
29 Arithmetic Circuits

The model of computation provided by an ordinary computer assumet
the basic arithmetic operations-addition, subtraction, multiplication,
division-can be performed in constant time. This abstraction is
able, since most basic operations on a random-access machine have si
lar costs. When it comes to designing the circuitry that implements
operations, however, we soon discover that performance depends on
magnitudes of the numbers being operated on. For example, we all
in grade school how to add two natural numbers, expressed as n-digit
imal numbers, in @(n) steps (although teachers usually do not em
the number of steps required).

This chapter introduces circuits that perform arithmetic functions.
serial processes, @(n) is the best asymptotic time bound we can hope
achieve for adding two n-digit numbers. With circuits that operate in
allel, however, we can do better. In this chapter, we shall design ci
that can quickly perform addition and multiplication. (Subtraction is
sentially the same as addition, and division is deferred to Problem 29-
We shall assume that all inputs are n-bit natural numbers, expressed
binary.

We start in Section 29.1by presenting combinational circuits. We
see how the depth of a circuit corresponds to its "running time."
full adder, which is a building block of most of the circuits in this
ter, serves as our first example of a combinational circuit. Section
presents two combinational circuits for addition: the ripple-carry
which works in @(tz) time, and the carry-lookahead adder, which
only O(lgn) time. It also presents the carry-save adder, which can
the problem of summing three numbers to the problem of summing
numbers in @(1) time. Section29.3 introduces two combinational
pliers: the array multiplier, which takes @(n) time, and the Wall
multiplier, which requires only O(lg n) time. Finally, Section 29.4
circuits with clocked storage elements (registers) and shows how hard
can be saved by reusing combinational circuitry.
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Combinational circuits

Like the comparison networks of Chapter 28, combinational circuits op-
erate in parallel: many elements can compute values simultaneously as a
single step. In this section, we define combinational circuits and investi-
gate how larger combinational circuits can be built up from elementary
gates.

Combinational elements

Arithmetic circuits in real computers are built from combinational ele-
ments that are interconnected by wires. A combinational element is any
circuit element that has a constant number. of inputs and outputs and that
performs a well-defined function. Some of the elements we shall deal with
in this chapter arc boolean combinational elements-their inputs and out-
puts are all drawn from the set {0,1}, where 0 represents FALsE and I
represents TRUE.

A boolean combinational element that computes a simple boolean func-
tion is called a logic gate. Figure 29.1 shows the four basic logic gates that
will serve as combinational elements in this chapter: the NOT gate (or
inverter),the AND gate,the OR gate, and the XOR gate. (It also shows two
other logic gates-the NAND gate and, the NOR gate-that are required
by some of the exercises.) The NOT gate takes a single binary input x,
whose value is either 0 or 1, and produces a binary oatput z whose value
is opposite that of the input value. Each of the other three gates takes two
binary inputs x and y and, produces a single binary output z.

The operation of each gate, and of any boolean combinational element,
can be described by a truth table, shown under each gate in Figure 29.1. A
truth table gives the outputs of the combinational element for each possible
setting of the inputs. For example, the truth table for the XOR gate tells
us that when the inputs are x:0 and !: I, the outputvalue is z: l;
it computes the "exclusive OR" of its two inputs. We use the symbols -
to denote the NOT function, n to denote the AND function, V to denote
the OR function, and O to denote the XOR function. Thus, for example,
0 e  l :  l .

Combinational elements in real circuits do not operate instantaneously.
Once the input values entering a combinational element settle, or become
stable-that is, hold steady for a long enough time-the element's output
value is guaranteed to become both stable and correct a fixed amount
of time later. We call this time differential the propagotion delay of the
element. We assume in this chapter that all combinational elements have
constant propagation delay.
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Figure 29.1 six basic logic gates, with binary inputs and outputs. Under each gate
is the truth table rhat describes the gate's operation. (a) The Nor gate. (b) Thc
AND gate. (c) The oR gate. (d) The XoR (exclusive-oR) gate. (ei The NAND
(NOT-AND) gate. (f) The NOR (NOT-OR) gate.

Combinational circuits

A combinational circuit consists of one or more combinational elements
interconnected in an acyclic fashion. The interconnections are called
wires. A wire can connect the output of one element to the input of an-
other, thereby providing the output value of the first element as an input
value of the second. Although a single wire may have no more than one
combinational-element output connected to it, it can feed several element
inputs. The number of element inputs fed by a wire is called thefan-out of
the wire. If no element output is connected to a wire, the wire is a circuit
input, accepting input values from an external source. If no element input
is connected to a wire, the wire is a circuit oatput, providing the results of
the circuit's computation to the outside world. (An internal wire can also
fan out to a circuit output.) combinational circuits contain no cycles and
have no memory elements (such as the registers described in Section 29.4).

(f)(e)(d)
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Full adders

As an example, Figure 29.2 shows a combinational circuit, called a full
adder, that takes as input three bits x, y, and z. It outputs two bits, s
and c, according to the following truth table:

0 1
0 l
l 0
0 l
1 0
l 0
1 l

0 0 1
0 1 0
0 1 1
1 0 0
r 0 l
1 1 0
l l l

Output s is the parity of the input bits,

5 :  par i ty(x, ! ,  z) :  x @ y @ z,

and output c is the majority of the input bits,

c :  m a j o r i t y ( x , ! , 2 ) :  ( x  A y ) V  ( y  t  z ) v  ( x  A  z )

(2e.r)

(2e.2)

(In general, the parity and majority functions can take any number of
input bits. The parity is I if and only if an odd number of the inputs

are I's. The majority is I if and only if more than half the inputs are I's.)
Note that the c and s bits, taken together, give the sum of x, y, and z.

For example, if x : l, ! : 0, and z : I,then (c,s) : (10),1 which is the

binary representation of 2, the sum of x, y, and z.
Each of the inputs x, y, and z to the full adder has a fan-out of 3.

When the operation performed by a combinational element is commuta-
tive and associative with respect to its inputs (such as the functions AND,
OR, and XOR), we call the number of inputs the fan-in of the element.
Although the fan-in of each gate in Figure 29.2 is 2, we could redraw the
full adder to replace XOR gates A and E by a single 3-input XOR gate

and OR gates ,F and G by a single 3-input OR gate.

To examine how the full adder operates, assume that each gate operates
in unit time. Figure 29.2(a) shows a set of inputs that becomes stable at

time 0. Gates A-D, and no other gates, have all their input values stable
at that time and therefore produce the values shown in Figure 29.2(b) at

time 1. Note that gates A-D operate in parallel. Gates E and F, but
not gate G, have stable inputs at time 1 and produce the values shown in

Figure 29.2(c) at time 2. The output of gate E is bit s, and so the s output
from the full adder is ready ar time 2. The c output is not yet ready,
however. Gate G finally has stable inputs at time 2, and it produces the c

output shown in Figure 29.2(d) at time 3.

rFor clariry, rc ooir rhc mnr bctwco $4rc dreos sbetr lhcy ele bits
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Figure 29.2 A full-adder circuit. (a) At time 0, the input bits shown appear on
the three input wires. (b) At time l, the values shown appear on the outputs of
gates A-D, which are at depth l. (c) At time 2, the values shown appear on the
outputs of gates E and.F, at depth 2. (d) At time 3, gate G produces its output,
which is also the circuit outDut.
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29.1 Combinational circuits

Circuit depth

As in the case of the comparison networks discussed in chapter 28, we

measure the propagation delay of a combinational circuit in terms of the

largest number of iombinational elements on any path from the inputs

to it " outputs. Specifically, we define the depth of a circuit, which corre-

sponds to its worst-case "running time," inductively in terms of the depths

of its constituent wires. The depth of an input wire is 0. If a combinational

element has inputs x1,x2,.. .,xn at depths dt,dz,' ' ',dn respectively' then

its outputs have depth max{d1, dz,-.-,dn} * 1' The depth of a combina-

tional element is the depth of its outputs. The depth of a combinational

circuit is the maximum depth of any combinational element. Since we pro-

hibit combinational circuiis from containing cycles, the various notions of

depth are well defined.
if eactr combinational element takes constant time to compute its output

values, then the worst-case propagation delay through a combinational

circuit is proportional to its depth. Figure 29.2 shows the depth of each

gate in th; full adder. Since the gate with the largest depth is gate G, the

iull adder itself has depth 3, which is proportional to the worst-case time

it takes for the circuit to perform its function'

A combinational circuit can sometimes compute faster than its depth'

Suppose that a large subcircuit feeds into one input of a 2-input AND gate

urrt ttrat the other input of the AND gate has value 0. The output of the

gate will then be 0, independent of the input from the large subcircuit. In

general, however, we cannot count on specific inputs being applied to the'

circuit, and the abstraction of depth as the "running time" of the circuit

is therefore quite reasonable.

