
More Locking and Timestamp
Concurrency Control

CS157B
Chris Pollett
May 9, 2005.

Outline

• The Tree Protocol
• TimeStamps

The Tree Protocol
• Standard locking protocols make it very hard to do concurrency when

doing locking with B-trees.
• The problem is we would typically need to lock a whole path down

the tree in case the tree changes during an update. This prevents other
people from looking at the tree.

• Instead, to get concurrency for B-trees, we don’t use two phase locking
and:
– a transaction’s first lock in the tree may be at any node of the tree

(typically lock first node that could be changed by your
transaction.)

– subsequent locks can be obtained iff the transaction has the parent
lock.

– nodes can be unlocked at any time
– a transaction may not relock a node it has released.

Other Concurrency Control
Techniques

• Besides locking there are two other common
methods for doing concurrency control:
– timestamping -- give each transaction and database

element a timestamp and compare these to determine if
the schedule is equivalent to the serial schedule given
by the transactions timestamps.

– validation -- also uses timestamps but will yield
schedules equivalent to the serial schedule give by
transaction commit times.

• We’ll focus on the first technique.

Timestamps

• We’ll write TS(T) to denote a number (timestamp)
assigned by the scheduler to transaction.

• The number must be such that later transaction
receive a higher number.

• Such numbers could be based on the system clock
or based on using a counter.

• For each database element X, the scheduler also
maintains the following numbers: RT(X) --
timestamp of last T to read X, WT(X) --
timestamp of last T to write X, C(X) -- last
transaction to write X has commited or not.

Physically Unrealizable
Behaviors

• Suppose each operation in a schedule executed at
the time of the timestamp assigned by the
scheduler to DB items.

• Two problems could occur:
– Read too late: (abort T)

– Write too late: (abort T)

T starts U starts

WU(X) RT(X)

Time

T starts U starts

RU(X) WT(X)

Time

Problems with Dirty Data
• The two problems of the last slide could be resolved by

comparing TS(T) and WT(X) or RT(X).
• What is the C(X) used for? Consider the following

sequence:

• The value read by U is bogus since T aborted. This is
called a dirty read. We can check to make sure C(X) =
true. Scheduler maintains C(X) so works. Can delay U to
make a valid schedule.

T starts U starts T aborts

WT(X) RU(X)

Time

Rules for Timestamp-Based
Scheduling

• The scheduler when given a read or write
request by T can either: grant it, abort T, or
delay T until some other transaction
commits or aborts.

• Next slide has the exact rules.

More rules
• If the request is a RT(X):

– If TS(T) >WT(X), the read is physically realizable.
• If C(X) is true, grant the request. If TS(T) >RT(X) set RT(X)

:=TS(T)
• If C(X) is false, delay T until either C(X) becomes true or the

transaction that wrote X aborts.
– If TS(T) < WT(X), the read isn’t realizable. Rollback T, aand

restart it with a larger timestamp.
• If the request is a WT(X):

– If TS(T) >= RT(X) and TS(T) >= WT(X), the write is physically
realizable and must be performed.

• Set new value for X
• Set WT(X) := TS(T)
• Set C(X) := false …

Yet More Rule
– If TS(T) >= RT(X) but TS(T) < WT(X), then the write

is realizable but there is already a later value of X store
in DB. If C(X) is true than can ignore write request. If
C(X) is false must delay T until other transaction
commits or aborts.

– If TS(T) < RT(X), operation is unrealizable so rollback.
• If the scheduler receives a commit request from T

then all of the elements written by X have C(X)
marked true. Delayed transactions are notified.

• Similarly, if T aborts transactions waiting on T are
notified.

