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Arithmetic Circuits

The model of computation provided by an ordinary computer assumes
the basic arithmetic operations—addition, subtraction, multiplication,
division—can be performed in constant time. This abstraction is res
able, since most basic operations on a random-access machine have
lar costs. When it comes to designing the circuitry that impiements ¢
operations, however, we soon discover that performance depends on
magnitudes of the numbers being operated on. For example, we all |
in grade school how to add two natural numbers, expressed as n-digit
imal numbers, in ©{n) steps {although teachers usually do not emph
the number of steps required).

‘This chapter introduces circuits that perform arithmetic functions.
serial processes, ©(n) is the best asymptotic time bound we can ho
achieve for adding two n-digit numbers. With circuits that operate in
allel, however, we can do better, In this chapter, we shall design ci
that can quickly perform addition and multiplication. (Subtraction i
sentially the same as addition, and division is deferred 1o Problem 29-
We shall assume that all inputs are a-bii natural numbers, expressed
binary.

We start in Section 29.1 by presenting combinational circuits. We
see how the depth of a circuit corresponds to its “running time.”
full adder, which is a building block of most of the circuits in this ¢
ter, serves as our first example of a combinational circeit, Section
presenis two combinational circuits for addition: the ripple-carry add
which works in ©&(n) time, and the carry-lookahead adder, which
oniy O{lg n) time. It also presents the carry-save adder, which can red:
the problem of summing three naumbers to the problem of summing ¢
numbers in (1) time. Section 29.3 introduces two combinational m
pliers: the array multiplier, which takes O(n) time, and the Wallace-
multiplier, which reguires only 8(ig n) time. Finally, Section 29.4 prese
circuits with clocked storage elements {registers) and shows how hard=
can be saved by reusing combinational circuitry.
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29.1 Combinational circuits

Like the comparison networks of Chapter 28, combinational circuits op-
erate in parallel: many elements can compute values simultancously as a
single step. In this section, we define combinational circuits and investi-
gate how larger combinational circuits can be built up from elementary
gates.

Combinational elements

Arithmetic circuits in real computers are built from combinational ele-
ments that are interconnected by wires. A combinational element is any
circuit element that has a constant number of inputs and outputs and that
performs a well-defined function. Some of the elements we shall deal with
in this chapter are boolean combinational elements—their inputs and out-
puts are all drawn from the set {0, 1}, where 0 represents FALSE and 1
represents TRUE.

A boolean combinational element that computes a simple boolean func.
tion is called a logic gate. Figure 29.1 shows the four basic logic gates that
will serve as combinational elements in this chapter: the NOT gate (or
inverter), the AND gate, the OR gate, and the XOR gate. {1t also shows two
other logic gates—the NAND gate and the NOR gate—that are reguired
by some of the exercises.) The NOT gate takes 2 single binary impuf x,
whose value is either O or 1, and produces a binary oufput z whose value
is opposite that of the input value. Each of the other three gates takes two
binary inputs x and y and produces a single binary output z,

The operation of each gate, and of any boolean combinational element,
can be described by a trurh table, shown under each gate in Figure 29.1. A
truth table gives the outputs of the combinational element for each possible
setting of the inputs. For example, the truth table for the XOR gate tells
us that when the inputs are x = Q0 and y = I, the ontput value is z = 1;
it computes the “exclusive OR” of its two inputs. We use the symbols ~
{o denote the NOT function, A to denote the AND function, v to denote
the OR function, and € 1o denote the XOR function, Thus, for exampie,
0 l=1

Combinational elements in real circuits do not operate instantaneously.
Omnce the input values entering a combinational element seftle, or become
stable—ithat is, hold steady for a long enough time-—the element’s output
value is guaranteed 1o become both stable and correct a fixed amount
of time later. We call this time differential the propagation delay of the
element. We assume in this chapter that all combinational elements have
constant propagation delay.
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Figure 29.%  Six basic logic gates, with binary inputs and outpuss. Under each gate
is the truth table that describes the gate’s operation. (a) The NOT gate. {b) The
AND gate. {c} The OR gate. {d} The XOR (exclusive-OR} gate. (e) The NAND
{NOT-AND?) gate. {f} The NOR (NOT-OR} gate.

Combinational circuits

A combinational circuit consists of one or more combinational eiements
interconnected in an acyclic fashion., The interconnections are cailed
wires. A wire can connect the output of one element to the input of an-
other, thereby providing the output value of the first element as an input
value of the second. Although a single wire may have no more than one
combinational-element output connected to it, it can feed several element
inputs. The number of element inputs fed by a wire is called the fan-our of
the wire. If no element output is connected 10 a wire, the wire is a circuit
input, accepting input values from an external source. If no element input
is connected to a wire, the wire is a cireris output, providing the results of
the circuit’s computation to the outside worid. {An internal wire can also
fan out to a circuit output.) Combinational circuits contain no cycles and
have no memory elements (such as the registers described in Section 29.4).
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Full adders

As an example, Figure 29.2 shows a combinational circuit, called a full
adder, that takes as input three bits x, y, and z. It outputs two biis, s
and ¢, according o the following fruth table:

x vy zle¢e s
0 0§70 ¢
0O 0 |0 1
g 1 010 1
0 1 i1 ¢
1 & 6:0 1
P01 10
I 1 01 0
i1 1|1 1

QOutput 5 is the parity of the input bits,

s=parity{x,y, 2l =xdyd z, (29.1)
and output ¢ is the majority of the input bits,

¢c=majority(x,y, 2} = (x AMIV{(PAZ)V(XAZ). (29.2}

(In general, the parity and majority functions c¢an take any number of
input bits. The parity is | if and only if an odd number of the inputs
are {’s. The majority is ! if and only if more than half the inputs are 1's.)
Note thai the ¢ and 5 bits, taken together, give the sum of x, y, and z.
For example, if x = §, ¥ = 0, and z = [, then (¢,s) = {10),) which is the
binary representation of 2, the sum of x, y, and z.

Each of the inputs x, ¥, and z to the full adder has a fan-out of 3.
When the operation performed by a combinational element is commuta-
tive and associative with respect to its inpuis {such as the functions AND,
OR, and XOR), we call the number of inputs the fan-ir of the element.
Although the fan-in of each gate in Figure 29.2 is 2, we could redraw the
full adder 10 repiace XOR gates 4 and £ by a single 3-input XOR gate
and OR gates F and ¢ by a single 3-input OR gate.

To examine how the full adder operates, assume that each gate operates
in unit time. Figure 25.2(a) shows a set of inputs that becomes stable at
time 0. Gates 4-D, and no other gates, have ail their input values stable
at that time and therefore produce the values shown in Figure 29.2{b) at
time |. Note that gates A-D operate in parailel. Gates F and F, but
not gate (G, have stable inputs at time 1 and produce the values shown in
Figure 29.2{c¢) at time 2. The output of gate E is bit 5, and so the s output
from the full adder is ready at time 2. The ¢ output is not ye! recady,
however. Gate G finally has stable inputs at time 2, and it produces the ¢
output shown in Figure 29.2(d) at time 3.
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Figure 2.2 A full-adder circuit. (a) AL time 0, the input bits shown appear on
the three input wires. (b} At time !, the values shown appear on the outputs of
gates A-D, which are at depth 1. (c) At time 2, the values shown appear on the
outputs of gates £ and F, at depth 2. (d) At time 3, gate G produces iis output,
which is also the circuit output,
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Circuit depth

As in the case of the comparison networks discussed in Chapier 28, we
measure the propagation delay of a combinational circuit in terms of the
largest number of combinational elements on any path from the inputs
to the outputs. Specifically, we define the depth of a circuit, which corre-
sponds fo its worst-case “running time,” inductively in terms of the depths
of its constituent wires. The depth of an input wire is 0. If a combinational
element has inpuis Xy, X3,..., X, at depths dy, 4, ..., d, respectively, then
its outputs have depth max {d,,d>,...,d,} + I. The depth of a combina-
tional element is the depth of its outputs. The depth of a combinational
circuit is the maximum depth of any combinational element. Since we pro-
hibit combinational circuits from containing cycles, the various notions of
depth are well defined.

