
Record Modifications & Indexes

CS157B
Chris Pollett
Feb 14, 2005.

Outline

• Hand-out Oracle Accounts
• Record Insertion/Deletion/Update
• Sequential Files
• Dense Indexes
• Sparse Indexes
• Multi-level Indexes

Record Insertion

• If records not sorted can just find a block of
table in question with space for a record and
add our record to it. If no such block exists
allocate a new block and associate with our
table.

• The situation is harder if need to keep
records sorted.

Record Insertion Sorted case

• Find block where would insert. If there is space
add the record there.

• We might need to slide records around within the
relevant block and update its offset table.

• If there is no space, then we could: (a) look at an
adjacent block in the sorted order and try to find
space there and redistribute record,s (b) create an
overflow block.

Rec4 Rec3 Rec2 Rec1

Offset table

Record Deletion

• When we delete a record we may be able to
reclaim its unused space.

• We could try to slide records around so there is
one big available space block.

• If this is not possible then need an available space
list.

• We might also be able to get rid of any overflow
blocks.

• We may need to place a tombstone on the record
so that anything pointing to the record knows it
was deleted.

Record Update

• For fixed length records can just overwrite
the existing record.

• For variable length records one has all the
problems associated with insert and delete
except that one doesn’t have to have a
tombstone.

Speeding Queries and Indexes

• When we store records we need to store enough
information so we can process queries like
SELECT * FROM R.

• Need to store in the block header where in a block
the records begin, and in the record header of
these records, which relation they belong to.

• Might want to reserve whole cylinders for
particular relations to speed things up.

• To speed up queries like SELECT * FROM EMP
WHERE name = ‘John Smith’; need to use
indexes.

Types of Indexes

• Simple indexes on sorted file
• Secondary indexes on unsorted files
• B-trees
• Hash tables

Sequential Files

• In this kind of file we sort the file on the
attributes of the index.

10
20Blk 1

30
40Blk 2

Dense Indexes

• Now that the records are sorted we can
build on top of them a dense index. That is,
an index where we have one index entry per
record.

10
20

30
40

10
20

30
40

More on Dense Indexes

• Dense Indexes can be used for queries where we
are searching by a particular value.

• Given K we look up K in the index using binary
search (O(log n) time where n is number of index
entries) then follow the pointer there to the record.

• Since the index only has (key, ptr) pairs rather
than (key, lots of data), it will probably be much
smaller than original file and so possibly fit in
memory. This can be used to save further I/Os

Dense Index Example

• Suppose R had 1,000,000 tuples and 10 fit into a
block of 4096 bytes. So R takes 100,000 blocks /
400 megabytes to store. Too much to be easily
held in main memory on most systems.

• If the key is 30 bytes long and the record pointer 8
bytes then around 100 index entries can fit into a
block. So the index takes roughly 40 megabytes
(10,000 blocks) to store.

• This probably fits into main memory. If not, have
only log (10000), roughly 13 or 14, accesses to
look an entry.

Sparse Indexes

• These take less space but are a little slower
than dense indexes.

• Idea is we no longer have an index entry for
every record, instead we have one entry per
block of the original file:

10
20

30
40

10
30
50
70

Sparse Index Example

• If R was 100, 000 blocks, each storing 10 records
as before, and again could store 100 index entries
in a block, then would only need 1000 blocks
(4MB) to store this index.

• On the other hand, with a dense index could
answer questions of the form: “ Is K in the file?”
using only the index, without having to look up
the block containing K in the file itself.

Multi-Level Indexes

• Since a sparse index itself can still take several
blocks, one could imagine using a sparse index on
a sparse index to look up the data.

• In our previous example, the 1000 block index
could have a 10 block sparse on it to help look up
the correct block.

• Multi-level indexes are fast, but can be a pain to
update.

