Two Pass Algorithms

CS157B
Chris Pollett
Mar. 16, 2005.



Outline

More Sort Based Algorithms
Two Pass Algorithms Based on Hashing
Indexed Based Algorithms

Parsing



Grouping and Aggregation using
Sorting

 To do grouping and aggregation:
— Read the records into memory, M blocks at a time. Sort

M blocks, using the grouping attributes as the sort key,
Write each sorted list to disk.

— Use one main buffer for each sublist, and initially load
the first block of each sublist into its buffer.

— Repeatedly find the least value, v, of the (grouping
attributes among the first available tuple in the buffer.
For this value, we (a) compute all aggregates for the
group v belong to. (b) if a buffer becomes empty
replace it with the next buffer from the same sublist.

— If no more tuples for this v go on to next smallest v.
— Notice take 3B(R) time and works if B(R) <M?



Sorting and Unions,
Intersections, etc.

e Do Phase I of sort for both R and S. (Sort
into subfiles of M blocks). Assume total
number of subfiles generated <M-1.

e In Phase II of sort compute the desired
Union, intersection at the same time we are
doing the merge phase.

e This takes 3(B(R)+B(S)) I/Os and the phas
IT step works provided B(R)+B(S)<=M-.



Sort-based Join

Want to Join R(X,Y) and S(Y,7)

Create sorted sublists of size M, using join
attribute Y for both R and S.

Bring the first block of each sublist into a buffer
(assume <= M sublists).

Repeatedly find the least Y value y amoung the
sublist blocks in memory. Identify tuples in both
relations having this Y value. Output the join of all
these tuples.

Take time 3(B(R) +B(S)) provided B(R)+B(S)
<M?



Partitioning Relations by
Hashing

For the algorithms we’ll consider next, it 1s useful
to be able to read a file quickly into a hash table.

To do this we use one block of main memory to
read from the file and use M-1 blocks for each
bucket of the hash table (we assume this has at
most M-1 buckets).

We read successive blocks from the file apply the
hash function to each tuple in these blocks and
move these tuples to the correct bucket buffer.

When a bucket buffer gets filled we write it to
disk.



Hashed based Duplicate
Elimination

First hash file into bucket files.

Then eliminate duplicates from each bucket file
using the one pass algorithm and output the
results.

The 1dea 1s if t occurs multiple times, 1t will
always hash to the same bucket. So can eliminate
duplicates bucketwise.

This works provided hash function 1s random-like
and B(R) is less than M2. It takes 3B(R) time.



Hash-Based Algorithm for
Grouping and Aggregation

Want to do grouping and aggregation on R.

As with hash based duplicate elimination, the first
step 1s to hash R into a hash file.

Want a hash function which only depends on the
grouping attributes.

Now use the one pass algorithm for aggregation
for each bucket.

So need each bucket 1s <M.

So works if B(R) < M2. It takes 3B(R) time to do
this operation.



Hash based and Unions,
Intersections, etc

Hash both R and S to hash tables.

Apply one pass algorithm to each of the
bucket 1’s of R and S. Then the one pass
algorithm to the bucket 2’s,... etc.

Works provided min(B(R), B(S)) <M?.
Takes time 3(B(R)+B(S)).



Hash-Join

Use only the join attribute as the hash key.
Hash R and S to hash tables.

Do one pass join of bucket 1°s, 2’s, etc.
Works provided min(B(R), B(S)) <M?.
Takes time 3(B(R)+B(S)).



Index-based Selection

Suppose have a clustering index and want to do
o,_,(R).

Then the number of I/Os will be roughly
B(R)/V(R,a).

Here we are 1gnoring cost of index, round off

errors, and that the blocks of R might not be
completely filled with tuples from R.

If R 1s a non-clustering index, then the cost will be
approximately T(R)/V(R,a). So it will be more
likely a table scan will be faster.



Index-based Join

e Examine each block of R. For each tuple t
in that block, look up all things that join
with 1t in S and output the joins.

e Cost will approximately be
T(R)T(S)/V(S,Y), where Y 1s the join
attribute 1f S 1s nonclustered and
T(R)B(S)/V(S,Y) if 1t 1s clustered.



Parsing Queries

* We now begin to discuss how queries are
parsed. Below 1s a rough flow of the

operations: v query
Parser

:

Preprocessor

'

Logical query
plan generator

Query rewriter

v

Preferred logical query
plan