If each combinational element takes constant time to compute its output
values, then the worst-case propagation delay through a combinational
circuit is proportional to its depth. Figure 29.2 shows the depth of each
gate in the full adder. Since the gate with the largest depth is gate G, the
full adder itself has depth 3, which is proportional to the worst-case lime
it takes for the circuit to perform its function.

A combinational circuit can sometimes compute faster than its depth.
Suppose that a large subcircuit feeds into one input of a 24nput AND gate
but that the other input of the AND gate has value 0. The output of the
gate will then be 0, independent of the input from the large subcircuit. In

general, however, we cannot count on specific inputs being applied to the

circuit, and the abstraction of depth as the “running time” of the circuit
is therefore quite reasonable.

Circuit size

Besides circuit depth, there is another resource that we typically wish 1o
minimize when designing circuits. The size of a3 combinational circuit is
the number of combinational elements it contains. Intuitively, circuit size
corresponds to the memory space used by an algorithm. The full adder of
Figure 29.2 has size 7, for example, since it uses 7 gates.

This definition of circuit size is not particularly useful for small circuits.
After all, since a full adder has a constant number of inputs and out-
puts and computes a well-defined function, it satisfies the definition of 2
combinational element. A full adder butlt from a single full-adder combi-
national element therefore has size 1. In fact, according to this definition,
any combinational clement has size 1,

The definition of circuit size is intended to apply to families of circuits
that compute similar functions. For example, we shall soon see an addiiion
circuit that takes two n-bit inputs. We are really not talking about a single
circuit here, but rather a family of circuits—one for each size of input.

G
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Hgure 29.2 A fulf-adder circuit. {a} At time 0, the input bits shown appear on
the three input wires, (b) At time 1, the values shown appear on the outputs of
gates A-D, which are at depth 1. {c) At time 2, the values shown appear on the
outputs of gates F and F, at depth 2. {d} At time 3, gate G produces its output,
which is also the circuit output.
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Circuit depth

As in the case of the comparison networks discussed in Chapter 28, we
measure the propagation delay of a combinational circuit in terms of the
largest number of combinational clements on any path from the inputs
1o the outputs, Specifically, we define the depth of a circuit, which corre-
sponds to its worst-case “running time,” inductively in terms of the depths
of its constituent wires. The depth of an input wire is 0. If a combinational
element has inputs xi, xa,..., X, at depths d,,d>, ..., d. tespectively, then
its outputs have depth max {d,,d,,...,d,} + 1. The depth of a combina-
tional element is the depth of its outputs. The depth of a combinational
circuit is the maximum depth of any combinational element. Since we pro-
hibit combinational circuits from containing cycles, ihe various notions of
depth are well defined.

If each combinational element takes constant time to compute its output
values, then the worst-case propagation delay through a combinational
circuit is proportional to its depth. Figure 29.2 shows the depth of each
gate in the full adder. Since the gate with the largest depth is gate G, the
full adder itself has depth 3, which is proportional io the worst-case time
it takes for ihe circuit to perform its function,

A combinational circuit can sometimes compuie faster than its depth.
Suppose that a large subcircuit feeds into one input of a 2-input AND gate
but that the other input of the AND gate has value . The ouiput of the
gate will then be 0, independent of the input from the large subcircuit. In
general, however, we cannot count on specific inpuis being applied {0 the
circuit, and the abstraction of depth as the “running time™ of the circuit
is therefore quite reasonable.

Circait size

Besides circuit depth, there is another resource that we typically wish to
minimize when designing circuits. The size of a combinational circuit is
the number of combinational elements it contains. Intuitively, circuit size
corresponds to the memory space used by an aigorithm. The full adder of
Figure 29.2 has size 7, for example, since it uses 7 gates.

This definition of circuit size is not particularly useful for small circuits.
After all, since a full adder has a constant number of inputs and out-
puts and computes a well-defined function, it satisfies the definition of a
combinational element. A full adder built from a single full-adder combi-
national element therefore has size 1. In fact, according to this definition,
any combinational element has size 1.

The definition of circuit size is intended 1o apply to families of circuits
that compute similar functions. For example, we shall soon see an addition
circuit that takes two n-bit inputs. We are really not talking about a singie
circult here, but rather a family of circuits—one for cach size of input.
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In this context, the definition of circunit size makes good sense. | allows
us to define convenient circuit elements without affecting the size of any
implementation of the circuit by more than a constant factor. Of course,
in practice, measurements of size are much more complicated, involving
not only the choice of combinational elements, but also concerns such as
the area the circuit requires when integrated on a silicon c¢hip.

Exercises

29.1-1
In Figure 29.2, change input y to 2 1. Show ihe resulting value carried on
each wire.

29.1‘*2
Show how to construct an x-input parity circuit with #— 1 XOR gates and
depth {lgn].

29.1-3

Show that any boolean combinationai element can be constructed from
a constant number of AND, OR, and NOT gates. (Hint: Implement the
truth tabie for the element.)

29.1-4
Show that any boolean function can be constructed entirely out of NAND
gates.

29.1-5
Construct a combinational circuit that performs the exclusive-or function
using only four 2-input NAND pates.

29.1-6

Let € be an panput, a-outpui combinational circuit of depth 4. If two
copies of  are connected, with the outputs of one feeding directly into the
inputs of the other, what is the maximum possible depth of this tandem
circuit? What is the minimum possible depth?

We now investigate the problem of adding numbers represented in binary,
We present three combinational circuits for this problem. First, we look at
rippie~-carry addition, which can add two r-bit numbers in 8{n) time using
a circuit with ©(#n) size. This time bound can be improved to O(Ig#) vsing
a carry-lookahead adder, which also has ©(n) size. Finally, we present
carry-save additton, which in Q1) time can reduce the sum of 3 p-bit
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Figure 29.3 Adding two 8-bit numbers g = (010311110) and b = {110101G1) to
produce 2 9-bit sum s = (100110011). Each bit ¢; is a carry bit. Each column of
bits represents, from top to bottom, ¢, «,, bi, and s; for some i/, Carry-in ¢y is
always 0.

numbers 10 the sum of an 2-bit number and an (7 + 1)-bit number. The
circuit has ©(n) size.

29.2.1 Ripple-carry addition

We start with the ordinary method of summing binary numbers. We as-
sume that a nonnegative integer a is represented in binary by a sequence
of n bits {@y—y,an-2,...,40), where n = [lgla + 1}] and

LEA!
a= Zaﬂ‘ .
i=0

Given two #-bit numbers a = {dn_1,Gn=3,....Gp) and b = {b,_|, b, 2,
...+ b}, we wish 10 produce an {# + I)bit sum s = (5, $y~1,...,8). Fig-
ure 29.3 shows an example of adding two 8-bit numbers. We sum columns
right to left, propagating any carry from column f to columm [ + 1, for
i=490,1,...,n~ 1. In the fth bit position, we take as inputs bits a; and &;
and a carry-in bit ¢;, and we produce a sum bit 5; and a carry-ont bit ¢,
The carTy-out bit ¢;,, from the fth position is the carry-in bit into the
(i 4 1)st position. Since there is no camry-in for position 0, we assume thai
¢g = 0. The carry-out ¢, is bit s, of the sum.

Observe that each sum bit s, is the parity of bits q;, b, and ¢, (sce
equation (29.1}). Moreover, the carry-out bit ¢, is the majority of a;,
b;, and ¢; (see equation (29.2}). Thus, each stage of the addition can be
performed by a full adder.

An n-bit ripple-carry adder is formed by cascading » full adders FAy,
FA,, ..., FA,-,, feeding the carry-out ¢;y; of Fd, directly into the carry-
in input of F4; ;. Figure 29.4 shows an &-bit ripple-carry adder. The
carry bits “ripple” from right to left. The carry-in ¢y to full adder F4, is
hardwired 10 0, that is, it is 0 no matter what values the other inputs take
on. The output is the (n + 1)-bit number 5§ = ($4, Sy—1,..-, 50}, Where 5,
equals ¢,, the carry-out bit from full adder FA4,.

