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Syntax Analysis and Parse Trees

 The job of the parser is to take SQL and convert it
to a parse tree.

e Nodes 1n this tree can be of the following types:

— Atoms -- keywords (like SELECT), names of attributes,
constants, parentheses, operators. These are leaves in
the tree

— Syntactic Categories - names for families of query
subpart. For example, <Condition> might represent a
possible condition part in the query.



A Grammar for a Stmple Subset
of SQL

* Here are some example rules a parser might use

for SQL:
<Query> ::= <SFW>
<Query> ::= (<Query>) // ‘::=" should be read as ‘can be expressed as’

<SWEF> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> ::= <Attribute>, <SellList>

<SelList> ::= <Attribute>

<FromList> ::= <Relation>, <FromList>

<FromList> ::= <Relation>

<Condition> ::= <Condition> AND <Condition>

<Condition> ::= <Tuple> IN <Query>

<Condition> ::= <Attribute> = <Attribute>

<Condition> ::= <Attribute> LIKE <Pattern> //etc....



Example

SELECT name
from MovieStar
WHERE birthdate LIKE ‘%1960’

Might yield parse tree: <Query>
wSWF>
\

SELECT <SelLlst> FRO <Fr0mL1st> WHERE <C0nd1t10n>
<At|tr1bute> <RelName> <Attr1bute>LIKE<Pattem>

name MOV1e Star b1rthdate %1 960



The Preprocessor

e The preprocessor does semantic checking:

— It expands views to their corresponding query

— It checks that the items 1in the FROM clause are actual
tables in the DB

— It checks that the attributes in the SELECT clause
belong to some table and matches them to the correct
table.

— It checks that attributes in the WHERE clause are being
put in conditions that are appropriate for their type.



Algebraic Laws For Improving
Query Plans

* We are now going to consider different ways we
can write the same query. The hope being some
ways of writing are faster to process than others.

* For instance, it 1s probably faster to compute
selects before taking a join, then vice versa.

* The optimizer’s job will be to consider several
plans and usually heuristically choose the best
one.



Commutative and Associative
[.aws

RXS=SXxXR;(RxS)xT=Rx(SxT)

R join S = S join R; (R join S) join T =R join (S
join T)
RUS=SUT;RUS)UT=RUSUT)
RNAS=RNS;(RNSONT=RNESNT)

Notice the intermediate tables in computing a
sequence of join can be considerable smaller
depending on the order of execution.



Laws Involving Selection

Oc1 anp C2(R) = O (O(R)) = 0O, (0 (R))
Ocior 2(R) = 0¢(R) U 0,(R) provided R
1S a set.

Oc(RUS)=0-(R)U ox(S)
Oc(R-S5)=0-(R)-S

Similar rules hold for joins and cartesian
products.



Pushing Selections

e To reduce the cost of computing joins and
products as much as possible, a good
heuristic 1s to try to push selects as far down
all branches 1n the query tree as possible

* For instance, 0., 99s(MoVie join Starsin)
should be rewritten O, 99s(MoOVIE) jOIn

year=
Oyear=1996(Starsin).



Laws Involving Projection

e 71 (R join S) = 7 (;ty(R) join 7ty (S)) where M 1s
those attributes in L that are from R; N 1s those
attributes 1n L that are from S.

e This also works for joins with conditions on them.

* As with selections, it i1s often useful to try to push
projections as far down the tree as possible.



[.aws for Joins and Products

* We have already seen that it 1s possible to
rewrite a join using:
R joinggpgitionS = Ocondition(R X S)

* A natural join can be written as
R joing, 4o = T (O (R X S)) where L 1s
the attributes from the natural join and C 1s

the condition which matches like named
attributed.



From Parse Trees to Logical
Query Plans

After calculating the parse tree for a query...

We convert the appropriate groups in the tree by
relational operators.

— For example, we replace the <FromList> node in a
<Query> tree with the cartesian product of the tables
listed under it.

Then try to optimize this relational algebra tree to
create a physical query plan.

— Might apply heuristics like pushing selection and
projections which we mentioned earlier.