Circuit size

Besides circuit depth, there is another resource that we typically wish to

minimize when designing circuits. The sizp of a combinational circuit is

the number of combinational elements it contains. Intuitively, circuit size

corresponds to the memory space used by an algorithm. The full adder of

Figure 29.2 has size 7 , for example' since it uses 7 gates'

This definition of circuit size is not particularly useful for small circuits.

After all, since a full adder has a constant number of inputs and out-

puts and computes a well-defined function, it satisfies the definition of a

combinational element. A full adder built from a single full-adder combi-

national element therefore has size 1. In fact, according to this definition,

any combinational element has size 1'

The definition of circuit size is inlended to apply to families of circuits

that compute similar functions. For example, we shall soon see an addition

circuit that takes two n-bit inputs. We are really not talking about a single

circuit here, but rather a family of circuits-one for each size of input'
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Circuit depth

As in the case of the comparison networks discussed in Chapter 28, we
measure the propagation delay of a combinational circuit in terms of the
largest number of combinational elements on any path from the inputs
to the outputs. Specifically, we define the depth of a circuit, which corre-
sponds to its worst-case "running time," inductively in terms of the depths
of its constituent wires. The depth of an input wire is 0. If a combinational
element has inputs xt ,xz,. . . ,xn at depths dt,dz,. . . ,dn respect ively,  then
its outputs have depth max{d1,d2,...,dn} t l. The depth of a combina-
tional element is the depth of its outputs. The depth of a combinational
circuit is the maximum depth of any combinational element. Since we pro-
hibit combinational circuits from containing cycles, the various notions of
depth are well defined.

If each combinational element takes constant time to compute its output
values, then the worst-case propagation delay through a combinational
circuit is proportional to its depth. Figure 29.2 shows the depth of each
gate in the full adder. Since the gate with the largest depth is gate G, the
full adder itself has depth 3, which is proportional to the worst-case time
it takes for the circuit to perform its function.

A combinational circuit can sometimes compute faster than its depth.
Suppose that a large subcircuit feeds into one input of a 2-input AND gate
but that the other input of the AND gate has value 0. The output of the
gate will then be 0, independent of the input from the large subcircuit. In
general, however, we cannot count on specific inputs being applied to the
circuit, and the abstraction of depth as the "running time" of the circuit
is therefore quite reasonable.

Circuit size

Besides circuit depth, there is another resource that we typically wish to
minimize when designing circuits. The size of a combinational circuit is
the number of combinational elements it contains. Intuitively, circuit size
corresponds to the memory space used by an algorithm. The full adder of
Figure 29.2 has size 7, for example, since it uses 7 gates.

This definition of circuit size is not particularly useful for small circuits.
After all, since a full adder has a constant number of inputs and out-
puts and computes a well-defined function, it satisfies the definition of a
combinational element. A full adder built from a single full-adder combi-
national element therefore has size 1. In fact, according to this definition,
any combinational element has size l.

The definition of circuit size is intended to apply to families of circuits
that compute similar functions. For example, we shall soon see an addition
circuit that takes two n-bit inputs. We are really not talking about a single
circuit here, but rather a family of circuits-one for each size of input.

659
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In this context, the definition of circuit size makes good sense. It a'owsus to define convenient circuit a"-"rrtr, without "rJ.,irg}re size of anyimplemenhtion of ttre circuii b;;;; than a "onrrunr iu'.ior. or course,in practice, measurements of size are much more ao-oti"ur"o, involvingnot onrv the choice of combinationaielements, il;il;;;cerns such asthe area the circuit requires *rt.n int.gruted on a silicon chip.

Exercises

29.1-I

*Jtffi.'9'2, 
change input y ro a l. Show the resulting vatue carried on

29.1-2
Show how to constl
depth [g n l. 

ruct an n -input parity circuit with n- I xoR gates and

29.r-3
Show that any boolean combinationar element can be constructed from
tr'T::lil iliffUi*il3' o*' and Nor eut",. (iritir-pr"-"n, ,r,,
29.r-4
show that any boorean function can be constructed entirery out of NAND

29.1-s
construcr a combinariiillSiluit that performs the excrusive-or funcrionusing only four 2_input NAND ga;;. 

-

29.1-6
Let C be an r-input, ,?-output combinational circuit of depth d. rf twocopies of c are connecled,.with til;;ils of one feeding diiectry into theinputs of the other' what is rh. -";i;;; possibre depth of this tandemcircuit? Whar is the minimu_ o"rriif.l.ornf

29.2 Addition circuits

we now investigate the.pro.brem of adding numbers represented in binary.we present three combinationur.ircir]iril, *i. problem. Firsr, we rook atripple-carry addirion, which .un uooi,oo^r-_url nyuers in @(n ) time usinga circuir with @(n ) size' This time bound c11be imp.orred tJ Jlrgr; uringa carryJookahead add91, which atro t as'O1 n) size. Finally, we presentcarry-save addition, which in o(l) time ca' reduce the sum of 3 n_bit
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8

I

7 6 5 4 3 2 1 0

l 0 0 l l 0 0 l l - r

Figure 29.3 Adding two 8-bi t  numbers a: (0l0l l l l0) and b: ( l l0 l0l0l)  to
produce a 9-bit sum r = (l00ll00ll). Each bit ci is aci'arry bit. Each column of
bits represents, from top to bottom, ci, ai, bi, and J, for some i. Carry-in ca is
always 0.

numbers to the sum of an n-bit number and an (n + l)-bit number. The
circuit has @(n) size.

29.2.1 Ripple-carry aililition

we start with the ordinary method of summing binary numbers. we as-
sume that a nonnegative integer a is represented in binary by a sequence
of n bi ts \qn-t ,an-2,. . . ,40),  where n Z [ lg(a + 1) l  and

n - l

a : T  a ; 2 i
j :0

Given two n-bi t  numbers e :  (ar_t,en_2,. . . ,a0) and b :  (br_t,br_2,
. . . ,bo) ,  we w ish  to  p roduce an  (n+ l ) -b i t  sum.s :  ( .s r , ,s r_1 , . . . , ss ) .  F ig -
ure 29.3 shows an example of adding two 8-bit numbers. we sum columns
right to left, propagating any carry from column i to column I + 1, for
i : 0, l, ...,n - l. In the ith bit position, we take as inputs bits at and, bi
and a carry-in bit c,, ?rrd we produce a sum bit si and a carry-out bit c;..1.
The carry-out bit c;11 from the ith position is the carry-in bit into the
(i + 1)st position. since there is no carry-in for position 0, we assume that
c0 : 0. The carry-out c, is bit s, of the sum.

Observe that each sum bit s; is the parity of bits ai, bi, and c; (see
equation (29.1)). Moreover, the carry-out bit c;11 is the majority of ai,
bi, and c; (see equation (29.2)). Thus, each stage of the addition can be
performed by a full adder.

An n -bit ripple-carry adder is formed by cascading n full adders FAs,
FAr,...,FAn-t, feeding the carry-out c;11 of FAi directly into the carry-
in input of FAi11. Figure 29.4 shows an 8-bit ripple-carry adder. The
carry bits "ripple" from right to left. The carry-in cs to full adder r71 is
hardwired to 0, that is, it is 0 no matter what values the other inputs take
on. The output is the (r  + l )-bi t  number J :  (Jr,Jz_I, . . . ,s0),  where sn
equals cr, the carry-out bit from full adder ,F7r.

Because the carry bits ripple through all n full adders, the time required
by an n-bit ripple-carry adder is @(n). More precisely, full adder FAi is al

1 0 1 1 1 0 0 0
0 1 0 l l l l 0
l l 0 l 0 l 0 l

i

h
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oz bz oo bo

Figure 29.4 An 8-bit ripple-carry adder performing the addition of Figure 29.3.
carry bit co is hardwired to 0, indicated by the diamond, and carry bits ripple
from right to left.

depth i f I in the circuit. Because FAn-t is at the largest depth of any full
adder in the circuit, the depth of the ripple-carry adder is n. The size of
the circuit is o(n) because it contains n combinational elements.

29.2.2 Carry-lookahead addition

Ripple-carry addition requires @(n) time because of the rippling of carry
bits through the circuit. carryJookahead addition avoids this @(r)-time
delay by accelerating the computation of carries using a treelike circuit. A
carryJookahead adder can sum two n-bit numbers in o(lgn) time.

The key observation is that in ripple-carry addition, for i ) l, full adder
FA1 has two of its input values, namely ai and bi, ready long before the
carry-in c; is ready. The idea behind the carryJookahead adder is to exploit
this partial information.

