
Multiversion Concurrency
Control, Transaction Management

CS157B
Chris Pollett

May 11, 2005.

Outline

• Multiversion Timestamps
• Timestamps versus Locking
• Logging and Concurrency

Multiversion Timestamps

• We want to allow for greater concurrency than
basic timestamping allows.

• To do this we will reduce the number of reads that
cause transactions to abort.

• Suppose transactions arrive in the order: T1, T3,
T2, T4. Consider the schedule: r_1(A), w_1(A),
r_2(A), w_2(A), r_3(A), r_4(A). T3 must abort
according to timestamping.

• However, if we had kept an old value of A around
for T3 we might not need to abort it.

More on Multiversion
Timestamps

• How do we manage multiple versions of database
elements?
– When a write w_T(X) occurs, if it is legal, a new version of X is

created. Its write time is TS(T) and we will call it X_t where
t=TS(T).

– When a r_T(X) occurs, the scheduler finds the first version of X_t
of X such that t <= TS(T), and such that there is no X_t’ with t < t’
<=TS(T).

– Write times are now associated with versions of an element and
they never change.

– Read times are associated with version. Read times are used to
reject certain writes as will be indicated on the next slide.

– When a version X_t has a time t such that no active transaction has
a timestamp less than t, then we may delete any version X of
previous to X_t.

What kind of writing should be
rejected?

– S whould have read T’s value but reads X_50
instead. So should abort T.

X_50 X_100W_T(X)
attempted where
TS(T)=60

R_S(X) sets
RT(X_50) =80

Timestamps versus Locking
• Basic rule of thumb: timestamping works better when most

transactions are read-only, or it is rare that concurrent transaction will
read and write the same element.

• Locking works better in high conflict situations.
• The reasoning is:

– Locking frequently delays transactions as they have to wait for
locks and can lead to deadlocks.

– If concurrent transactions have frequent reads and write in
common then timestamping will tend to cause transactions to
rollback frequently making the throughput less than with locking.

• Commercial DBMS systems try to get the best of both by allowing a
read only isolation level which is handled using multiversion
timestamping and otherwise use locking for other isolation levels.

 More on Transaction Management

• We have now talked about recovery and about
serializability but we haven’t said how to get these two
components of the DBMS to work together.

• Our logging mechanisms make no mention of
serializability and there is no guarantee when we do a
recovery that the consistent state we get to corresponds to
something that might have been produced by a serializable
schedule.

• On the other hand, there is nothing about two phase
locking that prevents a transaction from writing into the
database uncommitted data.

• To finish up the semester we will give an example
situation where logging and concurrency interact.

Cascading Rollbacks
• Consider the schedule:

– L_1(A), R_1(A), W_1(A), L_1(B), U_1(A),
L_2(A), R_2(A), W_2(A), L_2(B) denied,
R_1(B), A_1, U_1(B), L_2(B), U_2(A), R_2(B),
W_2(B), U_2(B).

• If we are using timestamping with a commit bit the above schedule
without the locks couldn’t happen, but it is a legal 2PL schedule.
However, T_2’s value for A is dirty so we should rollback T_2 when
T_1 aborts. This rollback that causes another rollback is called a
cascading rollback.

• To avoid this problem, a transaction must not release any write locks
until it either commits or aborts and the commit or abort log record is
flushed to disk. This locking protocol is called strict 2PL. It shows that
logging and concurrency do need to interact.

• Aside: A quick trick when blocks are locked rather than rows --that
does not require interaction with the log -- is to require blocks written
(and locked) by uncommitted transaction be pinned in main memory
until the transaction commits or aborts.