Because the carry bits ripple through all n full adders, the time required
by an n-bit ripple-carry adder is 8(n). More precisely, full adder F4, is at
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Figure 29.4 An 8-bit ripple-carry adder performing the addition of Figure 29.3.
Carry bit ¢o is hardwired 10 0, indicated by the diamond, and carry bits ripple
from right to left.

depth i + 1 in the circuit. Because FA,_, is at the largest depth of any full
adder in the circiit, the depth of the ripple-carry adder is #. The size of
the circuit is ©({n) because it contains n combinational ¢lements.

29.2.2 Carmry-lookahead addition

Ripple-carry addition requires ©(n) time because of the rippling of carry
bits through the circuit. Carry-lookahead addition aveids this ©(n)-time
delay by accelerating the computation of carries using a treelike circuit. A
carry-lookahead adder can sum two n-bit numbers in O(lgn) time.

The key observation is that in ripple~carry addition, for i > 1, full adder
FA4, has two of its input values, namely a, and b;, ready long before the
carry-in ¢, is ready, The idea behind the carry-lookahead adder is to expioit
this partial information.

As an example, let g,_; = b,.,. Since the carry-out ¢, is the majority
function, we have ¢; = a;.; = b,..| regardless of the carry-in ¢;_,. If
di—y = b~y = 0, we can kill the carry-out ¢; by forcing it to 0 without

waiting for the value of ¢;_; to be computed. Likewise, if g;_; = b;_; = 1,
we can generate the carry-out ¢, = 1, irrespective of the value of ¢;_).

If a;..; # bi..1, however, then ¢, depends on ¢, . Specifically, ¢, = ¢;..1,
because the carry-in ¢, casts the deciding “vote” in the majority election
that determines ¢;. In this case, we propagate the carry, since the carry-out
is the carry-in.

Figure 29.5 summarizes these relationships in terms of carry statuses,
where k is “carry kil},” g is “carry generate,” and p is “carry propagaie.”

Consider two consecutive fuli adders FA;_, and F4, together as a com-
bined unit. The carry-in 1o the unit is ¢;.., and the carry-out is ¢;.,. We
can view the combined unit as killing, generating, or propagating carries,
much as for a single full adder. The combined unit kills its carry if F4,
kills its carry or if FA4,.., kills its carry and FA, propagates it. Simularly,
the combined unit generates a carry if F4, generates a carry or if Fd;..,
generates a carry and FA4; propagates it. The combined unit propagates
the carry, setting ¢;y = ¢,..1, If both full adders propagate carries. The
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Figure 29.5 The carry-out bil ¢, and carry status corresponding to inputs a,.,,
b,_), and ¢, of fult adder F4,_, in ripple-carry addition.
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Figure 29.6 The carry status of the combination of full adders F4, ., and F4; in
terms of their individual carry statuses, given by the carry-status operaior © over
the domain {k.p,g}.

table in Figure 29.6 summarizes how carry statuses are combined when
full adders are juxtaposed. We can view this table as the definition of the
carry-status operator & over the domain {k,p,g}. An important property
of this operator is that it is associative, as Exercise 29.2-2 asks vou to
verify.

We can use the carry-status operator to express each carry bit ¢; in terms
of the inputs. We start by defining xo = k and

{k fa_y=b_ =0,
Xp=p Hai #by, (29.3)
g ifa.=b_=1,
fori=1,2,...,n. Thus, fori = 1,2,...,n, the value of x, is the carry
status given by Figure 29.5.

The carry-out ¢; of a given full adder F4;_, can depend on the carry
status of every full adder ¥4; for j = 0,1,...,7/ — i. Let us define vy =
Xy = k and

Yi = Vi ®X (29.4)
= Xg®RX B QX

fori=1,2,...,n Wecan think of y; as a “prefix” of xp®x1 ® - Q@ Xx,; wWe
call the process of computing the values yg, vi,. .., ¥, a prefix computation.
{Chapter 30 discusses prefix computations in a more general parallel con-
text.) Figure 29,7 shows the values of x; and y; corresponding to the binary
addition shown in Figure 29.3. The following lemma gives the szgmﬁeance
of the y; values for carry-lookahead addition. R
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Figure 29.7 The vaiues of x; and v, for { = §,1,...,8 that correspond to the
values of 4, b;, and ¢; in the binary-addition problem of Figure 29.3. Each value
of x, is shaded with the values of a,.., and b;_ that it depends on.

Lemma 29.1
Define xg,xy,...,x, and po,¥1,...,¥n by equations {29.3) and (2%.4). For
i=10,1,...,n, the following conditions hold:
I. y; =k implies ¢; = 0,

2. y; = g mmplies ¢; = 1, and

3. y; = p does not occur.

Proof The proof is by induction on i. For the basis, / = 0. We have
¥o = Xp = K by definition, and also ¢y = 0. For the inductive step, assume
that the lemma holds for i — 1. There are three cases depending on the
value of y;.

1. If y, = k, then since y; = ¥,.| ® Xx;, the definition of the carry-status
operator @ from Figure 29.6 implies either that x;, = k or that x, =p

and y,... = k. If x; = k, then eguation (29.3) implies that q,., =
b,y = 0, and thus ¢; = majority(a;_;, bj.1,¢—1) = 0. If x, = p
and y;... = k, then 4. # b;_, and, by induction, ¢;; = 0. Thus,

majority{a; 1, b;-1,¢,(} = 0, and thus ¢; = 0.
2. 1f y; = g, then either we have x; = g or we have x; = pand v, = &

If x; = g, then ¢,_; = b;.; = }, which implies ¢; = 1. If x; = p and
Yi—1 = g then a;_, # b;—; and, by induction, ¢;- = 1, which implies
¢ =L

3. If y; = p, then Figure 29.6 implies that y; | = p, which contradicts the
inductive hypothesis. ]

Lemma 29,1 implies that we can compute each cairy bit ¢; by computing
each carry status ¥,. Once we have all the carry bits, we can compute
the entire sum in ©(}) {ime by computing in parallel the sum bits 5, =
parity(a;, b;, ¢;) for i =0, 1,...,n (taking @, = b, = 0). Thus, the problem
of quickly adding two numbers reduces to the prefix computation of the
carry statuses yo, Vs,...,Va.
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Computing carry statuses with a parallel prefix circuit

By using a prefix circuit that operates in parallel, as opposed to a ripple-
carry circuit that produces its outputs one by one, we can compute all
n carry siatuses Vo, Vi,-..,¥s more quickly. Specifically, we shall design
a parallel prefix circuit with O{ign) depth. The circuit has ©(n) size—
asymptotically the same amount of hardware as a ripple-carry adder.

Before constructing the paralle} prefix circuil, we introduce a notation
that will aid our understanding of how the circuit operates. For integers ¢
and f in the range 0 < [ < j < n, we define

[L=X0Xm® - ®X, .

Thus, for i = 0,1,...,n, we have [£, {] = x;, since the composition of just
one carry status X, is itself. For 7, j, and k satisfying 0 < i< j<k <n,
we also have the identity

U k] =167 — 11® [, k], (29.5)

since the carry-status operaior is associative. The goal of a prefix computa-
tion, in terms of this notation, is to compute y, ={0,i]fori =0, 1,...,n.

The only combinational element used in the paralle]l prefix circuit is a
circuit that computes the ® operator. Figure 29.8 shows how pairs of ® el-
ements are organized o form the internal nodes of a complete binary tree,
and Figure 29.9 illustrates the parallel prefix circuit for n = 8. Note that
the wires in the circuit foliow the structure of a tree, but the circuit itseif
is not a tree, although it is purely combinational. The inputs X1, X2,..., Xs
are supplied at the leaves, and the input x; is provided at the root. The
outputs yo, Vi,..., Va1 are produced at leaves, and the output v, is pro-
duced at the root. (For ease in understanding the prefix computation,
variabie indices increase from left to right in Figures 29.8 and 29.9, rather
than from right to left as in other figures of this section.)