As an example, let ai-1 : bi-r. Since the carry-out c; is the majority
function, we have ci : ai-r : bi_t regardless of the carry-in c;_1. If
ai-t : bi-t : 0, we can kill the carry-out c; by forcing it to 0 without
waiting for the value of ci_1 lo be computed. Likewise, if ai_1 : bi_r : l,
we can generate the carry-out ci : l, irrespective of the value of c;_ 1 .

If a1-1 * bi-r, however, then c; depends oD c;_1. Specifically, ci: ci_t,
because the carry-in c;-1 casts the deciding "vote" in the majority election
that determines c;. In this case, we propagate the carry, since the carry-out
is the carry-in.

Figure 29.5 summarizes these relationships in terms of carry statuses,
where k is "carry kill," g is "carry generate," and p is ,,carry propagate."

consider two consecutive full adders FAi-1 and FAi together as a com-
bined unit. The carry-in to the unit is c1_1, zr'd the carry_out is c;a1. We
can view the combined unit as killing, generating, or propagating carries,
much as for a single full adder. The combined unit kills its carry if FAi
kills its carry or if FAi-t kills its carry and FAi propagates it. Similarly,
the combined unit generates a carry if FAi generates a carry or if FAi-1
generates a carry and FAi propagates it. The combined unit propagates
the carry, setting ci+t : ci_1, if both full adders propagate carries. The
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Figure 29.5 The carry-outbit ci and carry status corresponding to inputs a;_1,b1-1, dnd c;-1 of full adder FAi_r in ripple_carry addition.

FAi

(2e.3)

f o r  i :  1 , 2 , . . . , n .  T h u s ,  f o r  j :  l , 2 , . . . , n , t h e v a l u e  o f  x ;  i s  t h e  c a r r y
status given by Figure 29.5.

The carry-out c; of a given full adder FAi-1 can depend on the carry
status ofevery ful l  adder FAi for j  :0,1,. . . , i  _ l .  Let us def iney6 _
x o : k a n d

l i  :  ! t - t & x i (2e.4)

k k c
k p c
k g g

k
p
c

Figure 2-9.6 The carry sratus of the combination of full adders FA1_1 a\d FAi interms of their individual carry statuses, given by the carry-status operaror g overthe dornain {k, p, g}.

table in Figure 29.6 summarizes how carry statuses are combined when
full adders are juxtaposed. we can view this table as the definition of the
carry-statas operator.g over the domain {k,p,g}. An important property
of this operator is that it is associative, as Exercise 29.2-2 asks you to
verify.

we can use the carry-status operator to express each carry bit c; in terms
of the inputs. We start by defining xo : k and

rk  i f  a i - r  :  b i_ t  : 0  ,
x i : { P  i f a i - r * b i - r ,

(g  i f  a i - r  :  b i - t  :  |  ,

:  X 6 8 x y 8 . . . 8 x ;

for i : 1,2,. . . ,n. We can think of y; as a ,,prefix,, of x6 gx1 g. . .gxn; we
call the process of computing the values !0,lr, . . .,ln a prefix computation.
(chapter 30 discusses prefix computations in a more gere.at parallel con-
text. ) Figure 29 .7 shows the values of x; and yi corresponding to the binary
addition shown in Figure 29.3. The following lemma gives 1f,g siFificanc€
of the y; values for carry{ookahead rddition-
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t  8 7 6 5 4 3 2 1 0

d i  0 1 0 1 1 1 1 0

b .  1 1 0 1 0 1 0 1

X i  P g K g P g P P K

! ; g S k g S S k k k

ci I I 0 I I 1 0 0 0

Figure 29.7 The values ofxi  and y; for i :0,1,. . . ,8 that correspond to the
values of ai, bi, d\d ci in the binary-addition problem of Figure 29.3. Each value
of xi is shaded with the values of a;-1 and bi-t that it depends on.

Lemma 29,1
Def ine  xo ,x t , . . . , xn  andy6,y1 , . . . , !n  by  equat ions  (29 '3 )  and (29 .4) .  For

i : 0, l, . . . , ft, the following conditions hold:

l .  Y i :  k  imPl ies  c i  :0 ,

2. y, :  g impl ies ci  :  1,  and

3. yi: p does not occur.

Proof The proof is by induction on i. For the basis, i : 0. We have

lo: xo: k by definition, and also co : 0. For the inductive step, assume

that the lemma holds for i - l. There are three cases depending on the
value of y;.

l.If yi: k, then since y; : !i-r I xi, the definition of the carry-status
operator I from Figure 29.6 implies either that xi : k or that x; : p

and y;-1 : 1. If x; : k, then equation (29.3) implies that a;-1 :

bi- t  :0,  and thus c;  :  major i ty(ar-t ,bi-r ,c i-r)  :  0.  I f  x;  :  p

and y;-1 : k, then ai-r * b;-1 and, by inductiofl, c;-1 - 0. Thus,

major i ty(c;-  t ,bi- t ,c i- t ) :0,  and thus c;  :  Q.

2. lf yi: g, then either we have xi : 8or we have xr : P and y;-1 : g.

l f  x i : 8 ,  t h e n  a i - r :  b r - r :  l ,  w h i c h  i m p l i e s  c i :  l .  l f  x i :  p  a n d

!i-t:8, then ai-t * bi-r and, by inductiol, ci-l : 1' which implies

c i :  l '

3.lf y1- p, then Figure 29.6 implies that y;-1 : p, which contradicts the

inductive hypothesis. I

Lemma 29.1 implies that we can compute each carry bit ci by computing

each carry status y;. Once we have all the carry bits, we can compute

the entire sum in @(l) time by computing in parallel the sum bits s; :

paity(ai,bi,ci) for i : 0, 1, .. ., n (taking an : b, :0). Thus, the problem

of quickly adding two numbers reduces to the prefix computation of the

carry statusEs !0,! t , .  .  . , !n.
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Computing carry statuses with a parallel prefix circuit

665

By using a prefix circuit that operates in parallel, as opposed to a ripple-
carry circuit that produces its outputs one by one, we can compute all
n carry statuses !0,!r,...,!n more quickly. Specifically, we shall design
a parallel prefix circuit with O(lgn) depth. The circuit has @(n) size-
asymptotically the same amount of hardware as a ripple-carry adder.

Before constructing the parallel prefix circuit, we introduce a notation
that will aid our understanding of how the circuit operates. For integers i
and 7 in the range 0 < i < j 1 n,we define

[ i , i l : x i & x ; a 1 8 " ' 8 x ;  '

Thus, for i :0,1,. . . ,n,  we have l i , i l :  x l ,  s ince the composit ion of just
one carrystatusx; is i tsel f .  For i ,  j ,andk sat isfying0 < i  < j  1k 1n,
we also have the identitv

l i ,k l : I i , j  -  1 leU,f t l  , (2e.s)
since the carry-status operator is associative. The goal of a prefix computa-
t ion, in terms of this notat ion, is to compute yi :  [0, i ]  for i :0,1, . . . ,n.

The only combinational element used in the parallel prefix circuit is a
circuit that computes the I operator. Figure 29.8 shows how pairs of o el-
ements are organized to form the internal nodes of a complete binary tree,
and Figure 29.9 illustrates the parallel prefix circuit for n : 8. Note that
the wires in the circuit follow the structure of a tree, but the circuit itself
is not a tree, although it is purely combinational. The inputs xt, x2, . . . , xn
are supplied at the leaves, and the input x6 is provided at the root. The
outputs !0,1t,...,!n-t are produced at leaves, and the output y, is pro-
duced at the root. (For ease in understanding the prefix computation,
variable indices increase from left to right in Figures 29.8 and 29.9, rather
than from right to left as in other figures of this section.)

The two I elements in each node typically operate at different times
and have different depths in the circuit. As shown in Figure 29.8, if the
subtree rooted at a given node spans some range xi, xi+t, . . . , xk of inputs,
its left subtree spans the tzrrgl x1, xiar, . . . , x j -r, and its right subtree spans
the range xi,xi+t,...,xk, then the node must produce for its parent the
product [i,k] of all inputs spanned by its subtree. Since we can assume
inductively that the node's left and right children produce the products

[i, j -ll and [7, kl, the node simply uses one of its two elements to compute
l i , k l * - [ i , j  -  1 ] o U , k l .

Some time after this upward phase of computation, the node receives
from its parent the product [0, i - 1] of all inputs that come before the
leftmost input x; that it spans. The node now likewise computes values for
its children. The leftmost input spanned by the node's left child is also x;,
and so it passes the value [0, i- l] to the left child unchanged. The leftmost
input spanned by its right child is x;, and so it must produce [0,j - l].
Since the node receives the value [0, i - 1] from its parent and the value
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[i,k] [0,,-l]

t0.01

-ro r

x l

Figure 29.8 The organization of a parallel prefix circuit. The node shown is theroot of a subtree whose leaves input the values x1 to Jrk. The node,s left subtreespans inputs x; to x1-rt and its right subtree spans inputs *, to *0. The nodeconsists of two I elements, which operate at diferent times oirring ihe operation
of the circuit. One elemenl computes [i,kj * [ i, j  _ l)O U,k], ana the otherelement computes [0,i - l] * [0,i _ itei;,f _ l]. The "uiu"i "o_pured areshown on the wires.

