
The Archive, Serializability

CS157B
Chris Pollett

Apr.25, 2005.

Outline

• The Archive
• Serial and Serializable Schedules
• Conflict Serializability

The Archive
• To protect against media failures,we want to keep an archive. That is,

we want to maintain a copy of the database separate from the database
itself.

• There are two levels of archiving:
– A full dump, in which the entire database is copied.
– An incremental dump, in which only those database elements

changed since the previous full or incremental dump are copied.
• Archiving is different from just backing up the log file, since if we did

the latter, then over time we would need to store way too much data.
• They are connected though. To restore, we will generally use the most

recent full archive together with subsequent incremental dumps and
the log file since the last archive.

Non-quiescent Archiving
• As we cannot shut the database down while archiving, a

non-quiescent dump tries to capture the database as it
was at the start of the dump even though transactions
continue to be processed.

• We assume redo or undo/redo logging is being used.
• The steps to do an archive are:

1. Write a <START DUMP> record.
2. Perform a check point.
3. Perform a full or incremental dump of the data disks as desired,

copying the data in some fixed order.
4. Copy enough of the log that the prefix of the log up to and

including the checkpoint in item (2) is included.
5. Write a log record <END DUMP>. We can now throw away old

log from last archive to previous checkpoint.

Recovery Using an Archive and a
Log

• To restore the database from the archive involves:
– Finding the most recent full dump and reconstructing

the database from it.
– If there are later incremental dumps, modifying the

database according to each, earliest first.
– Modifying the database using the surviving log. This in

turn involves, using the method of recovery suited to
the type of logging being used.

Concurrency Control

• Interactions between transactions can cause the database to
become inconsistent even when the transactions
individually preserve the correctness of the database state.

• This is because transactions can interleave their actions.
• The job of figuring out which operation of which

transaction is performed next is done by the database
scheduler.

• The process of insuring in such a concurrent set up that the
database stays in a consistent state is called concurrency
control.

• We are now going to study conditions which guarantee
database consistency.

Schedules
• A schedule is a time-ordered sequence of the important

actions taken by one or more transactions.
• We are interested in reads and write and not in outputs.
• For example, suppose we had two transactions:

– T1: R(A,t), t:=t+100, W(A,t), R(B,t), t := t + 100,
W(B,t).

– T2: R(A,s); s:= s*2, W(A,s), R(B,s), s := s*2, W(B,s)
• An example schedule might be:

R1(A,t), (t:=t+100)1, W1(A,t), R1(B,t), (t := t + 100)1,
W1(B,t), R2(A,s); (s:= s*2)2, W2(A,s), R2(B,s), (s :=
s*2)2, W2(B,s).

Serial Schedules

• A schedule is said to be a serial schedule if all of
its actions consist of all the actions of one
transaction, followed by all the actions of another
transaction, etc. without interleaving of transaction
operations.

• The example of the last slide was a serial
schedule.

• If each transaction maps the database from a
consistent state to a consistent state, then a serial
schedule will map the database from a consistent
state to a consistent state.

Serializable Schedules
• Serial schedules don’t allow two transactions to be working on the DB

at the same time. So we want a better notion of a good schedule so that
we can get better concurrency.

• A serializable schedule is a schedule whose effect on the database is
the same as some serial schedule.

• For example, R1(A,t), (t:=t+100)1, W1(A,t), R2(A,s), (s:= s*2)2, R1(B,t),
(t := t + 100)1, W1(B,t), W2(A,s), R2(B,s), (s := s*2)2, W2(B,s).
has the same effect on the database as the schedule a couple slides
back.

• Usually, we don’t record the local variables of a transaction when we
write our schedules to keep them simple. i.e., we write W(A) for
W(A,t) and we wouldn’t write actions like t:=t+100.

Conflict Serializable
• Serializable is still too general, and it is hard to ensure a schedule is

serialiazable. We will next look at a weaker notion, which will
imply serializable, allows some concurrency, but maybe allows less
concurrency than serializability.

• We say a pair of operations O1,…,O2 in a schedule from two
different transactions S and T do not conflict if:

1. They are both reads.
2. They are RS(X) and WT(Y) and X is not equal to Y.
3. They are WS(X) and RT(Y) and X is not equal to Y
4. They are WS(X) and WT(Y) and and X is not equal to Y.

• Otherwise, the two actions are said to conflict.
• Two schedules are conflict equivalent if they can be turned into each

other by swapping non-conflicting transactions.
• A transaction is conflict-serializable if it is conflict equivalent to a

serial schedule.