The two ® elements in each node typically operate at different times
and have different depths in the circuit. As shown in Figure 29.8, if the
subtree rooted at a given node spans some range x,, Xjs1,.... X of inputs,
its left subtree spans the range x,, xi41, ..., X1, and its right subtree spans
the range X;, X,41,..., Xy, then the node must produce for its parent the
product [i, k] of all inputs spanned by its subtree. Since we can assume
inductively that ihe node’s ieft and right children produce the products
[, j—1jand [j, k], the node simply uses one of its two clements 1o compute
ikl [4,7 — e kL

Some time after this upward phase of computation, the node receives
from iis parent the product {0,i — 1] of all inputs that come before the
leftmost input x; that it spans. The node now likewise computes values for
its chifdren. The lefimost input spanned by the node’s left child is also x;,
and 50 it passes the value {0, i — 1] to the left child unchanged. The leftmost
input spanned by its right child is x;, and so it must produce (0,7 — 1).
Since the node receives the value [0,i — 1] from its parent and the value
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Figure 29.8 The organization of a parallel prefix circuit. The node shown is the
root of a subtree whose leaves input the values x, to x;. The node’s left subtree
spans inputs X; to x,_), and its right subtree spans inputs X, to x;. The node
consists of two ® elements, which operate at different times during the operation
of the circuit. One element computes {1k} — [i,j — 1) ® [}, k), and the other
element computes [0, f — 1} «— {0,i ~ i} @ i, j — 1]. The values compuied are
shown on the wires.

[7,j— 1] from its left child, it simply computes [Q, j — 11 < [0,/ — 11®{i, k]
and sends this value to the right child.

Figure 29.9 shows the resulting circuit, including the boundary case that
arises at the root. The value xg = {0, 0] is provided as input at the root,
and one more ® ¢lement is used 1o compuie (in general) the value y, =
G,n]=[0,01a[l,n}

If »n is an exact power of 2, then the paralie} prefix circuvit uses 2n—1 ®
elements. It takes only Oflg») time to compute all # 4+ 1 prefixes, since the
computation proceeds up the tree and then back down. Exercise 29.2-5
studies the depth of the circuit in more detail.

Completing the carry-lookahead adder

Now that we have a parallel prefix circuit, we can complete the description
of the carry-lookahead adder. Figure 29.10 shows the construction. An
n-bit carry-lookahead adder consists of » + 1| KPG boxes, each of ©(1)
size, and a parallel prefix circuit with inputs xg, X(,..., X, (X is hardwired
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Figure 29.9 A parallel prefix circuit for # = 8. {a) The overall siructure of the
circuit, and the values carried on each wire. {b) The same circuit with values
corresponding to Figures 29.3 and 29.7.

to k} and cutputs yo, ¥1,..., .. KPG box KPG; takes external inputs a;
and b; and produces sum bit 5;. {Input bits @, and b, are hardwired to 0.)
Given a;.., and b,..,, box KPG;., computes x; € {k,p,g} according to
cquation (29.3) and sends this value as the external input x; of the parallel
prefix circuit. (The value of x,., is ignored.) Computing all the x; takes
(1) time. After a delay of O(lgn), the parallel prefix circuit produces
Y0, ¥1,....¥n. By Lemma 29.1, y, is either k or g; it cannot be p. Each
value y; indicates the carry-in to full adder F4, in the ripple-carry adder:
yi = kimplies ¢; = 0, and y; = g implies ¢, = 1. Thus, the value of y, is fed
into KPG; to indicate the carry-in ¢;, and the sum bit s; = parity(a;, b;, ¢;)
is produced in constant time, Thus, the carry-lookahead adder operates in
O(lgn) time and has &{n) size.
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Figure 29.10 The constraction of an n-bit carry-lookahead adder, shown here for
# == 8. It consists of # 4 § KPG boxes KPG, fori = 0, 1,..., n Each box KPG,
takes external inputs g, and b, {where a, and b, are hardwired to 0, as indicated
by the diamond) and computes carry status x,.;. These values are fed into the
parallei prefix circuit, which returns the results v, of the prefix computation. Each
box KPG, now takes ¥, as input, interprets it as the carry-in bit ¢,, and then outputs
the sum bit 5, = parity{a:;, b, ¢,}. Sample values corresponding to those shown in
Figures 29.3 and 29.9 are shown.

29.2.3 Carry-save addition

A carry-tockahead adder can add two n-bit numbers in Ofign) time. Per-
haps surprisingly, adding three n-bit numbers 1akes only a constant addi-
tional amount of time. The trick is to reduce the problem of adding three
numbers to the problem of adding just two numbers.
Given three #-bil numbers X = {X,—{, Xy-2,..-,X0), ¥ = Vpet, Vn2s
Loy and 2 = {Z,1, Zn-1,.-., To), A0 #-bit carry-save adder produces an
n-bit aumber ¥ = (#y—1, Uy_2,.... g} and an (» + 1)-bit number v = {v,,
Upety-... Up) Such that

UTU=X+Y+ZI.
As shown in Figure 29.11{a), it does this by computing

pal‘itY(Xu Yis Z{} )
majority(x;, vi, ;) ,

]

u;

Vist

fori=0,%,...,n— 1. Bit vy always equals 0.

The n-bit carry-save adder shown in Figure 29.11(b) consists of n full
adders Fdg, FA;,..., FA,y. Fori=0,1,...,n -1, full adder F4, takes
inputs x;, y;, and z;. The sum-bit output of FA4; is taken as u;, and the
carry-out of FA; is taken as v,.;. Bit vg is hardwired to 0.

Since the compuiations of ail 2» + 1 output bits are independent, they
can be performed in parallel. Thus, a carry-save adder operates in 6(1}
time and has ©(n) size. To sum three n-bit numbers, therefore, we need
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Figure 29.11 (a} Carry-save addition. Given three #-bit numbers x, y, and z, we
produce an #-bit number u and an (72 + 1}-bit number v such that x +y 4z = u+v.
The ith pair of shaded bits are a function of x,, ¥, and z;. (b} An 8-bit carry-save
adder. Each full adder FA, takes inputs x;, ¥;, and z; and produces sum bit u; and
carry-out bit v,.,. Bit vy 15 hardwired to .

only perform a carry-save addition, taking ©(1) time, and then perform a
carry-lookahead addition, taking O(ig ) time. Although this method is not
asymptotically better than the method of using two carry-lookahead addi-
{ions, it is much faster in practice. Moreover, we shall see in Section 29.3
that carry-save addition is central to fast algorithms for multiplication.

Exercises

29.2-1

Let a = (01111111}, b = (00000001), and » = 8. Show the sum and
carry bits output by full adders when ripple-carry addition is performed on
these two sequences. Show the carry statuses Xp, X),...,xg corresponding
to « and b, label each wire of the parallel prefix circuit of Figure 29.9
with the value it has given these x; inputs, and show the resulting outputs
Yo, Vi, V8.

29.2-2
Prove that the carry-siatus operator @ given by Figure 29.5 is associative.




Figure 29.12 A paraliel prefix circuit for use in Exercise 29.2-6.

29.2-3

Show by example how to construct an O{lg n)-time paralle! prefix circuit
for values of n that are not exact powers of 2 by drawing a parallel prefix
circitit for # = {1. Characterize the performance of parallel prefix circuits
built in the shape of arbitrary binary trees.

29.2-4

Show the gate-level construction of the box KPG;. Assume that each out-
put x; is represented by (00} if x, = k, by {11} if x; = g, and by {01}
or {10} if x, = p. Assume also that each input y; is represented by 0 if
yvw=kandby 1 if y, =g

29.2.5

Label each wire in the parallel prefix circuit of Figure 29.9(a} with its
depih. A crirical path in a circuit is a path with the largest number of
combinaiional elements on any path from inputs to outputs. Identify the
critical path in Figure 29.9(a}, and show that its length is O(lgn). Show
that some node has ® elements that operate ©{ign) time apart. Is there a
node whose @ elements operaie simultaneously?