-ro

Ii, j - l l from its left child, it simply computes [0, j _ l] e_ [0, i _ l]l l i,kl
and sends this value to the right child.

Figure 29.9 shows the resulting circuit, including the boundary case that
arises at the root. The value xo : [0,0] is providid as input at the root,
and one more I element is used to compute (in general) the value y, :
[0 ,  n ]  :  [0 ,0 ]  O [ ] ,  n  ] .

If n is an exact power of 2, then the parallel prefix circuit uses 2n - r g
elements' It takes only o(lg n ) time to compute ar n + l prefixes, since the
computation proceeds up the tree and then back down. Exercise 29.2-5
studies the depth of the circuit in more detail.

Completing the carry-lookahead adder

Now that we have a parallel prefix circuit, we can complete the description
of the carryJookahead adder. Figure 29.10 shows the construction. An
n-bit carry'lookahead adder consists of n + | KpG boxes, each of @(l)
size, and a parallel prefix circuit with inputs xo, xt, . . . , xn (xs is hardwired
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) 1 13 la

(b)

Figure 29.9 A parallel prefix circuit for n : 8. (a) The overall structure of the
circuit, and the values carried on each wire. (b) The same circuit with values
corresponding to Figures 29.3 and 29.7.

to k) and outputs !0,!t,...,!n. KPG box KPGi takes external inputs a;
and bi and produces sum bit s;. (Input bits a, and b, are hardwired to 0.)
Given a1-1 and b;-1, box KPGi-t computes x; € {k,p,g} according to
equation (29.3) and sends this value as the external input x; of the parallel
prefix circuit. (The value of xr11 is ignored.) Computing all the x; takes
@(l) time. After a delay of O(lgn), the parallel prefix circuit produces

!o,1r, . . . , !n.  By Lemma 29.1, y i  is ei ther k or g;  i t  cannot be p. Each
value y; indicates the carry-in to full adder FAi in the ripple-carry adder:

li : k implies ci : 0, and y;: g implies ci : l. Thus, the value of y; is fed
into KPGi to indicate the carry-in c;, nDd the sum bit s; : paity(a;,bi,ci)
is produced in constant time. Thus, the carry-lookahead adder operates in
O(lgn) time and has 8(n ) size.
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Figure 2g'10 The construction of an n-bit carry-rookahead adder, shown here forn = 8. It consists of n + r rpC uoxes xic, 
i*i : 0, i,. .1"r., u*n box KpG,takes exrernal inputs,ai and b; (where-o)-ina h up niri*rrea'io'0, as indicatedby the diamond) and computeJ.;il liurlr, ",.,. These values are fed into theparallel prefix circuit, which .",r.^ ii_,, .lr"rt, y,."r rrr" p..i_ *riputation. Eachbox KPG inow rakes y; as inpur, i"r"*."ir-ii a, th" .u.ry_in Uif r,, "ro then outpurs

ffi:Trlil5 lilill,f ,?;l;l #;;;u., .o,..",ponji"r,i" ir,"* shown in

29.2.3 Carry-save addition

A carryJookahead adder can add two n-bit numbers in o(rgn) time. per-haps surprisingly, adding trrree n-urt nu.b.r, takes onry a constant addi_tional amount of time. The trick i. to.edu." trre p.outem oi adding threenumbers to the problem of adding:urii*o numbers.Given th ree  n-b i t  numbers  , : -  q i r_ r , -x .n_2, . . . , x0) ,  
! :  \ ln_r , !n_2,. . . , !o),  and z :  (zr_t,  Zn_2,. . . ,  z0),  an n-bi t  * ,rry_roi ,"  oaa"rproduces an

:;l',',:.::,;:ffi k;,,u,-2, 
-l .'"i,,I^^o a, 1n + rr-uit-",mu er n : (un,

U l u = x + y + 2 .

As shown in Figure 29.11(a), it does this by computing
u1 : parity(x1,y1, zi) ,

ui+r : majority(x;,!i, Zi) ,
fo r  i :0 ,  1 , . .  . ,n  _  l .  B i t , r .16  a lways  equa ls  0 .The n-bit carry-save adder shown in-r4u.. 2g.rr(b) consists of n fulla d d e r s  F A s , F A 1 , . . . , r * _ r .  F o r  i : 0 , 1 ,  . . . , n _  l ,  f u l l  a d d e r  F A i  t a k e srnputs xi, !i, and z1.,The sum_bit output of FAi is taken 8s t;, and thecarry-out of FAi is taken 8s ?r;11. Bit uo is hardwired to 0.since the computationr or uii z, +-i outou, bits are independent, theycan be performed in paraller. Thus, a .*ry-rurr" adder operates in @(1)time and has @(n ) size' To sum three ,-fit ,ru-uers, theiefore, we need
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8 7  6 5  4 3 2 t  0

0 0 0 1 1 1 0 1 =

1 1 0 0 0 1 0 1 =

l 0 0 l 0 l  l 0 =

v
z

0 1 0 0 1 1 1 0 = a

I 0 0 1 0 1 0 1 0  =  v

u-  v -) ) v3

z2 z l

(b)

Figure 29.11 (a) Carry-save addition. Given three n-bit numbers x, y, and z, we
produce an n-bit number u and an (n + I )-bit number o such that x + y + z : u + u.
The ith pair of shaded bits are a function of xi, !i, and zi. (b) An 8-bit carry-save
adder. Each full adder fAi takes inputs x;, !i, znd zr and prduces sum bit ut and
carry-out bit ui+r. Bit oo is hardwired to 0.

only perform a carry-save addition, taking @(1) time, and then perform a

carryJookahead addition, taking O(lgn) time. Although this method is not
asymptotically better than the method of using two carry-lookahead addi-
tions, it is much faster in practice. Moreover, we shall see in Section 29.3
that carry-save addition is central to fast algorithms for multiplication.

Exercises

29.2-1
I * t  a :  ( 0 l 1 l l l l l ) ,  b :  ( 0 0 0 0 0 0 0 1 ) ,  a n d  n : 8 .  S h o w  t h e  s u m  a n d
carry bits output by full adders when ripple-carry addition is performed on
these two sequences. Show the carry statusos x6,x|,...,x8 corresponding
to a and b, label each wire of the parallel prefix circuit of Figure 29.9
with the value it has given these x; inputs, and show the resulting outputs

! o , ! 1 , .  .  .  , ! 8 -

29.2-2
Prove that the carry-status operator I given by Figure 29.5 is associative.

(a)

u^

^ 2l2-szsx .
o

9av j v2
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Figure 29.12 A parallel prefix circuit for use in Exercise 29.2_6.

29.2-3
show by example how to construct an o(lgn)-time parallel prefix circuit
for values of n thatare not exact powers of 2 by drawing a parallel prefix
circuit for n : I l. characterize the performance of parallel prefix circuits
built in the shape of arbitrary binary trees.

29.2-4
Show the gateJevel construction of the box KpG1. Assume that each out-
put x;  is represented by (00) i f  Xi :  k,  bV ( l l )  i f  x i  :  g,  and bV (01)
or (10) if xi: p. Assume also that each input y; is represented by 0 if
l i : k  a n d  b y  I  i f  y 1 :  g .

29.2-5
Label each wire in the parallel prefix circuit of Figure 29.9(a) with its
depth. A critical path in a circuit is a path with the largest number of
combinational elements on any path from inputs to outputs. Identify the
critical path in Figure 29.9(a), and show that its lengrhis o(lgn). Show
that some node has I elements that operate @(lgn) time apart. Is there a
node whose g elements operate simultaneously?

29.2-6
Give a recursive block diagram of the circuit in Figure 29.12 for any num-
ber n of inputs that is an exact power of 2. Argue on the basis of your block
diagram that the circuit indeed performs a prefix computation. Show that
the depth of the circuit is O(lg n) and, rhar it has g(n lgn) size.

t (
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29.2-7
what is the maximum fan-out of any wire in the carry-lookahead adder?
show that addition can still be performed in o(lgn) time by a @(n)-size
circuit even if we restrict gates to have O(1) fan-out.

29.2-8
Atuay circuithas n binary inputs and m : llg(n+ 1)l outputs. Interpreted
as a binary number, the outputs give the number of l,s in the inputs. For
example, if the input is (100llll0), the output is (l0l), indicating that
there are five l's in the input. Describe an o(lgn)-depth tally circuit having
@(n) size.

