CS267
Chris Pollett
Feb 17, 2021
u := -infty
while u < infty do
[u, v] := nextPhrase(t[1],t[2], .., t[n], u)
if( u != infty) then
report the interval [u, v]
function next(t, current)
{
// P[][] = array of posting list arrays
// l[] = array of lengths of these posting lists
static c = []; //last index positions for terms
if(l[t] == 0 || P[t][l[t]] <= current) then
return infty;
if( P[t][1] > current) then
c[t] := 1;
return P[t][c[t]];
if( c[t] > 1 && P[t][c[t] - 1] <= current ) do
low := c[t] -1;
else
low := 1;
jump := 1;
high := low + jump;
while (high < l[t] && P[t][high] <= current) do
low := high;
jump := 2*jump;
high := low + jump;
if(high > l[t]) then
high := l[t];
c[t] = binarySearch(t, low, high, current)
return P[t][c[t]];
}
The book gives a nice analysis of the runtime returning all exact phrase matches when using this algorithm and shows it to be: `O(n cdot l cdot (log (L/l) + 1))`