
Secondary Indexes, B-trees

CS157B
Chris Pollett
Feb 16, 2005.

Outline

• Using Oracle client
• Indexes with Duplicate Search Keys
• Indexes and Data Modification
• Secondary Indexes
• B-trees (a beginning)

Indexes with Duplicate Search
Keys

• It is possible that more than one record has the same search
key value in a sequential file. For example, if we had
sorted on Salary, two people in an Employee table might
have the same salary.

• One might modify a dense index to handle this by having
one reference for each search key value and have it point to
the first record with that value.

• To find a record we then look up the search key value in
the index and do a linear search of the records with this
value. (We still call this a dense index).

• If we have a sparse index, we don’t have to change
anything to handle duplicates.

Indexes and Data Modification

• When we change the data file, we also need
to modify index.

• What will happen depends on whether the
index is dense or space.
Action on file |Dense Index |Sparse Index

Create Blocks |none |insert if sequential

Delete Blocks |none |delete if sequential

Insert |insert also into index |update(?)

Delete |delete also from index |update(?)

Slide |update |update(?)

Avoiding Overflow Blocks,
Preventing Row Migration

• Oracle has two parameters which are useful in
avoiding overflow blocks and preventing row
migration: PCTUSED and PCTFREE.

• PCTFREE - percentage of a block that is reserved
for future updates to existing rows.

• PCTUSED - percentage full a block removed from
the free blocks list must fall below to be added
back to the free blocks list.

Secondary Indexes

• Up till now we have been considering primary
indexes. These are indexes which are on the
search key of a sequential file.

• Secondary indexes are indexes on fields which are
not sorted in the file.

• Secondary indexes are always dense and will often
have duplicates.

• One can create indexes with SQL like:
CREATE INDEX MyIndex ON MyTable(MyField);

Design of Secondary Indexes

• Notice that although the indexed field is not sorted
in the file. It is sorted in index.

• Indexes are still usually much smaller than the
original file size.

10

10

20

20

20

40

10

20

Applications of Secondary
Indexes

In addition to allowing indexes on non-sorted
fields of a table, secondary indexes have
other uses:

• They might provide an index on a primary
key if the file was not sequential but rather a
heap (i.e., unsorted).

• They allow indexes to be had on a
horizontally partitioned or clustered file.

Indirection in Secondary Indexes
• The scheme for secondary indexes

previously presented wastes space because
we often have to repeat the same key value
multiple times.

• We can use indirection to minimize this
waste:

20

40

10

20

10

20

Document Retrieval and Inverted
Indexes

• An inverted index on a document is an index from the
words in the document to the locations within the
document where the word occurs.

• For web search probably store the inverted indexes of
several documents into one big index.

• Such inverted indexes are usually secondary indexes and
employ the kind of indirection mentioned on the last slide.

• Often the index also has stem words for word in the
document. Ex: storing dog for dogs.

• Some stop words like ‘a’ or ‘the’ would not be included.

B-trees

• As we have already seen multi-level
indexes can speed up the retrieval of data.

• B-Trees are a family of data structures that
allow us to maintain such kind of indexes
by supporting inserts, deletes, and updates.
– They automatically maintain the correct

number of levels for the file size in use.
– B-tree index blocks are used so that they are

always between half and completely filled.

The Structure of B-trees
• A B-tree is a balanced tree whose nodes are blocks. That is, every path

from the root to a leaf is of the same length.
• A B-tree is characterized by a parameter n which depends on the block

size.
• Within a node a B-tree stores n search key values and n+1 pointers.

(pointers for internal nodes always point to one level lower in the tree)
• Key values are nondecreasing in going from left to right with tree at

the same level
• We assume that the root will always use at least two of these pointers.
• At a leaf, the last pointer points to the block to right. At least half of

the pointers and search key values in a leaf are used and the pointers
point to actual records.

• At least half of the pointers in and key values are used in an internal
node.