29.2-9 *
Show that n -bit addition can be accomplished with a combinational circuit
of depth 4 and size polynomial in n if AND and oR gates are allowed
arbitrarily high fan-in. (Optional: Achieve depth 3.)

29.2-1A *
Suppose that two random n-bit numbers are added with a ripple-carry
adder, where each bit is independently 0 or I with equal probability. Show
that with probability at least | - lln, no carry propagates farther than
o(lg n) consecutive stages. In other words, although the depth of the ripple-
carry adder is @(n), for two random numbers, the outputs almost always
settle within O(lgn ) time.

29.3 Multiplication circuits

The "grade-school" multiplication algorithm in Figure 29.13 can compute
the 2n-bit product p : (pzn_r,p2n-2,...,p01 of two n-bit numbers 4 :
(a r - r ,an-2 , . . . ,a0)  and b  :  (b r - t ,b r -z , . . . ,  bo) .  We examine the  b i ts  o f  b ,
from b6 up to bn-1. For each bit b; with a value of l. we add a into the
product, but shifted left by i positions. For each bit br with a value of 0.
we add in 0. Thus, letting mQ) - a .bi .2i, we compure

n- l

p  :  a . b  : D m Q  .
i=0

Each term mQ) is called a partial product. There are n partial products to
sum, with bits in positions 0 to 2n - 2. The carry-out from the highest bit
yields the final bit in position 2n - I.

In this section, we examine two circuits for multiplying two n-bit num-
bers. Array multipliers operate in @(n ) time and have @(n2) size. wallace-
tree multipliers also have @(n2) size, but they operate in @(lg n ) time. Both
circuits are based on the grade-school algorithm.

/
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I
0 0

l l l

I l l 0 = a
t 1 0 1  b

l l
0 0
0

0 : m Q )
=  m t t )

mQ)
_ l  I  I  0  :  m Q )

Figure 29.13 The "grade-school" 
multiprication method, shown here multiply_t :e" i , : , (1110) by b (1101) to obta in rhe product  p :  ( l0n0l l0) .  We add

D.i=6.' .'''., where mQ) : 
.o 

. b:. 2i. Here, n : g. Each term m(i) is formed byshift ing either c (if bi : l).or 0 (if bi:0) i positions to the left. Bits thar are notshown are 0 regardless of the values of o'uni b.

29.3.1 Array multipliers

An array multiprier consists conceptually of three parts. The first part
forms the partiar products. The second sums the partial products us-ing carry-save adders. Finally, the third sums the two numbers resulting
from the carry-save additions using either a ripple-carry o, "u.ry-tookahead
adder.

Figure 29.14 shows an array muttiptier for two input numb€rS 4 :
(? ,  

, l ,Qn-2 , . . . ,a0)  and,  b  :  (bn- r ,bn_r , . . . ,b0) .  The-a1 l ru fu" ,  run  ver_tically, and the b; values run horizontally. Each input tit fans our to nAND gates to form partial products. Full adders, *hi.h are organized ascarry-save adders, sum partial products. The lower-order bits of the fi-nal product are output on the right. The higher-order bits are formed byadding the two numbers output by the last carry_save adder.
Let us examine the construction of the array multiprier more closery.G iven the  two input  numb€rS 4  :  (a r_r ,en_2, . . . ,as )  and b :  (b r_ t ,bn_2,

' ' . , bo), the bits of the partial products are easy to compute. Specifically,
f o r  i ,  j  :  0 ,  l ,  . . . , n  -  l ,  w e  h a v e

* ' , t * , :  a i ' b i  .

Since the product of l-bit values can be computed directly with an ANDgate, all the bits of the partial products (except those known to be 0, whichneed not be explicitly computed) can be produced in one step using n2AND gates.
Figure 29.15 illustrates how the array multiplier performs the carry_save

additions when summi"g tl: partial products in Figure 2g.r3.It starts bycarry-save adding 74Q), ynQ),.11d 0, yielding an 1i + l)_bit number ue)and an (n + l)-bit number u(r). (The numb"r rir) hasonly-n * l bits,not n + 2, because the (n + r)st bits of both 0 and me) are 0.) Thus,ryQ) -y mo) - y(r) ]-11o). It then carry-save adds a(r), 11(t),4nf, rne),yielding an (n + 2)-bit number ue) and an (n +2)-bitnumber 11',. (Again',

b 1

b(

h

h" l
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Figure 29.14 An array multiplier that computes the product p : \Pzn-t,Pzn-2,
. . . , p 0 )  o f  t w o  n - b i t  n u m b e r s  a :  ( a r - t , a n - 2 , . . . , a 6 )  a n d  b :  ( b n - t , b , - 2 , ' . ' , b o ) ,

shown here for n : 4. EachAND gate G,!t) computes partial-product bit m\,'). Each

row of full adders constitutes a carry-sa'tte adder. The lower n bits of the prdduct are

ru10) and the rz bits coming out from the rightmost column of full adders. The upper

n iroduct bits are formed by adding the a and u bits coming out from the bottom

row of full adders. Shown are bit values for inputs a : (l I l0) and b : (1 101)

and product p : (l0l 101 10), corresponding to Figures 29.13 and 29.15.
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0 0 0 :
l l 0 :
0 0

0 1 1 1 0 :
0 0 0  :

l l l 0 =

r 0 l l 0 :
1 0
1 0

0
I

0 0

0
mQ)
m ( t )

u l )
u ( l )
mQ)

I
0
I

0 1 0
1 0

0 : p

Figure 29.15 Evaluating the sum of the partial products by repeated carry-save
addition. For this example, a: (l l l0) and , : ( l101). Bits that are blank are 0
regardless of the values of a and b. We first evaluate mQ) + mu) a Q : 4(r) 1s(r),
then ar( r )  +t ' ( l )+ mQ) :  y(2)  111Q),  then z(2)  +aQ) + mQ) -  u?l  +uQ),  and f ina l ly
p - m(o) + m(t) + me) + mQ\ = 11Q) 1u(3). Note that ps: *[l) and'pi : ula tir
i  -  1 , 2 , . . . , n  -  l .

o(2) has only n + 2 bits because aoth ulll, ana ultl, are 0.) We then have
m(0) + 72(r) I mQ) - uQ\ + uQt. The mriltiplier-continues on, carry-save
adding u?-t), a?-t), and mU) for i : 2,3,. . . ,fr-1. The result is a (2n-l)-
bit number 4@-t) 4n6 a (2n - l)-bit numb.t 2(n-r). where

n- l

u f t - t )  1 r@- t )  :  DmQl
i=o

:  p .

In fact, the carry-save additions in Figure 29.15 operate on more bits
than strictly necessary. Observe that for i : 1,2,...,ft - I and 7 :
0,1,. . . , i  -  l ,  we have * j"  : .0 because of how we shif t  the part ial

p r o d u c t s .  O b s e r v e  a l s o  t h a t  u \ "  : 0  f o r  i  : 1 , 2 , . . . , n -  I  a n d 7  :
0, l, . . ., i, i + n, i + n+ l, . . .,2n - l. (See Exercise 29.3-1.) Each carry-save
addition, therefore, needs to operate on only n - I bits.

Let us now examine the correspondence between the array multiplier and
the repeated carry-save addition scheme. Each AND gate is labeled by Gtl]
fo rsome iand j  in theranges0< i  <  n - l  andO < j  <  2n-2 .  GateGj ' )
produces mli), theTth bit of the ith partial product. For i : 0, 1,.. .,ft - l,
the ith row of AND gates computes the n significant bits of the partial
product,40), that is, (mf;!, _ r, *lil _ r, . . ., *(," l.

Except for the full adders in the top row (that is, for i : 2,3,. . .,n - l),
each full adder,rz!') tates three input bits_'mtii, ,t'-t', and u1r-r)-and
produces two output bits-a!') and ujf ,. (Note that in the leftmost column

uQ\
uQ)
mQ)

0 : u G \
u(3)
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of full adders, utt*,t)r: m!tl,-r.) Each full adder r'l\t) inthe top row takes

inputs *\o' , *',t' , and 0 and produces bits a!t) ano ljlt.
Finally, let ui examine the output of the array multiplier. A.s we observed

above, ; :"-u -  0 for 7 :  0,1, . . . , f t  -  l .  Thus, p; -  u ' i^- . t '  for 7 :

0,  1, . .  . , f t  -  l .Moreover,  s ince rn[t)  :  0,  we ha' te a[ l )  :  m.f^),  and since

the lowest-order i bits of each mo andu(t-r) are 0, we have ,l) : ul-') fo,

i  :  2 ,3 , .  . .  )n - l  and 7  :  0 ,  l ,  . . . , i -1 .  Thus ,  po :  mf )  and,  by  induc t ion ,

p ,  :  u \ ' )  fo r  i  :  1 ,2 , . . . , f i  -  l .  Produc t  b i ts  (pzn- r ,Pzn-2 , - - . ,p r )  a re

produced by an n -bit adder that adds the outputs from the last row of full

adders:

\ P z n - t ,  P z n - z , '  .  . , P n )  :

fuf,--l), "y;'1, . . ., ull -' ) ) + @ \',--lr), u t', -:r), . . ., r rn -' ) ) .