29.2-6
Give a recursive block diagram of the circuit in Figure 29,12 for any num-
ber n of inputs that is an exact power of 2. Argue on the basis of your block
diagram that the circuit indeed performs a prefix computation. Show that
the depth of the circuit is ©(lg#) and that it has ©(nlgn) size,

28
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29.2-7

What is the maximum fan-out of any wire in the carry-lookahead adder?
Show that addition can still be performed in O{lgn) time by a &(#n)-size
circuit even if we restrict gates to bave O(1) fan-out.

29.2-8

A tally circuit has n binary inputs and m = [Ig{n + 1}] outputs. Interpreted
as a binary number, ihe outputs give the number of 1’s in the inputs, For
example, if the input is (10011110}, the output is (101}, indicating that
there are five 1’s in the input. Describe an O(lg n)-depth tally circuit having
(n) s1ze,

29.2-9 x

Show that n-bit addition can be accomplished with a combinational circnit
of depih 4 and size polynomial in 7 if AND and OR gates are allowed
arbitrarily high fan<in. (Optional: Achieve depih 3.)

219.2-18 =«

Suppose that two random n-bit numbers are added with a ripple~carry
adder, where each bit is independently 0 or t with equal probability. Show
that with probability at least 1 — 1/s, no carry propagates farther than
O{lg n) consecutive stages. In other words, although the depth of the ripple-
carry adder is €(n), for two random numbers, the outputs aimost always
settle within {lgn) time,

The “grade-school” multiplication algorithm in Figure 29.13 can compute
the 2n-bit product p = {Pry—i,Pn-2,....00) of two n-bit numbers @ =
{@p-1,Qn-2,..., 00y and b = {b,_y, b2, ..., bo}. We examine the bits of b,
from &y up to b,—|. For each bit #; with a value of 1, we add g into the
product, but shifted left by 7 positions. For each bit b; with a value of 0,
we add in 0. Thus, letting m'? = g - b, - 2!, we compute

n--1
Pwa—b:Zm(”.
i=0

Each term m'" is called a partial product. There are n partial products o
sum, with bits in positions 0 to 2»n — 2. The carry-cut from the highest bit
yields the final bit in position 21 — 1.

In this section, we examine two circuits for multiplying two #-bit num-
bers. Array multipliers operate in ©{r) time and have &(n?) size. Wallace-
tree multipliers also have ©(n?) size, but they operate in ©(ign) time. Both
circuits are based on the grade-school algorithm.
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Figure 29.13  The “grade-school”™ multiplication method, shown here multiply-
ing a = {1110) by b = {1101} 1o obtain the product p = {10110110). We add

S m, where m'™ = @b, - 2. Here, n = 8. Each term m" is formed by
shifting either a (if b, = 1} or 0 {if b, = §) { positions to the left, Bits that are not

shown are O regardiess of the values of ¢ and b.

29.3.1 Array multipliers

An array multiplier consists conceptually of three parts. The first part
forms the partial products, The second sums the partial products us-
ing carry-save adders. Finaily, the third sums the two numbers resulting
from the carry-save additions using either a ripple-carry or carry-lookahead
addesr.

Figure 29.14 shows an array multiplier for two input numbers ¢ =
(An—t,Guery - o) @and b = (byy,ba2,...,bo). The g; values run ver-
tically, and the &, values run horizontally. Each input bit fans out to »
AND gates to form partial products. Full adders, which are organized as
carry-save adders, sum pariial products. The lower-order bits of the fi-
nal product are output on the right. The higher-order bits are formed by
adding the two numbers output by the last carry-save adder.

Let us examine the construction of the array multiplier more closely.
Given the two input numbers @ = (@n—i,Qn2,- ... Q) and b = {b,_(, b, .2,
..., bp}, the bits of the partial products are easy to compute. Specifically,
fori,j=0,1,...,n~1, we have

Since the product of 1-bit vaiuzes can be compuied direcily with an AND
gate, all the bits of the partial products {except those known to be §, which
need not be explicitly computed) can be produced in one step using n?
AND gates.

Figure 29.15 iliusirates how the array multiplier performs the carry-save
additions when summing the partial products in Figure 29.13. It starts by
carry-save adding m'%, m'", and 0, vielding an (n + {)-bit number ut!!
and an (n + 1)-bit number 2. {The number v''} has only # + 1 bits,
not n + 2, because the (n + 1)st bits of both 0 and m'? are 0.) Thus,
m 4+ i = ) 4ol It then carry-save adds u(U), v, and m¥,
vielding an (n + 2)-bit number «'* and an (n 4 2)-bit number v'¥, {Again,

b
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Figure 29.14 An array multiplier that computes the product p = (Jza—1, Pn~2,

<., oy of two n-bit numbers 4 = {(@u|, @n—z,.... ¢} and b = by, bu_2,. .., be),
shown here for n = 4, Each AND gate " computes partial-product bit s, Each
row of full adders consiitutes a carry-save adder. The lower n bits of the product are
m{” and the u bits coming out from the rightmost column of full adders. The upper
n product bits are formed by adding the u and v bits coming out from the bottom
row of full adders. Shown are bit values for inputs ¢ = (1110} and b = {1101}
and product p = (10110113}, corresponding to Figures 29.13 and 29.15.
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Figure 29.15 Evaluating the sum of the partial producis by repeated carry-save
addition. For this example, a = {1110) and b = (1 101}. Bits that are blank are 0
regardless of the values of g and b. We first evaluate m® 4+ m!! 4+ 0 = 4t 4 I,
thea w!! + oV + ;' = 4 + v then u® + v 4 m™ = 4 4+ o', and finally
p=m® 4 m 4+ m® e = 4™ 4 Note that py = m})’ and p, = 1" for
i=1,2,...,n—1

v has only 7 + 2 bits because both !/, and v\, are 0.) We then have
MmO 4 M 4 M = 42 4+ ¥, The multiplier continues on, carry-save
adding 4=V, Y=U and m'? fori = 2,3,...,n—1. Theresultisa (2n—1)-

bit number #*~! and a (2» — 1)-bit number v\*~ 1, where

n—|
SR
i=0

= p .

In fact, the carry-save additions in Figure 29.15 operate on more bits
than strictly necessary. Observe that for i = 1,2,...,n~ 1 and j =
0, 1,...,f — 1, we have mi,-” = { because of how we shift the partial

products. Observe also that U}" ={Q0fori/ = L2,...,n—1and j =
0, 1,....4Li+ni+n+1,...,2n— 1. (See Exercise 29.3-1.) Each carry-save
addition, therefore, needs (o operate on only 1 — 1 bits,

Let us now examine the correspondence between the array multiplier and
the repeated carry-save addition scheme. Each AND gate is labeled by G}’ )
forsomeiand jintheranges0<i<n-1land0< j<2n-2. Gate G}‘}
produces mf,-‘), the jth bit of the /th partial product. Fori =0,1,...,n—-1,
the ith row of AND gates computes the n significant bits of the partial
product m(®, that is, (miy),_,,mil, ... miy.

Except for the {ull adders in the top row (that is, fori = 2,3,...,n - 1},

each full adder FAgf) takes three input bizs—mgn, uff”” , and vff‘”—and

produces two output bits—uﬁ-"} and v}iﬂl. (Note that in the leftmost column
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of full adders, u,;'n”} m' ) Each full adder FA\" in the top row takes

I
(0)

inputs m, ", m't e ! and 0 and produces bits u ' and v(”

Finally, let us examine the ouiput of the array mult:plxer. As we observed
above, *Uj-"'” = 0 for j = 0,1,...,n— 1. Thus, p; = 5”'” for j =
0,1,...,1 — 1. Moreover, since mm = (, we have u(” mé , and since
the lowest order i bits of each m'¥) and v~ are 0, we have W = u ™" for
i=2, 3 n—-tand j=0,1,...,i—1. Thus, py = m0 and, by 1nduct1on,

D= u for i=1,2,...,n— L Product bits {py,_1,P2n-2,.... 04} aI€
produced by an n-bit adder that adds the outputs from the last row of full
adders:

{Pn-1:P2n=2+-- . Pn) =

fa=-1% _ (n—1i} (a—1) {g—1% _fn=1} S =1
(13 s Uy 3se sty )+ {U, 0 z’”zn 3o Un )

Analysis

Data ripple through an array maultiplier from upper left to lower right. It
takes ©(n) time for the lower-order product bits {pn.i, Py-2,-..,P0) 10 be
produced, and it takes ©(r) time for the inpuis to the adder to be ready.
If the adder is a ripple-carry adder, it takes another &{n) time for the
higher-order product bits {pr...(, P2a_2,...,Pn) to emerge. If the adder is
a carry-iookahead adder, only ©(ign) time is needed, but the total time
remains ©{n).

