
Block and Record Address /
Variable Length Records

CS157B
Chris Pollett
Feb 9, 2005.



Outline

• Client-Server Systems
• Logical and Structured Addresses
• Pointer Swizzling
• Returning Blocks to Disk
• Pinned Records and Blocks
• Records with Variable Length Fields
• Records with Repeating Fields
• Formats
• Records that do not fit in Blocks
• Blobs



Issues with Addresses
It is useful to know how record and block addresses work for

several reasons:
• We will work with addresses a lot when talk about access

structures like addresses.
• When a block is in the buffer the address can be taken to

be the location of its first byte in virtual memory.
• However, when the block is in secondary storage, its

address is according to the DBMS filesystem.
• There is also a trend to use intermediary ``object brokers’’

to facilitate independent creation of objects



Client-Server Systems

• A DBMS typically consists of a server that
provides data from secondary storage to one
or more client processes that manipulate the
data.

• The server’s data lives in a database
address space.



Client Server Systems (cont’d)
There are several ways to represent addresses in the database address

space:
• Physical Addresses - byte string that let one figure out where in the

secondary storage the data lives. Might consist of:
– The host to which storage is attached
– An identifier for the disk or device
– The cylinder number
– The track within the cylinder
– The block within the track
– The offset to the beginning of the record

• Logical Addresses - in this scheme each block or record has a
``logical address’’ which is a string of bytes of some fixed length.
Then a map table is used to look up where on the disk this corresponds
to.



Logical Addresses

Having logical addresses means one also
needs a  map table. Why would one want to
use logical addresses?

• Easier to move records/blocks around.
• This is especially useful when have access

structures and so might have several
pointers to the same block. It allows one to
update just one place.



Structured Addresses

• Often one uses a logical address for the
block and then have a physical address (a
byte offset) for the record. This is called a
structured address.

• The start of a block then usually has an
offset table that holds the offsets for the
record within the block:

Header

Rec4 Rec3 Rec2 Rec1

Offset table



Advantages of this Scheme

• We can move the record around within the
block by adjusting the offset.

• Good if have variable length records
• If have room can allow for records to move

between blocks by usinf a forwarding
address for the record

• Can have a tombstone indicator in the offset
to indicate if a record had been deleted



Pointer Swizzling

• Recall the address for a block can be either in the
database address space (slow) or in the memory
address space (faster).

• Want to use the latter address if possible.
• The techniques to do this generally go under the

name of pointer swizzling. A pointer being what
the DBMS uses to look up an address

• The rough idea is to have a table that contains the
addresses of all blocks in memory together with
their database address.



More on Pointer Swizzling

• When we move a block from secondary storage to
memory, pointers within the block are allowed to
be swizzled. that is a DB address is translated to a
memory address.

• A pointer consists of a bit to indicate whether the
address is a DB or memory one, followed by the
address itself.

DBaddr mem-addr
database address

memory address



Types of Swizzling

• Automatic Swizzling -- when read in a block,
update the translation table, and swizzle all
pointers to this block.

• Swizzling on Demand -- when we read in a
block, update the translation table, and only
swizzle a pointer when try to dereference it.

• No swizzling -- when read in a block, update the
translation table. If try to dereference a pointer
check if in table, if yes, go to where table says,
else read in block.

• Programmer Control of Swizzling -- sometimes
app programmer allowed to force a swizzle.



Returning Blocks to Disk

• When a block is moved back to disk all the
pointers that reference into it must be
unswizzled.

• The translation table can now be used in
reverse to put back into the pointer the
database address given the memory address.

• To keep things fast translation table is often
a hash table.



Pinned Records and Blocks

• A block is said to be pinned if it cannot at the
moment be safely returned to disk.

• A bit in the header of the block is often used to say
whether the block is currently pinned or not.

• With swizzling might need to pin blocks because a
block might have within it a reference to another
block. We need to pin blocks which are referred to
by either swizzled blocks so these references don’t
get messed up. What needs to be pinned can be
determined using ref counts or a linked list.

• Another reason to pin blocks that will be discussed
later is related to the DBMS recover system.



Records with Variable Length
Fields

If a record has one or more fields of variable
length, then the record must contain enough
info to find each of its fields. To do this we
can place in its header:

• The length of the record
• Pointers to each of the fields.



Records with Repeating Fields

• Suppose have a record with a lot of DATE’s
in it.

• Can group multiple occurences together
then in the header store a pointer to the first.



Variable Format Records

• Sometimes have records whose format changes
from record to record.

• For example, XML data.
• Can store these as a  sequence of tagged fields.
• Each field consists of:

– attribute name
– the type of the field
– the length of the field
– the value of the field



Records that do not fit in Blocks
• Sometimes have records with many fields or which contain things such

as video or audio clips which are large.  So the record is to big to fit
into one block.

• In which case, we can use spanned records.
• These kinds of records consist of a sequence of record fragments

which do fit into a block.
• Each record or fragment then has a header which says:

– If its is spanned or not.
– If it is the first or last fragment in a record
– If it is a middle fragment where the next and previous fragments

are.



Blobs

• A record which has a field that has a value that
forces spanning (such as a JPG, MPEG, etc) is
called a blob (binary large object).

• Blobs often need to be retrieved quickly so want
to store in sequential blocks or stripe across
different disks.

• Blobs also often need special index structures to
be able to do things like retrieve say the 40 minute
of a movie.


