
Multidimensional Indexes

CS157B
Chris Pollett
Feb 23, 2005.

Outline

• Applications
• Hash-like Structures

Application Needing
Multidimensional Indexes

• Geographics Information Systems
– Store maps. Might include objects like points, houses,

roads, etc…Or instead of maps, might store circuit
layouts…

– Types of queries:
• Partial match query - ask for all points matching a certain

values in some specified dimensions
• Range query - ask for all points between range of values
• Nearest neighbour queries - closest point to a given point
• Where am I query -- given a point, what object am I in?

More Applications

• Data Cube
– These are often used by decision support applications

where they are used to analyze information to better
understand a companies operations.

Ex: A chain of stores might collect with each sale: the date and
time, the store of purchase, the item, the color, and the size.
This information could be viewed as a point in a
mulitdimensional space and one might want to quickly answer
aggregating queries like: number of red ties sold in each store
in each month of 2005.

SQL for Multidimensional
Queries

• Might have a table of Points with x and y
attributes. A query might look for the closest point
to (10,20):
SELECT * FROM Points p

WHERE NOT EXISTS(
SELECT * FROM Points q
WHERE (q.x-10.0)*(q.x-10.0) + (q.y-20.0)*(q.y-20.0)

< (p.x-10.0)*(p.x-10.0) + (p.y-20.0)*(p.y-20.0)
);
Another possible query: Have a table of Rectangle and

ask for all tuples containing a point.

Using Conventional Indexes
To do a range query like find all points between 300<x<400 and 500<y <

600, could have a B-tree index on x and y.
Suppose 1/10 of records satisfy the above condition on x
and 1/10 satisfy the condition on y. So 1/100 of points are in the rectangle.

This is also around the typical number of records that can be held in a
block.

We could do a range query on x to retrieve records pointers for x in
desired range and do the same for y. We can then intersect these lists
of pointers... And look up each record. Unfortunately, each record is
likely to be on a different block. So we’d have to look up 1/100 *(# of
records) blocks to do this. But the whole file has size (#of records) *
Blocking factor = (# of records)/100 so haven’t save anything.

Hash-Like Structures for
Multidimensional Indexes

• Grid Files
• Partitioned hashing

Grid Files

• Split each dimension by a set of grids lines. For
Points table example might have lines x= 100,
200, 300, 400, … and ys=100, 200, 300, 400.

• Index then has a bucket for each rectangle:(xi,xi+1]
x (yj,yj+1]. (Extended in a similar fashion if have
more than two dimensions.) Each bucket has a set
of pointers to records of Points in that rectangle.

• If a bucket is two full use overflow blocks.
• To insert just determine the rectangle the point to

be inserted belongs to and add a pointer to the
corresponding bucket.

Partitioned Hash Functions

• Idea: have a normal hash table on several
attribute A1, A2, …; however, use a special
kind of hash function such that the first k1
bits output determined by A1 only, the next
k2 bits by A2 only, …