There are 72 AND gates and n® — n full adders in the array multiplier.
The adder for the high-order output biis contributes only another ©(n)
gates. Thus, the array muitiplier has ©(n?) size.

29.3.2 Wallace-tree multipliers

A Wallace tree is a circuit that reduces the problem of summing »# s-
bit numbers to the problem of summing two O(n)-bit numbers, It does
this by using |n/3] carry-save adders in parailel to convert the sum of n
numbers to the sum of {2n/3] numbers. It then recursively constructs
a Wallace tree on the [27n/3] resulting numbers. In this way, the set of
numbers is progressively reduced until there are only two numbers left.
By performing many carry-save additions in paraliel, Wallace trees aliow
two n-bit numbers to be multiplied in &{lgn) time using a circuit with
B(n?) size.

Figure 29.16 shows a Wallace tree? that adds 8 partial products m'®,
mit, . om". Partial product m'”! consists of n + [ bits. Each line repre-
sents an entire number, not just a single bit; next to each line is the number

2 A5 you can see from the figure, a Wallace tree is not truly a tree, but rather a divected acycht:
graph. The name is historical. .
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Figure 29.16 A Wallace tree that adds # = 8 partial preducts m™® m'V ... m'",
Each line represents a number with the number of bits indicated. The left output
of each carry-save adder represents the sum bits, and the right output represents

the carry bits.

of bits the line represents (see Exercise 29.3-3). The carry-lookahead adder
at the bottom adds a (2n — 1)-bit number to a 2n-bit number o give the
2n-bit product.

Analysis

The time required by an r-input Wallace tree depends on the depth of the
carry-save adders. At each level of the tree, cach group of 3 numbers is
reduced to 2 numbers, with at most 2 numbers left over (as in the case
of m'® and m'” at the top level). Thus, the maximum depth D{n)} of a
carry-save adder in an n-tnput Wallace tree is given by the recurrence

0 ifn<,
D(ry=1<1 ifn=173,
D{f2n/3¥+1 ifnz>4,

which has the solution D(#) = Q(lgn) by case 2 of the master theorem
{Theorem 4.1). Each carry-save adder takes ©(1) time. All n partial prod-
ucts can be formed in ©(1) time in parallel. (The lowest-order { — 1 bits of
m fori=1,2,...,n~1, are hardwired 10 0.) The carry-lookahead adder
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takes O{lgn) time, Thus, the entire multiplication of two r-bit numbers
takes G(lgn) time,

A Waliace-tree muitiplier for two n-bit numbers has &(n?) size, which
we can see as follows. We first bound the circuit size of the carry-save
adders. A lower bound of Q(n?) is easy to obtain, since there are |2n/3)
carry-save adders at depth |, and each one consists of at least n full adders.
To get the upper bound of O(n?), observe that since the final product has
2n hits, each carry-save adder in the Wallace tree contains at most 2n full
adders. We need to show that there are O(n) carry-save adders altogether.
Let C(n) be the total number of carry-save adders in a Wallace tree with
n input numbers. We have the recurrence

1 ifnm3,
Clr) s {C([Zn/fﬂ) +[n/3} ifnza,

which has the solution C(n} = ©{n) by case 3 of the master theorem. We
thus obtain an asymptotically tight bound of ©(n?) size for the carry-save
adders of a Wallace-tree multipiier. The circuitry to set up the n partial
products has ©(n?) size, and the carry-lookahead adder at the end has 6(n)
size. Thus, the size of the entire multiplier is ©{n?).

Although the Wallace-tree-based multiplier is asymptotically faster than
the array multiplier and has the same asymptotic size, its layout when it is
implemented is not as regular as the array muitiplier’s, nor is it as “dense”
{(in the sense of having little wasied space between circuit eiements). In
practice, a compromise between the two designs is often used. The idea
is to use two arrays in parallel, one adding up half of the partial products
and one adding up the other half. The propagation delay is only haif
of that incurred by a single array adding up all » partial products. Two
more carry-save additions reduce the 4 numbers output by the arrays to 2
numbers, and a carry-lookahead adder then adds the 2 numbers fo vield
the product. The total propagation delay is a little more than half that of
a full array multiplier, plus an additional O(lgn) term.

Exercises

29.3-1

Prove that in an array multipiier, UE’) = Qforf=1,2,....n—1 and
=01 ..., ii+ni+n+i,...,2n- 1L

29.3.2

Show that in the array multiplier of Figure 29.14, all but onc of the full
adders in the top row are unnecessary. You will need to do some rewiring.

29.3-3

Supposc that a carry-save adder takes inputs x, y, and z and produces
outputs s and ¢, with n,, n,, n;, 1y, and n, bits respectively. Suppose also,
without loss of generality, that n, < 1, < n.. Show that n; = n, and that




n = {8 ifny<nz,
T \n+1 ifny=n,.

29.3-4
Show that multiplication can still be performed in O(lig #) time with O{n?)
size even if we restrict gates to have O(1} fan-out.

29.3.53

Describe an efficiemt circait to compute the quotient when a binary num-
ber x is divided by 3. (Hint: Note that in binary, .G10101... = .01 x 1.01
1.0001 x ---)

29,36

A cyclic shifter, or barrel shifter, is a circuit that has two inputs x
{Xn—t>Xn=2,.+., X0} and § = {5$p,_1,8m—2,...,%), where m = [lgn]. |
output ¥ = (Vu-1,Vn-2,...,¥0) 15 specified by yi = X, smogns fOr [ =
0,1,...,n — 1. That is, the shifter rotates the bits of x by the amount
specified by 5. Describe an efficient cyclic shifter. In terms of modular
multiplication, what function does a cyclic shifter implement?

The elements of a combinational circuit are used only once during a com-
putation. By introducing clocked memory elements into the circuit, we
can reuse combinational elements. Because they can use hardware more
than once, clocked circuits can often be much smaller than combinational
circuiis for the same function.

This section investigates clocked circuits for performing addition and
multiplication. We begin with a ©(1)-size clocked circuit, called a bit-serial
adder, that can add two n-bit numbers in ©(n) time. We then investigate
linear-array multipliers. We present a linear-array muitiplier with ©(n)
size that can multiply two n-bit numbers in ©(n) fime.

29.4.1 Bit-serial additien

We introduce the notion of a clocked circuit by returning to the problem
of adding two n-bii numbers. Figure 29.17 shows how we can use a single
full adder to produce the (n + 1}-bit sum 5 = {(8,,5:_1,...,5) of two n-
bit numbers @ = {@y_;,an-2,...,a) and & = {(bp_(,by_3,...,b0). The
external world presents the input bits one pair at a time: first 2y and b,
then a; and b;, and so forth. Although we want the carry-out from one
bit position to be the carry-in to the next bit position, we cannot just feed
the full adder’s ¢ output directly into an input. There is a timing issue:
the carry-in ¢; entering the full adder must correspond to the appropriate
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Figore 29.17 The operation of a bit-serial adder. During the ith clock period,
for i = 0,1,...,n, the full adder ¥4 takes input bits g, and b, from the outside
world and a carry bit ¢, from the register. The full adder then outputs sum bit 5;,
which is provided externally, and carry bit ¢y, which is stored back in the register
to be used during the next clock pericd. The register is initialized with ¢p = 0.
{a)~(e) The state of the circuit in each of the five clock periods during the addition
of a = {1011} and » = {1001} to produce § = {10100}.

inputs a; and b;. Unless these input bits arrive at exactly the same moment
as the fed-back carry, the output may be incorrect.

