CS185c
Chris Pollett
Feb 27, 2019
<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<title>WebGL Demo</title>
<style>
canvas {
// initially our canvas will be black
border: 2px solid black;
background-color: black;
width: 640px;
height: 320px;
}
</style>
</head>
<body>
<canvas id="glcanvas" ></canvas>
<!-- gl-matrix.js is an auxiliary javascript program with functions for the
common computer graphics matrix transforms. It can be downloaded
either at:
http://http://www.cs.sjsu.edu/faculty/pollett/185c.1.19s/gl-matrix.js
or from the Mozilla sample site.
-->
<script src="./gl-matrix.js"></script>
<script>
var cubeRotation = 0.0;
//run our program
main();
/*
Here is the code to make a rotating cube
*/
function main()
{
const canvas = document.querySelector('#glcanvas');
const gl = canvas.getContext('webgl') ||
canvas.getContext('experimental-webgl');
// If we don't have a GL context, give up now
if (!gl) {
alert('Unable to initialize WebGL. Your browser or machine '+
'may not support it.');
return;
}
// Vertex shader program
const vsSource = `
attribute vec4 aVertexPosition;
attribute vec4 aVertexColor;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying lowp vec4 vColor;
void main(void) {
gl_Position =
uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vColor = aVertexColor;
}
`;
// Fragment shader program
const fsSource = `
varying lowp vec4 vColor;
void main(void) {
gl_FragColor = vColor;
}
`;
/* Initialize a shader program; this is where all the lighting
for the vertices and so forth is established. */
const shaderProgram = initShaderProgram(gl, vsSource, fsSource);
/* Collect all the info needed to use the shader program.
Look up which attributes our shader program is using
for aVertexPosition, aVertexColor and also
look up uniform locations.
*/
const programInfo = {
program: shaderProgram,
attribLocations: {
vertexPosition: gl.getAttribLocation(shaderProgram,
'aVertexPosition'),
vertexColor: gl.getAttribLocation(shaderProgram, 'aVertexColor'),
},
uniformLocations: {
projectionMatrix:
gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'),
modelViewMatrix:
gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'),
},
};
/* Here's where we call the routine that builds all the
objects we'll be drawing. */
const buffers = initBuffers(gl);
var then = 0;
// Draw the scene repeatedly
function render(now) {
now *= 0.001; // convert to seconds
const deltaTime = now - then;
then = now;
drawScene(gl, programInfo, buffers, deltaTime);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
}
/*
initBuffers
Initialize the buffers we'll need. For this demo, we just
have one object -- a simple three-dimensional cube.
*/
function initBuffers(gl)
{
// Create a buffer for the cube's vertex positions.
const positionBuffer = gl.createBuffer();
// Select the positionBuffer as the one to apply buffer
// operations to from here out.
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
// Now create an array of positions for the cube.
const positions = [
// Front face
-1.0, -1.0, 1.0,
1.0, -1.0, 1.0,
1.0, 1.0, 1.0,
-1.0, 1.0, 1.0,
// Back face
-1.0, -1.0, -1.0,
-1.0, 1.0, -1.0,
1.0, 1.0, -1.0,
1.0, -1.0, -1.0,
// Top face
-1.0, 1.0, -1.0,
-1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0, -1.0,
// Bottom face
-1.0, -1.0, -1.0,
1.0, -1.0, -1.0,
1.0, -1.0, 1.0,
-1.0, -1.0, 1.0,
// Right face
1.0, -1.0, -1.0,
1.0, 1.0, -1.0,
1.0, 1.0, 1.0,
1.0, -1.0, 1.0,
// Left face
-1.0, -1.0, -1.0,
-1.0, -1.0, 1.0,
-1.0, 1.0, 1.0,
-1.0, 1.0, -1.0,
];
/* Now pass the list of positions into WebGL to build the
shape. We do this by creating a Float32Array from the
JavaScript array, then use it to fill the current buffer.
*/
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW);
/* Now set up the colors for the faces. We'll use solid colors
for each face.
*/
const faceColors = [
[1.0, 1.0, 1.0, 1.0], // Front face: white
[1.0, 0.0, 0.0, 1.0], // Back face: red
[0.0, 1.0, 0.0, 1.0], // Top face: green
[0.0, 0.0, 1.0, 1.0], // Bottom face: blue
[1.0, 1.0, 0.0, 1.0], // Right face: yellow
[1.0, 0.0, 1.0, 1.0], // Left face: purple
];
// Convert the array of colors into a table for all the vertices.
var colors = [];
for (var j = 0; j < faceColors.length; ++j) {
const c = faceColors[j];
// Repeat each color four times for the four vertices of the face
colors = colors.concat(c, c, c, c);
}
const colorBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, colorBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors), gl.STATIC_DRAW);
/* Build the element array buffer; this specifies the indices
into the vertex arrays for each face's vertices.
