
Improving Query Plans

CS157B
Chris Pollett

Mar. 21, 2005.

Outline

• Parse Trees and Grammars
• Algebraic Laws for Improving Query Plans
• From Parse Trees To Logical Query Plans

Syntax Analysis and Parse Trees

• The job of the parser is to take SQL and convert it
to a parse tree.

• Nodes in this tree can be of the following types:
– Atoms -- keywords (like SELECT), names of attributes,

constants, parentheses, operators. These are leaves in
the tree

– Syntactic Categories - names for families of query
subpart. For example, <Condition> might represent a
possible condition part in the query.

A Grammar for a Simple Subset
of SQL

• Here are some example rules a parser might use
for SQL:
<Query> ::= <SFW>
<Query> ::= (<Query>) // ‘::=’ should be read as ‘can be expressed as’
<SWF> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> ::= <Attribute>, <SelList>
<SelList> ::= <Attribute>
<FromList> ::= <Relation>, <FromList>
<FromList> ::= <Relation>
<Condition> ::= <Condition> AND <Condition>
<Condition> ::= <Tuple> IN <Query>
<Condition> ::= <Attribute> = <Attribute>
<Condition> ::= <Attribute> LIKE <Pattern> //etc….

Example

SELECT name
from MovieStar
WHERE birthdate LIKE ‘%1960’
Might yield parse tree: <Query>

<SWF>
SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Attribute>LIKE<Pattern>
name MovieStar birthdate %1960

The Preprocessor

• The preprocessor does semantic checking:
– It expands views to their corresponding query
– It checks that the items in the FROM clause are actual

tables in the DB
– It checks that the attributes in the SELECT clause

belong to some table and matches them to the correct
table.

– It checks that attributes in the WHERE clause are being
put in conditions that are appropriate for their type.

Algebraic Laws For Improving
Query Plans

• We are now going to consider different ways we
can write the same query. The hope being some
ways of writing are faster to process than others.

• For instance, it is probably faster to compute
selects before taking a join, then vice versa.

• The optimizer’s job will be to consider several
plans and usually heuristically choose the best
one.

Commutative and Associative
Laws

• R x S = S x R; (R x S) x T = R x (S x T)
• R join S = S join R; (R join S) join T =R join (S

join T)
• R ∪ S = S ∪ T; (R ∪ S) ∪ T = R ∪ (S ∪ T)
• R ∩ S = R ∩ S; (R ∩ S0 ∩ T = R ∩ (S ∩ T)
• Notice the intermediate tables in computing a

sequence of join can be considerable smaller
depending on the order of execution.

Laws Involving Selection

• σC1 AND C2(R) = σC1 (σC2(R)) = σC2 (σC1(R))
• σC1 OR C2(R) = σC1(R) ∪ σC2(R) provided R

is a set.
• σC(R ∪ S) = σC (R) ∪ σC(S)
• σC (R - S) =σC (R) - S
• Similar rules hold for joins and cartesian

products.

Pushing Selections

• To reduce the cost of computing joins and
products as much as possible, a good
heuristic is to try to push selects as far down
all branches in the query tree as possible

• For instance, σyear=1996(Movie join StarsIn)
should be rewritten σyear=1996(Movie) join
σyear=1996(StarsIn).

Laws Involving Projection

• πL(R join S) = πL(πM(R) join πN(S)) where M is
those attributes in L that are from R; N is those
attributes in L that are from S.

• This also works for joins with conditions on them.
• As with selections, it is often useful to try to push

projections as far down the tree as possible.

Laws for Joins and Products

• We have already seen that it is possible to
rewrite a join using:
R joinConditionS = σCondition(R x S)

• A natural join can be written as
R joinConditionS = πL(σC (R x S)) where L is
the attributes from the natural join and C is
the condition which matches like named
attributed.

From Parse Trees to Logical
Query Plans

• After calculating the parse tree for a query…
• We convert the appropriate groups in the tree by

relational operators.
– For example, we replace the <FromList> node in a

<Query> tree with the cartesian product of the tables
listed under it.

• Then try to optimize this relational algebra tree to
create a physical query plan.
– Might apply heuristics like pushing selection and

projections which we mentioned earlier.