As Figure 29.17 shows, the solution is to use a clocked circuit, or sequen-
tial circuit, consisting of combinational circuitry and one or more registers
(clocked memory eiements). The combinational circuitry has inputs from
the external world or from the output of registers. It provides outputs
o the external world and to the input of registers. As in combinational
circuits, we prohibit the combinational circuitry in a clocked circuit from
containing cycles.

Each register in 2 clocked cirenis is controlled by 2 periodic signal, or
clock. Whenever the clock pulses, or ficks, the register loads in and stores
the value at its input. The time between successive clock ticks is a clock
period. In a globally clocked circuit, every register works off the same clock.

Let us examine the operation of a register in a little more detail. We
treat each clock tick as a momentary pulse. At a given tick, a register reads
the input value presented to it at that moment and stores it. This stored
value then appears at the register’s output, where if can be used to compute
values that are moved into other registers at the next clock tick. In other
words, the value at a register’s input during one clock period appears on
the register’s output during the next clock period.

Now let us examine the circuit in Figure 29.17, which we call a bir-
serigf adder. In order for the full adder’s outputs to be correct, we require
that the clock period be at least as long as the propagation delay of the
fuil adder, so that ihe combinational circuitry has an opportunity io settle
between clock ticks. During clock period 0, shown in Figure 29.17(a},
the external world applies input bits @y and &y to two of the full adder’s



inputs. We assume that the register is initialized to store a 0. the initial
carry-in bit, which is the register output, is thus ¢p = 0. Later in this clock
period, sum bit 5y and carry-out ¢, emerge from the full adder. The sum
bit goes to the exiernal world, where presumably it will be saved as part
of the entire sum 5, The wire from the carry-out of the full adder feeds
into the register, 50 that ¢; is read into the register upon the next clock
tick. At the beginning of clock period 1, therefore, the register contains ¢,
During clock period 1, shown in Figure 29.17(b), the outside world applies
a; and b, 1o the full adder, which, reading ¢; from the regisier, produces
outputs s, and ¢2. The sum bit 5, goes out to the outside world, and ¢»
goes 1o the register. This cycle continues until clock period s, shown in
Figure 29.17(¢), in which the register contains ¢,. The external world then
applies a, = b, = 0, s0 that we get s, = .

Analysis

To determine the total time f taken by a globally clocked circuit, we need
to know the number p of clock periods and the duration d of each clock
period: ¢ = pd. The clock period 4 must be long enough for all combina-
tional circuitry to settle between ticks, Although for some inputs it may
settle earlier, if the circuit is to work correctly for all inputs, 4 must be at
least proportional to the depth of the combinational circuitry.

Let us see how long it takes to add two #-bit numbers bit-serially. Each
clock period takes @(1) time because the depih of the full adder is €{1),
Since n + 1 clock ticks are required to produce all the outpuis, the total
time 1o perform bit-serial addition is (# + 1) ©(1) = &(n).

The size of the bit-serial adder {(number of combinational elements plus
number of registers) is ©(1).

Ripple-carry addition versus bit-serial addition

Observe that a rippie-carry adder is like a replicated bit-serial adder with
the registers replaced by direct connections between combinational ele-
ments. That is, the rippie~carry adder corresponds to a spatial “unrolling”
of the computation of the bit-serial adder. The ith full adder in the ripple-
carry adder impiements the ith clock period of the bit-serial adder.

In general, we can replace any clocked circuit by an eguivalent combina-
tional circuit having the same asymptotic time delay if we know in advance
how many clock periods the clocked circuit runs for. There is, of course, a
trade-off involved. The clocked circuit uses fewer circuit elements {a factor
of ©&{n) less for the bit-serial adder versus the ripple-carry adder), but the
combinational circuit has the advantage of Jess control circuitry—we need
no clock or synchronized external circuit to preseni input bits and store
sum bits. Moreover, although the circuits have the same asymptotic time
delay, the combinational circuit typicaily runs slightly faster in practice.
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Figure 29.18 Muliiplying 19 by 29 with the Russian peasant’s ajgorithm. The a-
column entry in each row is half of the previous row’s eatry with fractions ignored,
and the b-column eniries double from row to row. We add the b-column entries
in all rows with odd a-column entries, which are shaded. This sum is the desired
product, {a} The numbers expressed in decimal. (b} The same munbers in binary.

The extra speed is possible because the combinational ¢ircuit doesn’t have
to wailt for values to stabilize during each clock period. If all the inputs
stabilize at once, values jus: ripple through the circuit at the maximum
possible speed, without waiting for the clock,

29.4.2 Linear-array multipliers

The combinational multipliers of Section 29.3 need 6(n?) size to multiply
two r-bil pumbers. We now present two multipliers that are hinear, rather
than two-dimensional, arrays of circuit elemenis. Like the array multiplier,
the faster of these two linear-array multipiiers runs in @(n) time.

The linear-array multipliers implement the Russian peasant’s algorithm
(s0 called because Westerners visiting Russia in the nineteenth century
found the algorithm widely used there), iilustrated in Figure 29.18(a).
Given two input numbers ¢ and b, we make two columns of numbers,
headed by @ and b. In each row, the g-column entry is half of the previ-
ous row’s g-column entry, with fractions discarded. The b-column entry
is twice the previous row’s b-column entry. The last row is the one with
an a-column entry of 1. We look at all the g-column entries that contain
odd values and sum the corresponding d-column entries. This sum is the
product a- b,

Although the Russian peasant’s aigorithm may seem remarkable at fisst;
Figure 29.18(b) shows that it is really just a binary-number-system imple-
mentation of the grade-school maitiplication method, but with numbers
expressed in decimal rather than binary. Rows in which the a-column entry
is odd contribute to the product a term of » multiplied by the appropriate
power of 2. :




Figure 29.19(a) shows one way to implement the Russian peasant’s algo-
rithim for two n-bit numbers. We use a clocked circuit consisting of a
linear array of 2n cells. Each cell contains three registers. One register
holds a bit from an a entry, one holds a bit from a b entry, and one holds
a bit of the product p. We use superscripts to denote cell values before
each step of the algorithm. For example, the value of bit 4; before the jth
step is @', and we define V) = (ai)_,a¥)_,.... a}").

The algorithm executies a sequence of n steps, numbered 0,1,...,1 - 1,
where each step takes one clock period. The algorithm maintains the in-
variant that before the jth step,

a‘st . pi .;.p(a'-) =a b (29.6)

(sec Exercise 29.4.2). Initially, ' = g, 8@ = b, and p'® = 0. The jth
step consists of the following computations,

1. If 4 is odd (that is, ag} = 1), then add & into p: pt/*1 — pUi & pl0),
(The addiiion is performed by a ripple-carry adder that runs the length
of the array; carry bits ripple from right to left.) If ¢\ is even, then
carry p through to the next step: pt/+l « plt,

2. Shift g right by one bit position:

Q0 L fady ifo<i<m -2,
f 0 ifi=2n-1,

3. Shift & left by one bit position:

B {A'Jf"_)l ifr<i<2n-1,
! 0 ifi=0.
After running # steps, we have shifted out all the biis of a; thus, ) = 0.
Invariant (29.6) then imptlies that pt = a . b,

We now analyze the algorithm. There are » steps, assuming that the
control information is broadcast to each cell simultancously. Each step
takes ©(n) time in the worst case, because the depth of the ripple-carry
adder is O(n), and thus the duration of the clock period must be at least
O(n). Each shift takes only ©(1) time. Overali, therefore, the algorithm
takes ©(n?) time. Because each cell has constant size, the entire linear
array has 8{n) size.