*/
const indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
/* This array defines each face as two triangles, using the
indices into the vertex array to specify each triangle's
position.
*/
const indices = [
0, 1, 2, 0, 2, 3, // front
4, 5, 6, 4, 6, 7, // back
8, 9, 10, 8, 10, 11, // top
12, 13, 14, 12, 14, 15, // bottom
16, 17, 18, 16, 18, 19, // right
20, 21, 22, 20, 22, 23, // left
];
// Now send the element array to GL
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,
new Uint16Array(indices), gl.STATIC_DRAW);
return {
position: positionBuffer,
color: colorBuffer,
indices: indexBuffer,
};
}
/*
Draw the scene.
*/
function drawScene(gl, programInfo, buffers, deltaTime)
{
gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque
gl.clearDepth(1.0); // Clear everything
gl.enable(gl.DEPTH_TEST); // Enable depth testing
gl.depthFunc(gl.LEQUAL); // Near things obscure far things
// Clear the canvas before we start drawing on it.
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
/* Create a perspective matrix, a special matrix that is
used to simulate the distortion of perspective in a camera.
Our field of view is 45 degrees, with a width/height
ratio that matches the display size of the canvas
and we only want to see objects between 0.1 units
and 100 units away from the camera.
*/
const fieldOfView = 45 * Math.PI / 180; // in radians
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = 0.1;
const zFar = 100.0;
const projectionMatrix = mat4.create();
/* note: glmatrix.js always has the first argument
as the destination to receive the result. */
mat4.perspective(projectionMatrix, fieldOfView, aspect, zNear,
zFar);
/* Set the drawing position to the "identity" point, which is
the center of the scene.
*/
const modelViewMatrix = mat4.create();
/* Now move the drawing position a bit to where we want to
start drawing the square. */
mat4.translate(modelViewMatrix,// destination matrix
modelViewMatrix, // matrix to translate
[-0.0, 0.0, -6.0]); // amount to translate
mat4.rotate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to rotate
cubeRotation, // amount to rotate in radians
[0, 0, 1]); // axis to rotate around (Z)
mat4.rotate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to rotate
cubeRotation * .7,// amount to rotate in radians
[0, 1, 0]); // axis to rotate around (X)
/* Tell WebGL how to pull out the positions from the position
buffer into the vertexPosition attribute
*/
{
const numComponents = 3;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
gl.vertexAttribPointer(programInfo.attribLocations.vertexPosition,
numComponents, type, normalize, stride, offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexPosition);
}
// Tell WebGL how to pull out the colors from the color buffer
// into the vertexColor attribute.
{
const numComponents = 4;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.color);
gl.vertexAttribPointer(programInfo.attribLocations.vertexColor,
numComponents, type, normalize, stride, offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexColor);
}
// Tell WebGL which indices to use to index the vertices
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices);
// Tell WebGL to use our program when drawing
gl.useProgram(programInfo.program);
// Set the shader uniforms
gl.uniformMatrix4fv(programInfo.uniformLocations.projectionMatrix,
false, projectionMatrix);
gl.uniformMatrix4fv(programInfo.uniformLocations.modelViewMatrix,
false, modelViewMatrix);
{
const vertexCount = 36;
const type = gl.UNSIGNED_SHORT;
const offset = 0;
gl.drawElements(gl.TRIANGLES, vertexCount, type, offset);
}
// Update the rotation for the next draw
cubeRotation += deltaTime;
}
/*
Initialize a shader program, so WebGL knows how to draw our data
*/
function initShaderProgram(gl, vsSource, fsSource)
{
const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource);
const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource);
// Create the shader program
const shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram);
// If creating the shader program failed, alert
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
alert('Unable to initialize the shader program: ' +
gl.getProgramInfoLog(shaderProgram));
return null;
}
return shaderProgram;
}
/*
creates a shader of the given type, uploads the source and
compiles it.
