
Cost Based Plan Selection

CS157B
Chris Pollett

Mar. 23, 2005.



Outline

• From logical plan to physical plan
• Costs of Operations



Estimating Costs of Operations

• Last day we discussed how to transform a query
into a logical query plan.

• From this we can a preferred logical query plan
according to the heuristics discussed last day.

• Today, we consider ways of coming up with a
physical plan from this logical plan.

• Typically, consider several plans generated from
the logical plan, do an estimate of cost for each,
and choose the plan of least cost. (Least cost
estimation)



What to select for each plan we
generate.

• An order and grouping on the associative and
commutative operations like join, unions, and
intersections.

• An algorithm for each operator in the logical plan.
For example, need to choose between nested-loop
join and hash-join.

• Additional operators - scanning, sorting, etc which
are needed for the physical plan but are not
present in the logical plan.

• The way in which arguments are passed from one
operator to the next. (By intermediate results or by
pipelining)



Estimating Sizes of Intermediate
Relations

• Without computing the query itself, one cannot
exactly determine the number of rows it will
return.

• Nevertheless, we’d like to make an estimate of the
number of rows which is --
– Accurate
– Easy to compute
– Logically consistent -- the result should not depend on

which way we calculate an intermediate result.
• Recall use B(R) -- number of blocks in R, T(R) --

number of tuples in R, V(R, a) -- number of
distinct values for attribute a.



Estimating the Size of a
Projection

• The number of rows returned by a projection will
be the same as the original relation.

• Nevertheless, the space needed to store the
relation could be less.

• For example, suppose the block size was 4096,
where 96 bytes used for header info. Suppose had
a 1,000,000 tuple relation. If tuples went from 40
bytes long to 20 bytes long after a projection.
Then the number we could store in a block would
go from 100 to 200 and the file would go from
10,000 blocks long to 5,000 blocks long.



Estimating the Size of a Selection
• For S=σA=c(R). We estimate T(S) = T(R)/V(R,a).
• For S=σA<c(R). We estimate T(S) = T(R)/3. The

somewhat bogus intuition being that people tend
to write queries looking for something more
selective than half of the tuples.

• For S=σA=/=c(R). We estimate T(S) = T(R). A
more accurate but harder to calculate estimate is
T(S) = T(R)(V(R,a) -1)/V(R,a).



Estimating the Size of a Join
• Only consider natural joins, such as (R(X,Y) join S(Y,Z)), since other

joins can be estimated from natural join and estimate for selections and
projections.

• To simplify the task of estimating, we assume (not really true):
– If V(R,Y) <= V(S,Y) then every Y value of R is a Y value of S.
– If A is an attribute of R not involved in the join, then V(R join S,

A) = V(R,A). Similarly for S.
• Under these assumption, every tuple t of R has a 1/V(S,Y) chance of

joining with a tuple of S.
• So the expected number of tuple t will join with is T(S)/V(S,Y).
• So the total size of the join would be T(R)T(S)/V(S,Y).
• To make our estimate symmetric, we estimate:

T(R join S) = T(R)T(S)/max(V(R,Y),V(S,Y))



Natural Joins with Mutliple Join
Attributes

• Suppose we want to join R(x,y1,y2) with
S(y1,y2,z).

• We can generalize our previous reasoning to
obtain the estimate:
T(R)T(S)/[max(V(R,y1), V(S,y1))*max(V(R,y2),

V(S,y2))]



Joins of Many Relations
• Suppose now we have the join

S= R1 join R2 join R2 … join Rn.
• To estimate the result we first multiply the size of the

relations.
• Then we look at all the attributes A appearing at least

twice, divide by all but the least of the V(R,A).
• For example, if had R(a,b,c) join S(b,c,d) join U(b,e), and

T(R)=1000, T(S)=2000, and T(U)= 5000. Then would first
compute 1000x 2000 x 5000. If V(R,b) =20, V(S,b) = 50,
and V(U,b) =200, we would divide by V(S,b) and V(U,b).
Finally, we divide by the larger of V(R,c) and V(S,c).


