Secondary Indexes, B-trees

CS157B
Chris Pollett
Feb 16, 2005.



Outline

Using Oracle client

Indexes with Duplicate Search Keys

Indexes and Data Modification
Secondary Indexes

B-trees (a beginning)



Indexes with Duplicate Search
Keys

It 1s possible that more than one record has the same search
key value 1n a sequential file. For example, if we had
sorted on Salary, two people in an Employee table might
have the same salary.

One might modify a dense index to handle this by having
one reference for each search key value and have it point to
the first record with that value.

To find a record we then look up the search key value in
the index and do a linear search of the records with this
value. (We still call this a dense index).

If we have a sparse index, we don’t have to change
anything to handle duplicates.



Indexes and Data Modification

* When we change the data file, we also need
to modify index.

 What will happen depends on whether the
index 1s dense or space.

Action on file
Create Blocks
Delete Blocks
Insert
Delete

Slide

|Dense Index

Inone

Inone

linsert also into index

|delete also from index

lupdate

|Sparse Index
linsert if sequential
|delete if sequential
lupdate(?)
lupdate(?)

lupdate(?)



Avoiding Overtlow Blocks,
Preventing Row Migration

* QOracle has two parameters which are useful in
avolding overflow blocks and preventing row
migration: PCTUSED and PCTFREE.

* PCTFREE - percentage of a block that 1s reserved
for future updates to existing rows.

e PCTUSED - percentage full a block removed from
the free blocks list must fall below to be added
back to the free blocks list.



Secondary Indexes

Up till now we have been considering primary
indexes. These are indexes which are on the
search key of a sequential file.

Secondary indexes are indexes on fields which are
not sorted in the file.

Secondary indexes are always dense and will often
have duplicates.

One can create indexes with SQL like:
CREATE INDEX Mylndex ON MyTable(MyField);



Design of Secondary Indexes

10 20
10 40
20 "
20| Hl 20

° ©)
©)

o ©)
©)

* Notice that although the indexed field 1s not sorted
in the file. It 1s sorted in index.

e Indexes are still usually much smaller than the
original file size.



Applications of Secondary
Indexes

In addition to allowing indexes on non-sorted
fields of a table, secondary indexes have
other uses:

* They might provide an index on a primary
key if the file was not sequential but rather a
heap (1.e., unsorted).

* They allow indexes to be had on a
horizontally partitioned or clustered file.



Indirection 1n Secondary Indexes

 The scheme for secondary indexes
previously presented wastes space because
we often have to repeat the same key value
multiple times.

e We can use indirection to minimize this
waste:

10 |4 20
20 40
0 R 10

20

(ONONO)
00O



Document Retrieval and Inverted
Indexes

e An inverted index on a document 1s an index from the
words 1n the document to the locations within the
document where the word occurs.

e For web search probably store the inverted indexes of
several documents into one big index.

* Such inverted indexes are usually secondary indexes and
employ the kind of indirection mentioned on the last slide.

e Often the index also has stem words for word in the
document. Ex: storing dog for dogs.

e Some stop words like ‘a’ or ‘the’ would not be included.



B-trees

* As we have already seen multi-level
indexes can speed up the retrieval of data.

e B-Trees are a family of data structures that
allow us to maintain such kind of indexes
by supporting inserts, deletes, and updates.

— They automatically maintain the correct
number of levels for the file size in use.

— B-tree index blocks are used so that they are
always between half and completely filled.



The Structure of B-trees

A B-tree is a balanced tree whose nodes are blocks. That is, every path
from the root to a leaf is of the same length.

A B-tree is characterized by a parameter n which depends on the block
size.

Within a node a B-tree stores n search key values and n+1 pointers.
(pointers for internal nodes always point to one level lower in the tree)

Key values are nondecreasing in going from left to right with tree at
the same level

We assume that the root will always use at least two of these pointers.

At a leaf, the last pointer points to the block to right. At least half of
the pointers and search key values in a leaf are used and the pointers
point to actual records.

At least half of the pointers in and key values are used in an internal
node.



