Improving Query Plans

CS157B
Chris Pollett
Mar. 21, 2005.

Outline

e Parse Trees and Grammars
e Algebraic Laws for Improving Query Plans
 From Parse Trees To Logical Query Plans

Syntax Analysis and Parse Trees

 The job of the parser is to take SQL and convert it
to a parse tree.

e Nodes 1n this tree can be of the following types:

— Atoms -- keywords (like SELECT), names of attributes,
constants, parentheses, operators. These are leaves in
the tree

— Syntactic Categories - names for families of query
subpart. For example, <Condition> might represent a
possible condition part in the query.

A Grammar for a Stmple Subset
of SQL

* Here are some example rules a parser might use

for SQL:
<Query> ::= <SFW>
<Query> ::= (<Query>) // ‘::=" should be read as ‘can be expressed as’

<SWEF> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> ::= <Attribute>, <SellList>

<SelList> ::= <Attribute>

<FromList> ::= <Relation>, <FromList>

<FromList> ::= <Relation>

<Condition> ::= <Condition> AND <Condition>

<Condition> ::= <Tuple> IN <Query>

<Condition> ::= <Attribute> = <Attribute>

<Condition> ::= <Attribute> LIKE <Pattern> //etc....

Example

SELECT name
from MovieStar
WHERE birthdate LIKE ‘%1960’

Might yield parse tree: <Query>
wSWF>
\

SELECT <SelLlst> FRO <Fr0mL1st> WHERE <C0nd1t10n>
<At|tr1bute> <RelName> <Attr1bute>LIKE<Pattem>

name MOV1e Star b1rthdate %1 960

The Preprocessor

e The preprocessor does semantic checking:

— It expands views to their corresponding query

— It checks that the items 1in the FROM clause are actual
tables in the DB

— It checks that the attributes in the SELECT clause
belong to some table and matches them to the correct
table.

— It checks that attributes in the WHERE clause are being
put in conditions that are appropriate for their type.

Algebraic Laws For Improving
Query Plans

* We are now going to consider different ways we
can write the same query. The hope being some
ways of writing are faster to process than others.

* For instance, it 1s probably faster to compute
selects before taking a join, then vice versa.

* The optimizer’s job will be to consider several
plans and usually heuristically choose the best
one.

Commutative and Associative
[.aws

RXS=SXxXR;(RxS)xT=Rx(SxT)

R join S = S join R; (R join S) join T =R join (S
join T)
RUS=SUT;RUS)UT=RUSUT)
RNAS=RNS;(RNSONT=RNESNT)

Notice the intermediate tables in computing a
sequence of join can be considerable smaller
depending on the order of execution.

Laws Involving Selection

Oc1 anp C2(R) = O (O(R)) = 0O, (0 (R))
Ocior 2(R) = 0¢(R) U 0,(R) provided R
1S a set.

Oc(RUS)=0-(R)U ox(S)
Oc(R-S5)=0-(R)-S

Similar rules hold for joins and cartesian
products.

Pushing Selections

e To reduce the cost of computing joins and
products as much as possible, a good
heuristic 1s to try to push selects as far down
all branches 1n the query tree as possible

* For instance, 0., 99s(MoVie join Starsin)
should be rewritten O, 99s(MoOVIE) jOIn

year=
Oyear=1996(Starsin).

Laws Involving Projection

e 71 (R join S) = 7 (;ty(R) join 7ty (S)) where M 1s
those attributes in L that are from R; N 1s those
attributes 1n L that are from S.

e This also works for joins with conditions on them.

* As with selections, it i1s often useful to try to push
projections as far down the tree as possible.

[.aws for Joins and Products

* We have already seen that it 1s possible to
rewrite a join using:
R joinggpgitionS = Ocondition(R X S)

* A natural join can be written as
R joing, 4o = T (O (R X S)) where L 1s
the attributes from the natural join and C 1s

the condition which matches like named
attributed.

From Parse Trees to Logical
Query Plans

After calculating the parse tree for a query...

We convert the appropriate groups in the tree by
relational operators.

— For example, we replace the <FromList> node in a
<Query> tree with the cartesian product of the tables
listed under it.

Then try to optimize this relational algebra tree to
create a physical query plan.

— Might apply heuristics like pushing selection and
projections which we mentioned earlier.

