More Locking and Timestamp
Concurrency Control

CS157B
Chris Pollett
May 9, 2005.

Outline

e The Tree Protocol

* TimeStamps

The Tree Protocol

Standard locking protocols make it very hard to do concurrency when
doing locking with B-trees.

The problem is we would typically need to lock a whole path down
the tree in case the tree changes during an update. This prevents other
people from looking at the tree.

Instead, to get concurrency for B-trees, we don’t use two phase locking
and:

— a transaction’s first lock in the tree may be at any node of the tree
(typically lock first node that could be changed by your
transaction.)

— subsequent locks can be obtained iff the transaction has the parent
lock.

— nodes can be unlocked at any time
— a transaction may not relock a node it has released.

Other Concurrency Control
Techniques

* Besides locking there are two other common
methods for doing concurrency control:

— timestamping -- give each transaction and database
element a timestamp and compare these to determine 1f
the schedule 1s equivalent to the serial schedule given
by the transactions timestamps.

— validation -- also uses timestamps but will yield
schedules equivalent to the serial schedule give by
transaction commit times.

 We'll focus on the first technique.

Timestamps

We’ll write TS(T) to denote a number (timestamp)
assigned by the scheduler to transaction.

The number must be such that later transaction
receive a higher number.

Such numbers could be based on the system clock
or based on using a counter.

For each database element X, the scheduler also
maintains the following numbers: RT(X) --
timestamp of last T to read X, WT(X) --
timestamp of last T to write X, C(X) -- last
transaction to write X has commited or not.

Physically Unrealizable
Behaviors

* Suppose each operation in a schedule executed at
the time of the timestamp assigned by the
scheduler to DB items.

e Two problems could occur:

— Read too late: (abort T)
Wu(X) Rey(X)

>
Time

T starts U starts

R(X) W(X
— Write too late: (abort T) o \) i)

| | =

Time
T starts U starts

Problems with Dirty Data

The two problems of the last slide could be resolved by
comparing TS(T) and WT(X) or RT(X).

What is the C(X) used for? Consider the following
sequence:

WalX) Ry(X)
\ \ [

Time
T starts U starts T aborts

The value read by U 1s bogus since T aborted. This i1s
called a dirty read. We can check to make sure C(X) =
true. Scheduler maintains C(X) so works. Can delay U to
make a valid schedule.

Rules for Timestamp-Based
Scheduling

e The scheduler when given a read or write
request by T can either: grant it, abort T, or
delay T until some other transaction
commits or aborts.

e Next slide has the exact rules.

More rules

e If the request is a R(X):
— If TS(T) >WT(X), the read is physically realizable.
e If C(X) is true, grant the request. If TS(T) >RT(X) set RT(X)
:=TS(T)
e If C(X) is false, delay T until either C(X) becomes true or the
transaction that wrote X aborts.

— If TS(T) < WT(X), the read isn’t realizable. Rollback T, aand
restart it with a larger timestamp.

e If the request is a W (X):

— If TS(T) >= RT(X) and TS(T) >= WT(X), the write is physically
realizable and must be performed.

e Set new value for X
e Set WT'(X) :=TS(T)
e Set C(X) :=false ...

Yet More Rule

— If TS(T) >=RT(X) but TS(T) < WT(X), then the write
1s realizable but there 1s already a later value of X store
in DB. If C(X) 1s true than can 1ignore write request. If
C(X) 1s false must delay T until other transaction
commits or aborts.

— If TS(T) < RT(X), operation is unrealizable so rollback.

» If the scheduler receives a commit request from T
then all of the elements written by X have C(X)
marked true. Delayed transactions are notified.

e Similarly, if T aborts transactions waiting on T are
notified.