*/
function loadShader(gl, type, source)
{
const shader = gl.createShader(type);
// Send the source to the shader object
gl.shaderSource(shader, source);
// Compile the shader program
gl.compileShader(shader);
// See if it compiled successfully
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
alert('An error occurred compiling the shaders: ' +
gl.getShaderInfoLog(shader));
gl.deleteShader(shader);
return null;
}
return shader;
}
</script>
</body>
</html>
<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<title>WebGL Demo</title>
<style>
canvas {
// initially our canvas will be black
border: 2px solid black;
background-color: black;
width: 640px;
height: 320px;
}
</style>
</head>
<body>
<canvas id="glcanvas" ></canvas>
<!-- Two Javascript blocks we omit-->
</body>
</html>
<script src="./gl-matrix.js"></script>
main();
const canvas = document.querySelector('#glcanvas');
const gl = canvas.getContext('webgl') ||
canvas.getContext('experimental-webgl');
// If we don't have a GL context, give up now
if (!gl) {
alert('Unable to initialize WebGL. Your browser or machine '+
'may not support it.');
return;
}
const shaderProgram = initShaderProgram(gl, vsSource, fsSource);
const programInfo = {
program: shaderProgram,
attribLocations: {
vertexPosition: gl.getAttribLocation(shaderProgram,
'aVertexPosition'),
vertexColor: gl.getAttribLocation(shaderProgram, 'aVertexColor'),
},
uniformLocations: {
projectionMatrix:
gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'),
modelViewMatrix:
gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'),
},
};
const buffers = initBuffers(gl);
var then = 0;
// Draw the scene repeatedly
function render(now) {
now *= 0.001; // convert to seconds
const deltaTime = now - then;
then = now;
drawScene(gl, programInfo, buffers, deltaTime);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
Here requestAnimationFrame is a method of the browser's window object that is used to tell the browser that you want to perform an animation and request that the browser call a specified function to update an animation before the next repaint.
const vsSource = `
attribute vec4 aVertexPosition;
attribute vec4 aVertexColor;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying lowp vec4 vColor;
void main(void) {
gl_Position =
uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vColor = aVertexColor;
}
`;
// Fragment shader program
const fsSource = `
varying lowp vec4 vColor;
void main(void) {
gl_FragColor = vColor;
}
`;
/*
Initialize a shader program, so WebGL knows how to draw our data
*/
function initShaderProgram(gl, vsSource, fsSource)
{
const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource);
const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource);
// Create the shader program
const shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram);
// If creating the shader program failed, alert
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
alert('Unable to initialize the shader program: ' +
gl.getProgramInfoLog(shaderProgram));
return null;
}
return shaderProgram;
}
/*
creates a shader of the given type, uploads the source and
compiles it.
*/
function loadShader(gl, type, source)
{
const shader = gl.createShader(type);
// Send the source to the shader object
gl.shaderSource(shader, source);
// Compile the shader program
gl.compileShader(shader);
// See if it compiled successfully
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
alert('An error occurred compiling the shaders: ' +
gl.getShaderInfoLog(shader));
gl.deleteShader(shader);
return null;
}
return shader;
}
/*
initBuffers
Initialize the buffers we'll need. For this demo, we just
have one object -- a simple three-dimensional cube.
*/
function initBuffers(gl)
{
// Create a buffer for the cube's vertex positions.
const positionBuffer = gl.createBuffer();
// Select the positionBuffer as the one to apply buffer
// operations to from here out.
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
// Now create an array of positions for the cube.
const positions = [
// Front face
-1.0, -1.0, 1.0,
1.0, -1.0, 1.0,
1.0, 1.0, 1.0,
-1.0, 1.0, 1.0,
// Back face
-1.0, -1.0, -1.0,
-1.0, 1.0, -1.0,
1.0, 1.0, -1.0,
1.0, -1.0, -1.0,
// Top face
-1.0, 1.0, -1.0,
-1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0, -1.0,
// Bottom face
-1.0, -1.0, -1.0,
1.0, -1.0, -1.0,
1.0, -1.0, 1.0,
-1.0, -1.0, 1.0,
// Right face
1.0, -1.0, -1.0,
1.0, 1.0, -1.0,
1.0, 1.0, 1.0,
1.0, -1.0, 1.0,
// Left face
-1.0, -1.0, -1.0,
-1.0, -1.0, 1.0,
-1.0, 1.0, 1.0,
-1.0, 1.0, -1.0,
];
/* Now pass the list of positions into WebGL to build the
shape. We do this by creating a Float32Array from the
JavaScript array, then use it to fill the current buffer.
*/
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW);
/* Now set up the colors for the faces. We'll use solid colors
for each face.
*/
const faceColors = [
[1.0, 1.0, 1.0, 1.0], // Front face: white
[1.0, 0.0, 0.0, 1.0], // Back face: red
[0.0, 1.0, 0.0, 1.0], // Top face: green
[0.0, 0.0, 1.0, 1.0], // Bottom face: blue
[1.0, 1.0, 0.0, 1.0], // Right face: yellow
[1.0, 0.0, 1.0, 1.0], // Left face: purple
];
// Convert the array of colors into a table for all the vertices.
var colors = [];
for (var j = 0; j < faceColors.length; ++j) {
const c = faceColors[j];
// Repeat each color four times for the four vertices of the face
colors = colors.concat(c, c, c, c);
}
const colorBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, colorBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors), gl.STATIC_DRAW);
/* Build the element array buffer; this specifies the indices
into the vertex arrays for each face's vertices.