Analysis

Data ripple through an array multiplier from upper left to lower right. It

takes @(n ) time for the lower-order product bits (pn-1 ,Pn-2,... 'po) to be

produced, and it takes @(n ) time for the inputs to the adder to be ready.

If the adder is a ripple-carry adder, it takes another @(n) time for the

higher-order product bits (p2n-1, P2n-2,...,Pn) to emerge. If the adder is

a carry-lookahead adder, only @(lgn) time is needed, but the total time

remains @(n).
There are n2 AND gates and n2 - n full adders in the array multiplier.

The adder for the high-order output bits contributes only another @(n)

gates. Thus, the array multiplier has @(n2) size'

29.3.2 Wallace-tree multiPliers

A Wallace tee is a circuit that reduces the problem of summing n n-

bit numbers to the problem of summing two @(n)-bit numbers. It does

this by using ln/3.1 carry-save adders in parallel to convert the sum of n

numbers to the sum of l2nl3] numbers. It then recursively constructs

a Wallace tree on the l2nl3l resulting numbers. In this way, the set of

numbers is progressively reduced until there are only two numbers left.

By performing many carry-save additions in parallel, wallace trees allow

two n-bit numbers to be multiplied in @(lgn ) time using a circuit with

@(n2) size.
Figure 29.16 shows a Wallace tree2 that adds 8 partial products rn(O),

m(t),...,mQ). Partial product ln(i) consists of n + I bits. Each line repre-

sents an entire number, not just a single bit; next to each line is the number

2As you can see from the figure, a Wallace tree is not truly a tree, but rather a directed aqrdic

graph. The name is historical.
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Figure 29.16 A Wal lace t ree that  adds n:  g par t ia l  products me),m\t ) , . . . ,m(7) .Each line represents a number with the number of biis indicated. ii,L r.r, outputof each carry-save adder represents the sum bits, and the rrghr;";;, representsthe carry bits.

of bits the line represents (see Exercis e 29.3_3).
at the botrom adds a (2n _ l)_bit number ro a
2n-bit product.

Analysis

The carryJookahead adder
2n-bit number to give the

The time required by an n -input walrace tree depends on the depth of thecarry-save adders. At each level of the tree, each group of 3 numbers isreduced to 2 numbers, with at most 2 numbers teit o.,re, (as in the caseof mrc) and mQ) at the top level). Thus, the maximum depth D(n ) of acarry-save adder in an n-input wallace tree is given by tha .r.u.."rr.a
( o

D ( n ) :  \ l
lD[2n13])  + l

i f n < 2 ,
i f n : 3 ,
i f  n )  4 ,

which has the solution D(n) : @(lgn) by case 2 of the master theorem(Theorem 4' I ). Each carry-save adder takes @( l ) time. All n paflial prod-
ucts can be formed in @( l ) time in parailel. (The lowest-oroer i - l bits of*(i), for i : 1,2,. . . ) n -1, are hardwired to 0.) The carryJookahead adder
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takes o(lgn) time. Thus, the entire multiplication of two n-bit numbers

takes @(lgn) time.
A Wallace-tree multiplier for two n-bit numbers has @(ruz) size, which

we can see as follows. We first bound the circuit size of the carry-save

adders. A lower bound of o(n2) is easy to obtain, since there are l2nl3)
carry-save adders at depth l, and each one consists of at least n full adders.

To get the upper bound of O(nz), observe that since the final product has

2n bits, each carry-save adder in the Wallace tree contains at most 2n full

adders. We need to show that there are O(n) carry-saYe adders altogether.

Let C(n) be the total number of carry-save adders in a Wallace tree with

n input numbers. We have the recurrence

i f  n : 3  ,
i f  n 2 4 ,

which has the solution C(n): @(n) by case 3 of the master theorem' we

thus obtain an asymptotically tight bound of @(n2) size for the carry-save

adders of a Wallace-tree multiplier. The circuitry to set up the n partial

products has 8(r2) size, and the carryJookahead adder at the end has @(tt)

size. Thus, the size of the entire multiplier is @(n2).

Although the Wallace-tree-based multiplier is asymptotically faster than

the array multiplier and has the same asymptotic size, its layout when it is

implemented is not as regular as the array multiplier's, nor is it as "dense"

(in the sense of having little wasted space between circuit elements). In

practice, a compromise between the two designs is often used. The idea

is to use two arrays in parallel, one adding up half of the partial products

and one adding up the other half. The propagation delay is only half

of that incurred by a single array adding up all n partial products. Two

more carry-save additions reduce the 4 numbers output by the arrays to 2

numbers, and a carryJookahead adder then adds the 2 numbers to yield

the product. The total propagation delay is a little more than half that of

a full array multiplier, plus an additional O(lgn ) term.

Exercises

29.3-1
Prove that in an array multiplier, uj' : 0 for i :
j  :  0 , 1 , . . . , i , i  +  n , i  +  n  +  l , ' . . , 2 n  -  r .

29.3-2
Show that in the array multiplier of Figure 29.14, all but one of the full

adders in the top row are unnecessary. You will need to do some rewiring.

29.3-3
Suppose that a carry-save adder takes inputs x, !, and z and produces

outputs s and c, with n", hy, /tz, nr, and r. bits respectively' Suppose also,

without loss of generality, that n, 1ny S n'. Show that nr: nz and that

- l a n d
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T f n r < n , ,
|  I f  n o : t r z .

29.3-4
Show that multiplication can still be performed in O(lg r) time with O(z')
size even if we restrict gates to have O( I ) fan-out.

29.3-5
Describe an efrcient circuit to compute the quotient when a binary num-
ber x is divided by 3. (Hint; Note that in binary, .0l0l0l . . . : .01 x l.0l x
1 . 0 0 0 1  x  . . . . )

29.3-6
A cyclic shifter, or barrel shifter, is a circuit that has two inputs x =
(xr - t ,xn-2, . . . ,x0)  and s :  (S^- t ,sm-2, . . . ,s0) ,  where 4 :  l lgn] .  I ts
output !  :  (yn-t , !n-2,. . . ,y0) is specif ied by yi  :  x l+smodn, for i  =
0,1,...,ft - l. That is, the shifter rotates the bits of x by the amount
specified by s. Describe an efficient cyclic shifter. In terms of modular
multiplication, what function does a cyclic shifter implement?

29.4 Clocked circuits

The elements of a combinational circuit are used only once during a com-
putation. By introducing clocked memory elements into the circuit, we
can reuse combinational elements. Because they can use hardware more
than once, clocked circuits can often be much smaller than combinational
circuits for the same function.

This section investigates clocked circuits for performing addition and
multiplication. We begin with a 8( I )-size clocked circuit, called a bit-serial
adder, that can add two n-bit numbers in @(n ) time. We then investigate
linear-array multipliers. We present a linear-array multiplier with @(n)
size that can multiply two n-bit numbers in @(n) time.

29.4.1 Bit-serial addition

We introduce the notion of a clocked circuit by returning to the problem
of adding two n -bit numbers. Figure 29.17 shows how we can use a single
ful l  adder to produce the (n + l )-bi t  sum.r :  (sr,sn- l : . . . ,s6) of two n-
b i t  numbers  a  :  (an- t ,an-2 , . . . ,a0)  and b  :  (b r - t ,bn-2 , . . . ,bo) .  The
external world presents the input bits one pair at a time: first a6 and b6,
then c1 and b1, and so forth. Although we want the carry-out from one
bit position to be the carry-in to the next bit position, we cannot just feed
the full adder's c output directly into an input. There is a timing issue:
the carry-in cj entering the full adder must correspond to the appropriate
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Figure 29.17 The operation of a bit-serial adder. During the ith clock period,
for i:0, l,...,n,the full adder FZ takes input bits ai ar,d Di from the outside
world and a carry bit c; from the register. The full adder then outputs sum bit si,
which is provided externally, and carry bit c;..1, which is stored back in the register
to be used during the next clock period. The register is initialized with co : 0.
(a)-(e) The state ofthe circuit in each ofthe five clock periods during the addition
of  a :  ( l0 l l )  and b :  (1001) to produce s :  (10100).

inputs ai and D;. Unless these input bits arrive at exactly the same moment
as the fed-back carry, the output may be incorrect.

