
Two Pass Algorithms

CS157B
Chris Pollett

Mar. 16, 2005.

Outline

• More Sort Based Algorithms
• Two Pass Algorithms Based on Hashing
• Indexed Based Algorithms
• Parsing

Grouping and Aggregation using
Sorting

• To do grouping and aggregation:
– Read the records into memory, M blocks at a time. Sort

M blocks, using the grouping attributes as the sort key,
Write each sorted list to disk.

– Use one main buffer for each sublist, and initially load
the first block of each sublist into its buffer.

– Repeatedly find the least value, v, of the (grouping
attributes among the first available tuple in the buffer.
For this value, we (a) compute all aggregates for the
group v belong to. (b) if a buffer becomes empty
replace it with the next buffer from the same sublist.

– If no more tuples for this v go on to next smallest v.
– Notice take 3B(R) time and works if B(R) <M2

Sorting and Unions,
Intersections, etc.

• Do Phase I of sort for both R and S. (Sort
into subfiles of M blocks). Assume total
number of subfiles generated <M-1.

• In Phase II of sort compute the desired
Union, intersection at the same time we are
doing the merge phase.

• This takes 3(B(R)+B(S)) I/Os and the phas
II step works provided B(R)+B(S)<=M2.

Sort-based Join

• Want to Join R(X,Y) and S(Y,Z)
• Create sorted sublists of size M, using join

attribute Y for both R and S.
• Bring the first block of each sublist into a buffer

(assume <= M sublists).
• Repeatedly find the least Y value y amoung the

sublist blocks in memory. Identify tuples in both
relations having this Y value. Output the join of all
these tuples.

• Take time 3(B(R) +B(S)) provided B(R)+B(S)
<M2

Partitioning Relations by
Hashing

• For the algorithms we’ll consider next, it is useful
to be able to read a file quickly into a hash table.

• To do this we use one block of main memory to
read from the file and use M-1 blocks for each
bucket of the hash table (we assume this has at
most M-1 buckets).

• We read successive blocks from the file apply the
hash function to each tuple in these blocks and
move these tuples to the correct bucket buffer.

• When a bucket buffer gets filled we write it to
disk.

Hashed based Duplicate
Elimination

• First hash file into bucket files.
• Then eliminate duplicates from each bucket file

using the one pass algorithm and output the
results.

• The idea is if t occurs multiple times, it will
always hash to the same bucket. So can eliminate
duplicates bucketwise.

• This works provided hash function is random-like
and B(R) is less than M2. It takes 3B(R) time.

Hash-Based Algorithm for
Grouping and Aggregation

• Want to do grouping and aggregation on R.
• As with hash based duplicate elimination, the first

step is to hash R into a hash file.
• Want a hash function which only depends on the

grouping attributes.
• Now use the one pass algorithm for aggregation

for each bucket.
• So need each bucket is <M.
• So works if B(R) < M2. It takes 3B(R) time to do

this operation.

Hash based and Unions,
Intersections, etc

• Hash both R and S to hash tables.
• Apply one pass algorithm to each of the

bucket 1’s of R and S. Then the one pass
algorithm to the bucket 2’s,… etc.

• Works provided min(B(R), B(S)) <M2.
• Takes time 3(B(R)+B(S)).

Hash-Join

• Use only the join attribute as the hash key.
• Hash R and S to hash tables.
• Do one pass join of bucket 1’s, 2’s, etc.
• Works provided min(B(R), B(S)) <M2.
• Takes time 3(B(R)+B(S)).

Index-based Selection

• Suppose have a clustering index and want to do
σa=v(R).

• Then the number of I/Os will be roughly
B(R)/V(R,a).

• Here we are ignoring cost of index, round off
errors, and that the blocks of R might not be
completely filled with tuples from R.

• If R is a non-clustering index, then the cost will be
approximately T(R)/V(R,a). So it will be more
likely a table scan will be faster.

Index-based Join

• Examine each block of R. For each tuple t
in that block, look up all things that join
with it in S and output the joins.

• Cost will approximately be
T(R)T(S)/V(S,Y), where Y is the join
attribute if S is nonclustered and
T(R)B(S)/V(S,Y) if it is clustered.

Parsing Queries

• We now begin to discuss how queries are
parsed. Below is a rough flow of the
operations:

Parser

Preprocessor

Logical query
plan generator

Query rewriter

query

Preferred logical query
plan

