
More B-trees, Hash Tables, etc.

CS157B
Chris Pollett
Feb 21, 2005.

Outline

• B-tree Domain of Application
• B-tree Operations
• Hash Tables on Disk
• Hash Table Operations
• Extensible Hash Tables
• Multidimensional Indexes

Domain of Application of B-trees

• Can be used for search keys which are
primary keys for the table whether or not
the table is sorted on this key.

• Can be used on non-primary key fields.
• Can allow multiple occurrences of search

key at the leaves.

Lookup- in B-Trees

For simplicity will assume no duplicate keys.
To search for a record with key K:
– If at a leaf, look among the keys, follow pointer

K if exists to record.
– For an interior node, if K is less than the first

key or greater than the last, follow the pointer
to the left/right. If K_i <= K < K_{i+1} then
follow the pointer to the right of K_i.

Range Queries

• B-Trees not only support single-valued
queries, but can also support range queries
like: SELECT * FROM R WHERE R.a >
10;

• To look up keys in a range [a,b], we look
up a, then cycle through entries until we get
a value larger than b.

Insertion into B-Trees

• First try to put key into the appropriate leaf, if
there is room.

• If there is no room, we split the leaf node among
two blocks, so that each is half full. We put a new
(key, pointer) pair into the parent that selects
between these two halves.

• If this propagates to the root and it is full, split the
root into two and make a new root with a key to
select between these two halves.

Deletion from B-Trees

• Locate the record and its key pointer pair in a leaf
in B-tree.

• If the leaf node is now less than half full and either
sibling would be more than half full after moving
a key, pointer pair. More the appropriate end value
pair from the sibling into the current node. Adjust
parent node.

• If neither, sibling can do this then combine this
leaf with one of its two siblings and propagate the
results up to parent.

It should be noted some DBs just use tombstones
rather than bother with deletion.

Efficiency of B-Trees

• Suppose a block can store 340 key-pointer pairs
and on average is around 3/4 full. So around 255
pointer in any block index in use.

• In a three level tree the root has 255 children, 2552

grandchildren and 2553 records pointer to at the
leaves. That is, around 16.6 million records.

• Since one typically caches at least the root, and
often the next level as well, this means in one or
two disk I/Os can find any record among 16.6
million records.

Secondary-Storage Hash Tables

Assume have seen main memory hashing before…
• Set-up is have a hash function h(K) mapping keys

into buckets 0, …, B-1 and have some scheme to
resolve collisions.

• If hash table is in secondary storage, then the
buckets are mapped to blocks.

• If a block has too many records in it then use
overflow blocks to handle any additional records
hashing to this value.

Insertion, Deletion and
Efficiency

• To insert we compute h(K). If the labelled bucket
h(K) still has room then we add a key pointer pair
there. If not, we create an overflow bucket.

• To delete we compute h(K), then search that
bucket and any overflow bucket for the record
pointer to the record to be deleted. Might
consolidate blocks if some blocks becomes empty.

• Ideally, only one disk I/O is needed to find record
pointer we want. However, as the file grows we
will tend to use overflow blocks more and more.

Extensible Hash Tables
• Want to dynamically increase the number of buckets to

avoid having to do more than one I/O.
• To do this we add an indirection level (which might be

cached in memory), which is an array of pointers 0 to 2i -1
for some i. Some of these pointers might point to same
block.

• Each block records how many bits of hash used to get to it.
• Hash computes a k bit number for some k >= i.

Alternatively, could have a have function h(K,i) where i
says number of bits we want.

• To look up K. Compute h(K) using at first i bits. Look up
corresponding indirection pointer follow to bucket.

Insertion into Extensible Hash
Tables

1. Computer h(K) look at first i bits, say equals x.
2. Look up xth entry in indirection table, follow to

bucket. If there is room insert into bucket.
3. If the number of bits of hash value used to look

up bucket way less than i, say j, divide entries in
block x into two blocks according to the j+1st bit
of the hash function.

4. If j=i then we double the number of indirection
pointers. That is set i:=i+1. Each old pointer on i
bits now becomes two pointers on i+1 bits. Now
we can go to 3.

Linear Hash Tables
• Extensible hashing can be inefficient if number of records is small, if

have to insert a lot and update pointers, or if after double the
indirection layer can no longer fit in memory.

• Another technique, linear hashing, always keeps the number of buckets
n so that 80% of each bucket is filled.
– Overflow blocks are permitted but on average there will be much

fewer than 1 such block per bucket.
– [log n] bits are needed to number entries of bucket array.
– When we insert we check if adding the record makes the ratio of

number of records to blocks is such that it is expected that more
than 80% of each block is filled. If yes, we increase the number of
blocks, by one by splitting the block that the record would be
added to. We use the most significant bit of the hash function to
distinguish between these two blocks.

– If n exceeds to 2i then use another bit of hash.

Multidimensional Indexes

• All indexes considered so far are on one
field. Say salary.

• We now consider indexes on more than one
field. Say first name, last name.

• There are several techniques for such
indexes: grid-files, partitioned hash
functions, multiple key indexes, kd-trees,
Quad trees, and R-trees.