As Figure 29.17 shows, the solution is to use a crocked circait, or sequen-
tial circuit, consisting of combinational circuitry and one or more registers
(clocked memory elements). The combinational circuitry has inputs from
the external world or from the output of registers. It provides outputs
to the external world and to the input of registers. As in combinational
circuits, we prohibit the combinational circuitry in a clocked circuit from
containing cycles.

Facb reglsfer jn a c.locked g^i^resr^ig ^u ccm,r."r\Lled by'a pe,nad.v s^gnad .a-
clock. whenever the clock pulses, or ticlu, the register loads in and stores
the value at its input. The time between successive clock ticks is a clock
period. ln a globally clocked circuit, every register works offthe same clock.

Let us examine the operation of a register in a little more detail. we
treat each clock tick as a momentary pulse. At a given tick, a register reads
the input value presented to it at that moment and stores it. This stored
value then appears at the register's output, where it can be used to compute
values that are moved into other registers at the next clock tick. In other
words, the value at a register's input during one clock period appears on
the register's output during the next clock period.

Now let us examine the circuit in Figure 29.17, which we car a bit-
serial adder. In order for the full adder's outputs to be correct, we require
that the clock period be at least as long as the propagation delay of the
full adder, so that the combinational circuitry has an opportunity to settle
between clock ticks. During clock period 0, shown in Figure 29.17(a),
the external world applies input bits as and D6 to two of the full adder's



6N Crufler A Arithnctic Cirallia

inputs. We assume that the register is initialized to store a 0; the initial
carry-in bit, which is the register output, is thus co : 0. Later in this clock
period, sum bit s6 and carry-out c1 emerge from the full adder. The sum
bit goes to the external world, where presumably it will be saved as part
of the entire sum .r. The wire from the carry-out of the full adder feeds
into the register, so that c1 is read into the register upon the next clock
tick. At the beginning of clock period l, therefore, the register contains c1 .
During clock period l, shown in Figure 29.17(b), the outside world applies
a1 and Dr to the full adder, which, reading cr from the register, produces
outputs s1 and cz. The sum bit s1 goes out to the outside world, and c2
goes to the register. This cycle continues until clock period n, shown in
Figure 29 .17 (e), in which the register contains c, . The external world then
aPPlies Qn : bn: 0, so that we g1t sn : sr.

Analysis

To determine the total time I taken by a globally clocked circuit, we need
to know the number p of clock periods and the duration d of each clock
period: t: pd.The clock period d must be long enough for all combina-
tional circuitry to settle between ticks. Although for some inputs it may
settle earlier, if the circuit is to work correctly for all inputs, d must be at
least proportional to the depth of the combinational circuitry.

Let us see how long it takes to add two r-bit numbers bit-serially. Each
clock period takes @(l) time because the depth of the full adder is @(l).
Since n + I clock ticks are required to produce all the outputs, the total
time to perform bit-serial addition is (n + l)@(l) : @(n ).

The size of the bit-serial adder (number of combinational elements plus
number of registers) is @(l).

Ripple-carry addition versus bit-serial addition

Observe that a ripple-carry adder is like a replicated bit-serial adder with
the registers replaced by direct connections between combinational ele-
ments. That is, the ripple-carry adder corresponds to a spatial "unrolling"

of the computation of the bit-serial adder. The ith full adder in the ripple-
carry adder implements the ith clock period of the bit-serial adder.

In general, we can replace any clocked circuit by an equivalent combina-
tional circuit having the same asymptotic time delay if we know in advance
how many clock periods the clocked circuit runs for. There is, of course, a
trade-offinvolved. The clocked circuit uses fewer circuit elements (a factor
of @(n) less for the bit-serial adder versus the ripple-carry adder), but the
combinational circuit has the advantage of less control circuitry-we need
no clock or synchronized external circuit to present input bits and store
sum bits. Moreover, although the circuits have the same asymptotic time
delay, the combinational circuit typically runs slightly faster in practice.
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Figure2g. l8Mult iply ing|gby2gwiththeRussianpeasant 'salgori thm.Thec.
column entry in each ro*]s half of the previous row's entry with fractions ignored,

andtheb-co lumnent r iesdoub le f romrowtorow 'Weaddtheb-co lumnent r ies
ina l l rowswi thodda-co lumnent r ies ,wh ichareshaded.Th issumis thedes i red
proau.r. (a) The nu-b"., "*pressed in decimal' (b) The same numbers in binary'

The extra speed is possible because the combinational circuit doesn't have

to wait for values to stabilize during each clock period. If all the inputs

s tab i l i zea tonce,va lues jus t r ipp le th roughthec i rcu i ta t themax imum
possible speed, without waiting for the clock'

29.4.2 Linear-arraY multiPliers

The combinational multipliers of Section 29.3 need @(nz) size to multiply

two n-bit numbers. We now present two multipliers that are linear, rather

than two-dimensional, arrays of circuit elements. Like the array multiplier'

the faster of these two linear-array multipliers runs in @(n) time'

Thelinear-arraymultipliersimplementtheRussianpeasant'salgorithm
(socal ledbecauseWesternersvisi t ingRussiainthenineteenthcentury
found the algorithm widely used there), illustrated in Figure 29'18(a)'

Given two input numbers 
-a 

and b, we make two columns of numbers'

headed by a and b. In each row, the a-column entry is half of the previ-

ous row,S a.column entry, with fractions discarded. The b-column entry

is twice the previous row's b-column entry' The last row is the one with

ana-co lumnent ryo f l .Welookata l l thea-co lumnent r ies tha tconta in
oddvaluesandsumthecorrespondingb.columnentr ies.Thissumisthe
produc t  a 'b .

AlthoughtheRussianpeasant'salgorithmmayseemremarkableatfrrst,
Figure29.18(b)showsthat i t isreal ly justabinary-number-systemimple.
mentationofthegrade.schoolmultiplicationmethod,butwithnumbers
expressedindecimalratherthanbinary.Rowsinwhichthea-columnentry
isoddcontr ibutetotheproductatermofbmult ipl iedbytheappropriate
power of 2.



A slow linear-array implementation

Figure 29.19(a) shows one way to implement the Russian peasant's algo-
rithm for two n-bit numbers. We use a clocked circuit consisting of a
linear array of 2n cells. Each cell contains three registers. One register
holds a bit from an a entry, one holds a bit from a b entry, and one holds
a bit of the product p. We use superscripts to denote cell values before
each step of the algorithm. For example, the value of bit ai before the 7th
step is al i ) ,  and we def ine ot l  :  @N)-r,oN)-r, . . . ,o!)) .

The algorithm executes a sequence of n steps, numbered 0, 1,.. .,fl - l,
where each step takes one clock period. The algorithm maintains the in-
variant that before the 7th step,

o 0 )  . 6 U )  i  O U )  -  o .  U  ( 2 9 . 6 )

(see Exercise 29.4-2). Initially, aQ) - a, b(0) : b, and p(0) : 0. The 7th
step consists of the following computations.

l . l f  au) is odd (that is,  oN) :  l ) ,  then add b into p; p( j+t)  <- f io - fp( j ) .

(The addition is performed by a ripple-carry adder that runs the length
of the afiay; carry bits ripple from right to left.) 11 qU\ is even, then
carry p through to the next step: p(i+t) + p(j).

2. Shift a right by one bit position:

3. Shift b left by one bit position:

A ( . / + r )  l b : ! ,  i f  l < i 1 2 n - 1 ,u i  - \ O  
i f i : 0 .

After running n steps, we have shifted out all the bits of a; thus, a@) :0.

Invariant (29.6) then implies that p(n ) : a . b.
We now analyze the algorithm. There are n steps, assuming that the

control information is broadcast to each cell simultaneously. Each step
takes @(n) time in the worst case, because the depth of the ripple-carry
adder is @(n), and thus the duration of the clock period must be at least
@(n). Each shift takes only @(l) time. Overall, therefore, the algorithm
takes @(n2) time. Because each cell has constant size, the entire linear
array has @(n) size.

