
Exercise 4.1 

In Section 4.3 we introduced the concept of the per-term index as a means to improve the index’s random 

access performance. Suppose the postings list for some term consists of 48 million postings, each of which 

consumes 8 bytes. In order to carry out a single random access into the term’s postings list, the search 

engine needs to perform two disk read operations: 1. Loading the per-term index (list of synchronization 

points) into RAM. 2. Loading a block B of postings into RAM, where B is identified by means of binary 

search on the list of synchronization points. Let us call the number of postings per synchronization point 

the granularity of the per-term index. For the above access pattern, what is the optimal granularity (i.e., the 

one that minimizes disk I/O)? What is the total number of bytes read from disk? 

 

Considering that the: 

• Postings list for some term consists term ‘t’: 48 million  

• Each posting occupies/ consumes space of: 8 bytes 

 

 

 
 

From the figure above we know that: 

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 =  
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑜𝑠𝑡𝑖𝑛𝑔𝑠 𝑙𝑖𝑠𝑡

𝑝𝑒𝑟_𝑡𝑒𝑟𝑚 𝑖𝑛𝑑𝑒𝑥 𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 
  

 

 

According to the textbook: 

Choosing the granularity of the per-term index, that is, the number of postings between two synchronization 

points, represents a trade-off. A greater granularity increases the amount of data between two 

synchronization points that need to be loaded into memory for every random access operation; a smaller 

granularity, conversely, increases the size of the per-term index and thus the amount of data read from disk 

when initializing the postings list. 

 

In theory it is conceivable that, for a very long postings list containing billions of entries, the optimal per-

term index (with a granularity that minimizes the total amount of disk activity) becomes so large that it is 

no longer feasible to load it completely into memory. In such a situation it is possible to build an index for 

the per-term index, or even to apply the whole procedure recursively. In the end this leads to a multi-level 

static B-tree that provides efficient random access into the postings list. In practice, however, such a 
complicated data structure is rarely necessary. A simple two-level structure, with a single per-term index 

for each on-disk postings list, is sufficient. 



 

To compute the optimal granularity which minimizes the disk I/O for 48 million postings; the size of each 

per term index (in bytes) must be similar. 

 

Optimal granularity:  √48 ∗ 106 = 6927 

Number of postings in block B = 6927 

Number of postings for last block = 48 ∗ 106 % 6927 = 2817 

 

Which means we need one synchronization point for every 6927 postings. 

 

Assume the size of per-term index as ‘n’ and the granularity as ‘m’.  

Our target is to minimize ‘m + n’. To achieve this; we must find a value ‘x’ that minimizes the function and 

we take the derivative of this function as: 

 

𝑦 = 𝑓(𝑥) =  
𝑥 + (48000000 − 𝑥)

(𝑥 + 1)
=  

(𝑥2 + 48000000)

(𝑥 + 1)
 

 

 

 

The minimum value for ‘x’ happens when y` = 0 

 

𝑥2 + 2𝑥 − 48000000 = 0 

 

𝑥 =  −2 ± 
√4 − 4 ∗ 1 ∗ (−48000000)

2
= 6927 

 

𝑦 =  
6927 + 47993073

(6927 + 1)
= 13854 

 

 

Total number of bytes read from disk = 13854 * 8 bytes = 110832 bytes 

Total number of bytes read from disk for last block = (6927 + 2817) ∗ 8 = 77952 bytes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 

 

Exercise 4.4 

 

In the algorithm shown in Fig 4.12 the memory limit is expressed as the number of postings that can be 

stored in RAM. What is the assumption that justifies this definition of the memory limit? Give an example 

of a text collection or an application in which the assumption does not hold. 

 

 
 

Let us assume that each posting occupies the same fixed size of memory and let us denote that value using 

‘m’. Let memory limit be denoted as ‘M’. 

Then the total number of postings ‘t’ can be calculated as: 

 
memory limit  

size of memory occupied by each posting
 

 

𝑡 =  
𝑀

𝑚
 

 

 

 

 

For a schema-dependent index the posting list is of the form: 

 

(𝑑, 𝑓𝑡,𝑑, < 𝑝0, … , 𝑝𝑓𝑡,𝑑
>) 

Where ‘d’ is the document id, 

 𝑓𝑡,𝑑 is the frequency of term ‘t’ in document ‘d’  

𝑝0, … , 𝑝𝑓𝑡,𝑑
 is the posting offsets for the term ‘t’ within document ‘d’ 

 

which has a variable size for the posting list. 



 

In such an index our assumption may not hold; since if there are repeating words in the corpus and the index 

will have to store all the postings for the term and the size of the posting list will be very large. Considering 

the algorithm represented above which defines the memory limit as the number of postings that can be 

stored in RAM and assuming it for an index that has a very large posting list; the RAM memory space may 

not be sufficient to handle a posting very large if we set a memory limit as expressed in the algorithm. 

 

Exercise 4.5 

 

In Section 4.5.1 we discussed the performance characteristics of various dictionary data structures. We 

pointed out that hash-based implementations offer better performance for single-term lookups (performed 

during index construction), while sort-based solutions are more appropriate for multi-term lookups (needed 

for prefix queries). Design and implement a data structure that offers better single-term lookup performance 

than a sort-based dictionary and better prefix query performance than a hash-based implementation. 

 

Hash-based implementations have better performance in case of  single-term lookups; while sort-based 

implementations are more efficient for multi-term lookups like for example considering prefix queries. 

 

The data structure we are going to design is a modified hash based method for dictionary construction; 

which includes prefix queries and has a better performance than hash based dictionary approach. For the 

original hash based approach which needs to do a linear scan for prefix queries and is thus less efficient 

than a sort based approach which uses the binary search and is better in terms of time complexity. 

 

Indexing time: 

 

For an example of two terms that occur in sequence; say term 1 is information’ and term 2 is ‘inform’. 

During index construction; we build the index for term 1 ‘information’ first and then when term 2 ‘inform’ 

is read. 

The term ‘information’ which has the posting offset of 1000; then we will store the prefix’s of the term 

‘information’ as keys in the dictionary. 

 

i* -> PL [1000] 

in* -> PL [1000] 

inf* -> PL [1000] 

info* -> PL [1000] 

infor* -> PL [1000] 

inform* -> PL [1000] 

informa* -> PL [1000] 

informat* -> PL [1000] 

informati* -> PL [1000] 

informatio* -> PL [1000] 

information* -> PL [1000] 

 

Given another term ‘inform’ which has the posting offset of 2000;  during the index construction time we 

do: 

 

i* -> PL [1000, 2000] 

in* -> PL [1000, 2000] 

inf* -> PL [1000, 2000] 

info* -> PL [1000, 2000] 

infor* -> PL [1000, 2000] 



inform* -> PL [1000, 2000] 

informa* -> PL [1000] 

informat* -> PL [1000] 

informati* -> PL [1000] 

informatio* -> PL [1000] 

information* -> PL [1000] 

 

 

During index construction; when we read a second term ‘inform’ with the same prefix as an existing term 

say ‘information’; we append the posting offset of the second term to the posting offset of the first term that 

already has the same prefix as shown in the example above. 

 

 

Query time: 

 

Using the above data structure; when we process a prefix query like ‘inform*’ we return the postings as 

[1000, 2000]. 

 

This approach is better than the sort based method for prefix queries in terms of time complexity since this 

has a time complexity of O(1) which is better than O( log n). 

 

 


