
1. Below are the pseudocodes for the assigned functions:

Last interval in starting𝐴 ...  𝐵
at or before 𝑘

First interval in ending𝐴 ◁ 𝐵
at or after 𝑘

Last interval in ending𝐴 ◁ 𝐵
at or before 𝑘

ρ'(𝐴 ...  𝐵, 𝑘) =
if then𝑘 = ∞

return [∞, ∞]
if then𝑘 =− ∞

return [− ∞, − ∞]
[𝑢, 𝑣] ← ρ'(𝐴, 𝑘)
if [𝑢, 𝑣] = [− ∞, − ∞]

then
return [− ∞, − ∞]

[𝑢', 𝑣'] ← ρ'(𝐵, 𝑣)
if [𝑢', 𝑣'] = [− ∞, − ∞]

then
return [− ∞, − ∞]

[𝑢'', 𝑣''] ← ρ(𝐴, 𝑢' − 1)
return [𝑢'', 𝑣']

ρ(𝐴 ◁ 𝐵, 𝑘) =
if then𝑘 = ∞

return [∞, ∞]
if then𝑘 =− ∞

return [− ∞, − ∞]
[𝑢, 𝑣] = ρ(𝐴, 𝑘)
if then[𝑢, 𝑣] = [∞, ∞]

return [∞, ∞]
[𝑢', 𝑣'] ← ρ(𝐵, 𝑣 + 1)
if then[𝑢', 𝑣'] = [∞, ∞]

return [∞, ∞]
if then𝑢' ≤ 𝑢

return [𝑢, 𝑣]
else

return ρ(𝐴 ◁ 𝐵, 𝑣 + 1)

τ'(𝐴 ◁ 𝐵, 𝑘) =
if then𝑘 = ∞

return [∞, ∞]
if then𝑘 =− ∞

return [− ∞, − ∞]
[𝑢, 𝑣] = τ'(𝐴, 𝑘)
if [𝑢, 𝑣] = [− ∞, − ∞]

then
return [− ∞, − ∞]

[𝑢', 𝑣'] ← ρ(𝐵, 𝑣)
if then[𝑢', 𝑣'] = [∞, ∞]

return [∞, ∞]
if then𝑢' ≤ 𝑢

return [𝑢, 𝑣]
else

return τ'(𝐴 ◁ 𝐵, 𝑣 − 1)

2. Given and , if we group symbols into blocks of𝑃𝑟["𝑎"] = 0. 7 𝑃𝑟["𝑏"] = 0. 3 𝑚 = 2
symbols, we get the following new distribution:
𝑃𝑟["𝑎𝑎"] = 0. 7 * 0. 7 = 0. 49
𝑃𝑟["𝑎𝑏"] = 0. 7 * 0. 3 = 0. 21
𝑃𝑟["𝑏𝑎"] = 0. 3 * 0. 7 = 0. 21
𝑃𝑟["𝑏𝑏"] = 0. 3 * 0. 3 = 0. 09
We then construct the Huffman tree as follows:



3. A -code is a variant of a -code, with the difference between the two being that -codes storeδ γ δ
the selector component as a -code instead of in a unary representation. In order to prove thatγ δ
-codes are prefix-free, we must consider the following two cases:
Case 1: The selector component is the same.
When we have two distinct gap numbers to convert to -codes that have the same selectorδ
component, we will find that they are prefix-free because they will have different values in their
body components. As an example, 5 has a -code of 01 1 01 and 7 has a -code of 01 1 11; whileδ δ
both numbers have the same selector component (01 1), their body components are different (01
for 5, 11 for 7) and thus can’t be prefixes of one another and are prefix-free.
Case 2: The selector component is different.
When we have two distinct gap numbers to convert to -codes that have different selectorδ
components, we will find that they are prefix-free because the -codes that represent the selectorγ
components are themselves prefix-free. As an example, 5 has a -code of 01 1 01 and 16 has aδ δ
-code of 001 01 0000; both numbers have different selector components (01 1 for 5, 001 01 for
16) and are in the form of -codes, which are prefix-free, so they can’t be prefixes of one anotherγ
and are prefix-free.
Since both cases came to the conclusion that -codes are prefix-free and there are no other cases,δ
we conclude as a whole that -codes are prefix-free.δ

4. Below are the possible splits of the remaining 60 bits:

Selector Number of ‘s∆ Bits per ∆ Unused bits per word

0 1 60 0

1 2 30 0



2 3 20 0

3 4 15 0

4 5 12 0

5 6 10 0

6 7 8 4

7 8 7 4

8 10 6 0

9 12 5 0

10 15 4 0

11 20 3 0

12 30 2 0

13 60 1 0

Between the Simple-9 and Simple-14 methods, I would expect the Simple-14 method to yield
better compression rates on longer lists with similar gap sizes and the Simple-9 method to yield
better compression rates on shorter lists with various gap sizes. To illustrate this, we consider the
following scenarios:
Scenario 1: Short list, similar gaps
In this scenario, using either would be fine, but Simple-9 is better only because it uses a smaller
word size to accomplish the same thing as Simple-14 would.
Scenario 2: Short list, various gaps
In this scenario, Simple-9 is better than Simple-14 because it would take longer for Simple-14 to
find the best split out of 14 for each gap than for Simple-9 to find the best split out of 9 for each
gap.
Scenario 3: Long list, similar gaps
In this scenario, Simple-14 is better than Simple-9 because Simple-14 has more splits available
to choose from for each gap and uses a bigger word size to store more than Simple-9 can.
Scenario 4: Long list, various gaps
In this scenario, Simple-14 is probably better than Simple-9 but only because the list would be
too large for Simple-9 to handle in the first place.

5. Below is the initial state of generation indexes:



After the first partition is written to disk, we create a new generation 1 index. Since this results in
two generation 1 indexes, we merge them into a generation 2 index, resulting in the following:

After the second partition is written to disk, we create a new generation 1 index, resulting in the
following:

After the third partition is written to disk, we create a new generation 1 index. Since this results
in two generation 1 indexes, we merge them into a generation 2 index. After this, we have two
generation 2 indexes, which we merge into a generation 3 index. Finally, we have two generation
3 indexes, which we merge into a generation 4 index, resulting in the following:


