

CS256 HW 3

Experiments and Write-up

Experiment 1:
Hypothesis: Increase in the training set size and number of weights will have a positive effect
on the accuracy of the model.

Experimenting:
Model is trained with data sets of different sizes of 10,000, 50,000, 100,000, and 200,000, and
the accuracy is measured.
Constants: Mini batch size= 128,
Epoch = 30,
number of filters = 32,
Kernel size = 5 => weights = 832

Data size Accuracy

5000 Epoch 30/30
40/40 [==============================] - 1s 22ms/step - loss: 0.0121 -

categorical_accuracy: 0.9796 - val_loss: 0.0083 -
val_categorical_accuracy: 0.9870

10000 Epoch 30/30
79/79 [==============================] - 2s 21ms/step - loss: 0.0065 -
categorical_accuracy: 0.9886 - val_loss: 0.0045 - val_categorical_accuracy:

0.9880

50000 Epoch 30/30
391/391 [==============================] - 8s 20ms/step - loss:

0.0015 - categorical_accuracy: 0.9983 - val_loss: 4.1605e-04 -
val_categorical_accuracy: 1.0000

100,000 Epoch 30/30
782/782 [==============================] - 16s 21ms/step - loss:

5.7597e-04 - categorical_accuracy: 0.9996 - val_loss: 5.6294e-04 -
val_categorical_accuracy: 0.9990

Observation: As the data set size increases, the accuracy is also increasing.
Conclusion: As the dataset size increases, we are covering more combinations in each iteration
thereby improving the accuracy of the model.

Now, for the second part, we will keep the data set constant and change the weights to
determine the effect of weights on the accuracy of the model.
Constants
Mini batch size= 128,
Epoch = 30,
Dataset = 10000

Case 1 :
Filters = 16
Kernel size = 2

Case 2 :
Filters = 32
Kernel size = 2

Case 3 :
Filters = 32
Kernel size = 4

Case 4 :
Filters = 32
Kernel size = 5

Case 5 :
Filters = 64
Kernel size = 4

Cases Accuracy

Case 1

Epoch 30/30
79/79 [==============================] -

1s 15mF/step - loss: 0.0136 -
categorical_accuracy: 0.9742 - val_loss: 0.0105 -

val_categorical_accuracy: 0.9770

Case 2 Epoch 30/30
79/79 [==============================] -

2s 24ms/step - loss: 0.0076 -
categorical_accuracy: 0.9877 - val_loss: 0.0051 -

val_categorical_accuracy: 0.9890

Case 3 Epoch 30/30
79/79 [==============================] -

2s 21ms/step - loss: 0.0074 -
categorical_accuracy: 0.9878 - val_loss: 0.0072 -

val_categorical_accuracy: 0.9820

Case 4 Epoch 30/30
79/79 [==============================] -

2s 22ms/step - loss: 0.0075 -
categorical_accuracy: 0.9872 - val_loss: 0.0040 -

val_categorical_accuracy: 0.9940

Case 5 Epoch 30/30
79/79 [==============================] -

3s 37ms/step - loss: 0.0051 -
categorical_accuracy: 0.9916 - val_loss: 0.0026 -

val_categorical_accuracy: 0.996

Observation
From the above table, we can observe that as the weights increase, the accuracy is also
gradually increasing.

Conclusion
This may be the case as we are increasing the weights, we might end up covering more
combinations in each iteration thereby improving the accuracy.

Experiment 2:

Hypothesis: The well-chosen samples should give a better performance compared to the
random samples.

Experimenting: We will run experiments on a set of Random samples and then on a set of well-
chosen samples and compare the accuracy.

Constants : Mini batch size= 128,
Epoch = 30,
number of filters = 32,
Kernel size = 5 => weights = 832

Training:

Random samples Well Chosen

8/8 [==============================] - 0s
13ms/step - loss: 0.0088 - categorical_accuracy:

0.9820

8/8 [==============================] - 0s
13ms/step - loss: 0.0063 - categorical_accuracy:

0.9890

total number of items tested on 1000 total number of items tested on 1000

Observation: well-chosen should have better accuracy.

Testing:

Random samples Well Chosen

79/79 [==============================] - 1s
11ms/step - loss: 0.0100 - categorical_accuracy:

0.9840
total number of items tested on 10000

79/79 [==============================] - 1s
12ms/step - loss: 0.0115 - categorical_accuracy:

0.9758
total number of items tested on 10000

Observation: We see a minor difference in accuracy.

Conclusion: This difference may be due to the difference in the combination of images.
However, Ideally, there should be no difference in the accuracy in testing. But the Well Chosen
data performs better for training.

Experiment 3 :

Hypothesis: Performing cross-validation gives a better performance compared to the
separate test data.

Experimenting: We will run experiments to compare the accuracy of cross-validation and use
separate test data.

Constants : Mini batch size= 128,
Epoch = 30,
number of filters = 32,
Kernel size = 5 => weights = 832

Cases Separate Test Data Cross Validation

Data size = 5000 Training :
Epoch 30/30

Testing :
8/8

40/40
[==========================

====] - 1s 22ms/step - loss:
0.0121 - categorical_accuracy:

0.9796 - val_loss: 0.0083 -
val_categorical_accuracy:

0.9870

Testing :
8/8

[==========================
====] - 0s 13ms/step - loss:

0.0134 - categorical_accuracy:
0.9700

total number of items tested on
1000

[==========================
====] - 0s 10ms/step - loss:

0.0189 - categorical_accuracy:
0.9600

total number of items tested on
1000

Observation: Accuracy of the model decreased in Cross-Validation testing.

Conclusion: The accuracy decreased in cross-validation because it is avoiding the overfitting of
data by taking the average of data over K splits. Therefore, cross fitting is better for training the
model.