*/
const indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
/* This array defines each face as two triangles, using the
indices into the vertex array to specify each triangle's
position.
*/
const indices = [
0, 1, 2, 0, 2, 3, // front
4, 5, 6, 4, 6, 7, // back
8, 9, 10, 8, 10, 11, // top
12, 13, 14, 12, 14, 15, // bottom
16, 17, 18, 16, 18, 19, // right
20, 21, 22, 20, 22, 23, // left
];
// Now send the element array to GL
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,
new Uint16Array(indices), gl.STATIC_DRAW);
return {
position: positionBuffer,
color: colorBuffer,
indices: indexBuffer,
};
}
gl.drawElements(gl.TRIANGLES, vertexCount, type, offset);to actually draw the triangles.
/*
Draw the scene.
*/
function drawScene(gl, programInfo, buffers, deltaTime)
{
gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque
gl.clearDepth(1.0); // Clear everything
gl.enable(gl.DEPTH_TEST); // Enable depth testing
gl.depthFunc(gl.LEQUAL); // Near things obscure far things
// Clear the canvas before we start drawing on it.
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
/* Create a perspective matrix, a special matrix that is
used to simulate the distortion of perspective in a camera.
Our field of view is 45 degrees, with a width/height
ratio that matches the display size of the canvas
and we only want to see objects between 0.1 units
and 100 units away from the camera.
*/
const fieldOfView = 45 * Math.PI / 180; // in radians
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = 0.1;
const zFar = 100.0;
const projectionMatrix = mat4.create();
/* note: glmatrix.js always has the first argument
as the destination to receive the result. */
mat4.perspective(projectionMatrix, fieldOfView, aspect, zNear,
zFar);
/* Set the drawing position to the "identity" point, which is
the center of the scene.
*/
const modelViewMatrix = mat4.create();
/* Now move the drawing position a bit to where we want to
start drawing the square. */
mat4.translate(modelViewMatrix,// destination matrix
modelViewMatrix, // matrix to translate
[-0.0, 0.0, -6.0]); // amount to translate
mat4.rotate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to rotate
cubeRotation, // amount to rotate in radians
[0, 0, 1]); // axis to rotate around (Z)
mat4.rotate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to rotate
cubeRotation * .7,// amount to rotate in radians
[0, 1, 0]); // axis to rotate around (X)
/* Tell WebGL how to pull out the positions from the position
buffer into the vertexPosition attribute
*/
{
const numComponents = 3;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
gl.vertexAttribPointer(programInfo.attribLocations.vertexPosition,
numComponents, type, normalize, stride, offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexPosition);
}
/* Tell WebGL how to pull out the colors from the color buffer
into the vertexColor attribute.
*/
{
const numComponents = 4;
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.color);
gl.vertexAttribPointer(programInfo.attribLocations.vertexColor,
numComponents, type, normalize, stride, offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexColor);
}
// Tell WebGL which indices to use to index the vertices
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices);
// Tell WebGL to use our program when drawing
gl.useProgram(programInfo.program);
// Set the shader uniforms
gl.uniformMatrix4fv(programInfo.uniformLocations.projectionMatrix,
false, projectionMatrix);
gl.uniformMatrix4fv(programInfo.uniformLocations.modelViewMatrix,
false, modelViewMatrix);
{
const vertexCount = 36;
const type = gl.UNSIGNED_SHORT;
const offset = 0;
gl.drawElements(gl.TRIANGLES, vertexCount, type, offset);
}
// Update the rotation for the next draw
cubeRotation += deltaTime;
}
gl.viewport(x, y, width, height);
gl.uniformMatrix4fv(programInfo.uniformLocations.projectionMatrix,
false, rightProjectionMatrix);
gl.uniformMatrix4fv(programInfo.uniformLocations.modelViewMatrix,
false, modelViewMatrix);
gl.viewport(320, 0, 320, 320);
{
const vertexCount = 36;
const type = gl.UNSIGNED_SHORT;
const offset = 0;
gl.drawElements(gl.TRIANGLES, vertexCount, type, offset);
}
gl.uniformMatrix4fv(programInfo.uniformLocations.projectionMatrix,
false, leftProjectionMatrix);
gl.viewport(0, 0, 320, 320);
{
const vertexCount = 36;
const type = gl.UNSIGNED_SHORT;
const offset = 0;
gl.drawElements(gl.TRIANGLES, vertexCount, type, offset);
}