CS256
Chris Pollett
Oct 25, 2021
from keras.models import Sequential from keras.layers import Dense, Activation, Dropout import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' #suppress no GPU warnings num_classes = 10 #if using MNIST digits 0-9 model = Sequential() model.add(Dense(512, activation = 'relu', input_shape = (784,))) model.add(Dropout(0.2)) model.add(Dense(512, activation = 'relu')) model.add(Dropout(0.2)) model.add(Dense(num_classes, activation = 'softmax'))
Which of the following is true?
from keras.models import Sequential from keras.layers import Activation, Dense from keras import initializers from keras import regularizers from keras import constraints model = Sequential() model.add(Dense(512, input_shape=(784,), kernel_initializer = 'he_uniform', kernel_regularizer = None, kernel_constraint = 'MaxNorm', activation = 'relu'))
my_init_zero = initializers.Zeros()
#when layer needs an input value this initializer always outputs 0.
my_init_one = initializers.Ones()
#when layer needs an input value this initializer always outputs 0.
my_init_half = initializers.Constant(value = 0.5)
#when layer needs an input value this initializer always outputs 0.5.
my_init_normal = initializers.RandomNormal(mean=0.0, stddev = 0.05, seed = None)
#normal distribution
model.add(Dense(512, input_shape=(784,), kernel_initializer = my_init_zero))
>>>exec(open("simple_model.py").read()) #code from before
>>>model.layers
[<keras.layers.core.Dense object at 0x107826880>,
<keras.layers.core.Dropout object at 0x1567bd9d0>,
<keras.layers.core.Dense object at 0x1567bdbb0>,
<keras.layers.core.Dropout object at 0x15681c040>,
<keras.layers.core.Dense object at 0x15681c5e0>]
>>> model.summary() Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 512) 401920 _________________________________________________________________ dropout (Dropout) (None, 512) 0 _________________________________________________________________ dense_1 (Dense) (None, 512) 262656 _________________________________________________________________ dropout_1 (Dropout) (None, 512) 0 _________________________________________________________________ dense_2 (Dense) (None, 10) 5130 ================================================================= Total params: 669,706 Trainable params: 669,706 Non-trainable params: 0 _________________________________________________________________
from tensorflow.keras.applications.resnet import ResNet101
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet import preprocess_input, decode_predictions
import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
#we are using a pre-built 101 layer network whose weights
#were trained on ImageNet dataset
model = ResNet101(weights='imagenet')
#a picture of me
img_path = 'myphoto.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
#get the image in the correct format
x = preprocess_input(x)
#make a prediction
preds = model.predict(x)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])