norvig. Fourth Edition, New Jersey:

Pearson Education, Inc. 2021, pp. 789-821.

[8] "Mobile Object Detection using Tensorflow Lite and Transfer Learning.". Alsing, Oscar.

2018

[9] "Deep Learning for Real-Time Atari Game Play using Offline Monte-Carlo Tree Search

Planning." Guo, Xiaoxiao, Satinder Singh, Honglak Lee, Richard L. Lewis, and Xiaoshi

Wang. Advances in Neural Information Processing Systems 27. 2014

[11] "Transfer Learning for Related Reinforcement Learning Tasks Via Image-to-Image

Translation.". Gamrian, Shani and Yoav Goldberg. PMLR, .2019

DEEP LEARNING GAME PLAYING

 14

[12] "AlphaDDA: Game Artificial Intelligence with Dynamic Difficulty Adjustment using

AlphaZero.". Fujita, Kazuhisa. arXiv Preprint arXiv:2111.06266.2021

[13] "Dynamic Difficulty Adjustment through an Adaptive AI. Silva, Mirna Paula, Victor do

Nascimento Silva, and Luiz Chaimowicz.". IEEE. 2015.