A fast linear-array implementation

By using carry-save addition instead of ripple-carry addition, we can de-
crease the time for each step to @(1), thus improving the overall time to
@(n). As Figure 29.19(b) shows, once again each cell contains a bit of an a
entry and a bit of a b entry. Each cell also contains two more bits, from al
and u, which are the outputs from carry-save addition. Using a carry-save

o , , i - ' t  *  [1 ( , '1 ,  i t9  <  i  32n -2 ,
- ' t  

[ 0  i f i : 2 n _ t .
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Figure 29.19 Two linear-array implementations of the Russian peasant,s algo-
r i thm, showing the mul t ip l icat ion of  a:19:  ( l00 l l )  by 6 = 2g = ( t t t01) ,  wi th
n : 5. The situation at the beginning of each step 7 is shown, with tiie remaining
significant bits of ao) an6 b(/) shaded. (a) A slow implementation that runs in
O(n2) time. Because at5t :0, we have p\ti : a.b. There are n steps, and each
step uses a ripple-carry addition. The clock period is therefore proportional to the
length of the array, or 8(n ), leading to o(n2) time overall. py A rast implementa-
tion that runs in B(n ) time because each step uses carry-save addition rather than
ripple-carry addition, thus taking only o( I ) time. There are a total of 2n - | : 9
steps; after the last step shown, repeated carry-save addition of u and u yields
u Q )  :  a . b .
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representation to accumulate the product, we maintain the invariant that
before the 7th step,

o U )  . 6 U )  +  u 0 )  +  o U )  -  o . 6  ( 2 9 . 7 )

(again, see Exercise 29.4-2). Each step shifts a and b in the same way as the
slow implementation, so that we can combine equations (29.6) and (29.7)
to yield yU) 1 110) : pU) . Thus, the u and u bits contain the same infor-
mation as the p bits in the slow implementation.

The 7th step of the fast implementation performs carry-save addition
on.z and u, where the operands depend on whether a is odd or even. If
aY' : l, we compute

u\ i+t)  *  par i ty lbj / ) ,  ul t )  ,u! t \  for i  :  0,  1, .  .  . ,2n -  I

and

u! i * , , ,_{major i ty(b l l r , " ( , t ) r , r ! t ) )  1{  1  s  i  <  2n -  t ,
'  | . 0  i f i : 0 .

Otherwise, oti) :0, and we compute

u\i+t) * parity(0, ul i) ,r! t \  for i  :  0, 1,. .  . ,2n - |

and

u\i + D *- 
{ ;u:ornrf 

o, uli),, u!'),)

Problen

i f l < i 1 2 n - 1 ,
i f i : 0 .

After updatingu and 'u, the 7th step shifts a to the right and b to the left
in the same manner as the slow implementation.

The fast implementation performs a total of 2n - I steps. For 7 ) n, we
Suus ao) : 0, and invariant (29.7) therefore implies 1\a1 s0) y y0) : a.b.
Qn6s 4("/) : 0, all further steps serve only to carry-save add u and u.
Exercise 29.4-3 asks you to show 16v1 11Qn-t) : 0, so 1541 yQn-r) : a . b.

The total time in the worst case is @(n), since each of the2n - I steps
takes @( I ) time. Because each cell still has constant size, the total size
remains O(n ).

Exercises

29.4-1
L e t  a :  ( l 0 l l 0 l ) ,  6  :  ( 0 1 1 1 1 0 ) ,  a n d  n : 6 .  S h o w  h o w  t h e  R u s s i a n
peasant's algorithm operates, in both decimal and binary, for inputs a
and b.

29.4-2
Prove the invariants (29.6) and (29.7) for the linear-array multipliers.

29.4-3
Prove that in the fast linear-array multiplier, uQn-t) - 0.
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29.4-4

685

Describe how the array multiplier from Section 29.3.1represents an "un-

rolling" of the computation of the fast linear-array multiplier.

29.4-s
Consider a data stream (xt,x2,...) that arrives at a clocked circuit at the
rate of 1 value per clock tick. For a fixed value n, the circuit must compute
the value

l t :  max X i
t - n + l < i < t

for / : n,n * 1,.... That is, y1 is the maximum of the most recent n
values received by the circuit. Give an O(n)-size circuit that on each clock
tick inputs the value x1 and computes the output value y; in O(1) time.
The circuit can use registers and combinational elements that compute the
maximum of two inputs.

29.4-6 *
Redo Exercise 29.4-5 using only O(lgn) "maximum" elements.

Problems

29-1 Division circaits
We can construct a division circuit from subtraction and multiplication
circuits with a technique called Newton iteration. We shall focus on the
related problem of computing a reciprocal, since we can obtain a division
circuit by making one additional multiplication.

The idea is to compute a sequenca !0,!r,!2,. . . of approximations to the
reciprocal of a number x by using the formula

!i+t * 2y' - *y? .

Assume that x is given as an n-bit binary fraction in the range ll2 <
x ( l. Since the reciprocal can be an infinite repeating fraction, we shall
concentrate on computing an n-bit approximation accurate up to its least
significant bit.

a. Suppose that ly; - | lxl < e for some constant e > 0. Prove that

l y i * t  -  l l x l < e 2 .

6. Give an initial approximation ye such that y7. satisfies lyr - | lxl < 2-2r
for all k > 0. How large must k be for the approximation yr to be
accurate up to its least significant bit?

c. Describe a combinational circuit that, given an n-bit input x, computes
an n-bit approximation to I /x in O(lgz n) time. What is the size of your
circuit? (Hint: With a little cleverness, you can beat the size bound of
O(a2tgn).)
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29-2 Boolean formulas for symmetric fanctions
A n-input function f (xt, xz, . . . , Xr) is symmetric if

f (xr,  xz,.  .  . ,  Xr) :  - f (xnl) ,  Xtt(2), .  .  . ,  Xn@))

for any permutation n of {1,2,...,n}.In this problem, we shall show that
there is a boolean formula representing / whose size is polynomial in n.
(For our purposes, a boolean formula is a string comprised of the vari-
ables x1, x2,...,xr, parentheses, and the boolean operators V, A, and -.)
our approach will be to convert a logarithmic-depth boolean circuit to
an equivalent polynomial-size boolean formula. we shall assume that all
circuits are constructed from 2-input AND, 2-input oR, and Nor gates.

a. we start by considering a simple symmetric function. The generalized
majority function on n boolean inputs is defined by

majorityn(x t,X2,...,",1 : 
{l :l i lJ,{l 

+ + xn > nf 2 ,

Describe an O(lgn)-depth combinational circuit for majority,. (Hint:
Build a tree of adders.)

D. Suppose that f is an arbitrary boolean function of the n boolean vari-
ables x1 , x2,. . ., xn. Suppose further that there is a circuit C of depth d
that computes /. Show how to construct from c a boolean formula
for / of length oQr. conclude that there is polynomial-size formula
for majority,.

c. Argue that any symmetric boolean function f (xr, xz, . . . , xr) can be ex-
pressed as a function of !i:, x;.

d. Argue that any symmetric function on n boolean inputs can be com-
puted by an O(lgn)-depth combinational circuit.

e. Argue that any symmetric boolean function on n boolean variables can
be represented by a boolean formula whose length is polynomial in n.

Chapter notes

Most books on computer arithmetic focus more on practical implemen-
tations of circuitry than on algorithmic theory. Savage [173] is one of
the few that investigates algorithmic aspects of the subject. The more
hardware-oriented books on computer arithmetic by cavanagh [39] and
Hwang [l08] are especially readable. Good books on combinational and
sequential logic design include Hill and Peterson [96] and, with a twist
toward formal language theory, Kohavi [126].

Aiken and Hopper [7] trace the early history of arithmetic algorithms.
Ripple-carry addition is as at least as old as the abacus, which has been
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around for over 5000 years. The first mechanical calculator employing
ripple-carry addition was devised by B. Pascal in 1642. A calculating
machine adapted to repeated addition for multiplication was conceived
by S. Morland in 1666 and independently by G. W. Leibnitz in 1671. The
Russian peasant's algorithm for multiplication is apparently much older
than its use in Russia in the nineteenth century. According to Knuth [122],
it was used by Egyptian mathematicians as long ago as 1800 s.c.

The kill, generate, and propagate statuses of a carry chain were exploited
in a relay calculator built at Harvard during the mid-1940's [180]. One
of the first implementations of carry-lookahead addition was described by
weinberger and Smith [199], but their lookahead method requires large
gates. Ofman [ 52] proved thar n -bit numbers could be added in O(len)
time using carryJookahead addition with constant-size gates.

The idea of using carry-save addition to speed up multiplication is due to
Estrin, Gilchrist, and Pomerene [64]. Atrubin [13] describes a linear-array
multiplier of infinite length that can be used to multiply binary numbers
of arbitrary length. The multiplier produces the nth bit of the product
immediately upon receiving the nth bits of the inputs. The wallace-tree
multiplier is attributed to wallace [197], but the idea was also indepen-
dently discovered by Ofman [152].

Division algorithms date back to I. Newton, who around 1665 invented
what has become known as Newton iteration. Problem 29-l uses Newton
iteration to construct a division circuit with @(lg2 n ) depth. This method
was improved by Beame, Cook, and Hoover [19], who showed that n-bit
division can in fact be performed in @(lgr?) depth.
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