A fast linear-array implementation

By using carry-save addition instead of ripple-carrv addition, we can de-
crease the time for each step to ©(1), thus improving the overall time to
O(n}. As Figure 29.19({b) shows, once again each cell containsa bitofan a
entry and a bit of a # entry. Each cell also comains two more bits, from u
and v, which are the outputs from carry-save addition. Using a carry-save
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Figure 29.19 Two lincar-array implementations of the Russian peasant’s algo-
rithm, showing the multiplication of 4 = {9 = {10011} by b = 29 = (11101}, with
n = 3. The situation at the beginning of each step / is shown, with the remaining
significant bits of @/ and 5 shaded. (a) A slow implementation that runs in
O(n*) time. Because > = 0, we have p'® = a. 5. There are n steps, and each
step uses a ripple-carry addition. The clock period is therefore proportional to the
length of the array, or &(n), leading to €(x*} time overail. (b} A fast implementa-
tion that runs in ©(x) time because each step uses carry-save addition rather than
ripple-carry addition, thus taking only ©(1) time. There are a total of 2n — 1 = 9
st{gps; after the last step shown, repeated carry-save addition of % and v yields
4 =ma. b,
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representaiion to accumulate the product, we maintain the invariant thai
before the jth step,

AT I XV IR VO NPILY ISRy X (29.7)

{again, see Exercise 29.4-2). Each step shifts g and b in the same way as the
slow implementation, so that we can combine equations (29.6) and (29.7)
to yield ¥ + vV} = pll. Thus, the u and v bits contain the same infor-
mation as the p bits in the siow implementation.

The jth step of the fast implemeniation performs carry-save addition
on u and v, where the operands depend on whether ¢ is odd or even, If
a({;’ !'= 1, we compute

uEHl} - parizy(bf”},u&”,vf”] fori=0,1,....2n -1

and
P majority(6, 4t v %f lgig2n~-1,
! 0 ifi=0.

Otherwise, 4’ = 0, and we compute

Y < parity(0, 0, v}y fori=0,1,....2n~1

L)

i

and

=1
ifi=0.

After updating « and v, the jth step shifts g to the right and & to the left
in the same manner as the slow implementation,

The fast implementation performs a total of 2n - 1 steps. For j > n, we
have a7’ = 0, and invariant {29.7) therefore implies that ¥t} + V' = ¢ b,
Once a'/ = 0, all further sieps serve only to carry-save add ¥ and v.
Exercise 29.4-3 asks you to show that v'2»~1) = 0, so that ¥?"~Y =g . b,

The total time in the worst case is ©(»n), since each of the 2n — 1 steps
takes ©(1) time. Because each cell still has constant size, the total size
remains O(n).

bUTL {majority(o, u! Uf”_),) fl1<i<2n—1,
/ 0

Exercises

28.4-1
Let @ = (101101), b = (011110), and n = 6. Show how the Russian

peasant’s algorithm operates, in both decimal and binary, for inputs a
and b.

2.904"2
Prove the invarianis (29.6) and (29.7) for the linear-array multipliers.

29.4.3
Prove that in the fast linear-array multiplier, 212"~} = Q.




Problems for Chapter 29

29.4-4
Describe how the array multiplier from Section 29.3.1 represents an “un-
rolling” of the computation of the fast linear-array muitipiier.

29.4-5

Consider a data stream {x;, x2,...) that arrives at a clocked circuit at the
rate of ! value per clock tick. For a fixed value n, the circuit must compute
the value

e

for r = n,n+1,.... That is, y, is the maximum of the most recent n
values received by the circuit. Give an O(n}-size circuit that on each clock
tick inputs the value x; and computes the output value y, in G(1) time,
The circuit can use registers and combinational elements that compute the
maximum of two inputs.

29.4-6 *
Redo Exercise 29.4-5 using only O(lg n) “maximum” elemenis,

29-1 Division circuits
We can construct a division circuit from subtraction and multiplication
circuits with a technique called Newton iteration. We shall focus on the
related problem of computing a reciprocal, since we can obtain a division
circuit by making one additional multiplication.

The 1dea is to compute a sequence Vo, ¥1, V2, . - - of approximations to the
reciprocal of a number x by using the formula

Pist & 2y — xpt .

Assume that x is given as an #-bit binary fraction in the range 1/2 <
x < L. Since the reciprocal can be an infinite repeating fraction, we shall
concentrate on computing an #-bit approximation accurate up to its least
significant bit,

a. Suppose that |y; — 1/x] € ¢ for some constant ¢ > 0. Prove that
Vier — U/x| < €2,

b. Give an initial approximation y such that v, satisfies [y, — 1/x} < 2-2"
for all k > 0. How large must k be for the approximation y; to be
accurate up to its least significant bit?

¢. Describe a combinational circuit that, given an #-bit input x, computes
an n-bit approximation to I/x in O(lg? n) time. What is the size of your
circuit? (Hint: With a little
S(nllgn).) = gy o S
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29-2  Boolean formulas for symmetric functions
A n-input function f{x,x2,...,Xx,} is symmetric if

SO x, 0 00xa) = F{X0 Xag2ys o0 X))

for any permutation 7 of {1,2,...,n}. In this problem, we shali show that
there is a boolean formula representing f whose size is polynomial in A.
(For our purposes, a boolean formula is a siring comprised of the vari-
ables x\, x3,...,Xx, parentheses, and the boolean operators v, A, and —.)
Qur approach will be 1o convert a logarithmic-depth boolean circuit to
an equivalent polynomial-size boolean formula, We shall assume that all
circuits are constructed from 2-input AND, 2-input OR, and NOT gates.

a. We start by considering a simple symmetric function. The generalized
majority function on n boolean mputs is defined by

U iy +xp4-+x,>0/2,

majority, {x,, x2,...,Xn) = {0 otherwise

Describe an O{lg n)-depth combinational circuit for majority,. (Hint:
Build a tree of adders.)

b

+

Suppose that f is an arbitrary boolean function of the n boolean vari-
ables x;, x2,....,X,. Suppose further that there is a circuit C of depth ¢
that computes f. Show how to construct from € a boolean formula
for f of length O(29). Conclude that there is polynomial-size formuia
for majority,,.

¢. Argue that any symmetric boolean function f{x;, xs,...,X,) can be ex-
pressed as a function of 3 x,.

d

-

Argue that any symmetric function on # boolean inputs can be com-
puted by an O{lgn)-depth combinational circuit.

¢. Argue that any symmeiric boolean function on » boolean variables can
be represented by a boolean formula whose length is polynomial in n.

Chapter notes

Most books on computer arithmetic focus more on practical implemen-
tations of circuitry than on algorithmic theory. Savage [£73] is one of
the few that investigates algorithmic aspects of the subject. The more
hardware-oriented books on computer arithmetic by Cavanagh [39] and
Hwang [108] are especially readable. Good books on combinational and
sequeniial logic design include Hill and Peterson [96] and, with a twist
toward formal language theory, Kohavi [126].

Aiken and Hopper [7] trace the early history of arithmetic algorithms.
Ripple~carry addition is as at least as old as the abacus, which has been
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around for over 5000 vears. The first mechanical calculator employing
ripple-carry addition was devised by B. Pascal in 1642. A calcuiating
machine adapted to repeated addition for multiplication was conceived
by S. Morland in 1666 and independently by G. W, Leibnitz in 1671, The
Russian peasant’s algorithm for multiplication is apparently much older
than its use in Russia in the nineteenth century. According to Knuth {122},
it was used by Egyptian mathematicians as long ago as 1800 B.c.

The kill, generate, and propagate statuses of a carry chain were exploited
in a relay calcolator built at Harvard during the mid-1940’s [18C]. One
of the first implementations of carry-lookahead addition was described by
Weinberger and Smith [199], but their lookahead method requires large
gates. Ofman {152] proved that n-bit numbers could be added in Oflgn)
time using carry-Jockahead addition with constant-size gates.

The idea of using carry-save addition to speed up multiplication is due to
Estrin, Gilchrist, and Pomerene [64]. Atrubin [13] describes a linear-array
multiplier of infinite length that can be used {o multiply binary numbers
of arbitrary length. The multiplier produces the nth bit of the product
immediately upon receiving the nth bits of the inputs. The Wallace-tree
multiplier is attributed to Wallace {197}, but the idea was also indepens
dently discovered by Ofman [152].

Division algorithms date back to . Newion, who around 1665 invented
what has become known as Newton iteration. Problem 29-1 uses Newton
iteration to construct a division circuit with &{lg? n) depth. This method
was improved by Beame, Cook, and Hoover [19], who showed that n-bit
division can in fact be performed in O(ign) depth.



