
Representing Data and Records

CS157B
Chris Pollett
Feb 7, 2005.

Outline

• Representing Relational Data
• Representing Objects
• Representing XML
• Fixed Length Records
• Record Headers
• Packing

Representing Data in Secondary
Storage

How do we store relations and objects to Disk?
• Attributes are stored as fixed or variable length

sequences of bytes called ``fields’’
• Fields in turn are organized into ``records’’ which

correspond to tuples or objects.
• Records need to be stored into disk blocks
• Finally, all the blocks used to store a relation or

object are stored as a file. This might have
additional structures associated with it such as
indices.

Example

Consider:
CREATE TABLE MovieStar(

name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(1),
birthdate DATE

);
• Need to explain: how to convert CHAR,

VARCHAR, etc to fields; how to put the whole
tuple into a record and then blocks, files, etc.

• Need to explain: how to handle different sized
records; what happens when fields change in size

OO Extensions

An object is similar to a tuple. Its field act like
attributes. There are two important extensions,
however:

1. Objects can have methods
2. Objects may have an object identifier (OID), which is

an address that refers uniquely to that object.
Moreover, objects can have relationships to other
objects which are represented as pointers.

Methods are usually stored with the schema. To
access these an object record needs to say what
class it belongs to.

XML Extensions

• Recall XML is like HTML but can define own
tags. Example: <location><street>Rue des
Examples</street><city>Grande
Ville</city><state>CA</state></location>

• The allowed tags for a document specified in a
DTD or in an XML Schema.

• Documents have a tree-like structure. When stored
can separate structure from data in separate blocks
or have all together. The tree-like structure can
also be compressed or not. There are also issues
about labelling nodes for easy update.

Representing Data Elements I

We now discuss how to represent various
kinds of data elements:

• Fixed length strings - i.e., CHAR(n) fields
for some fixed n. To store these we just use
an array of size n. If a value has fewer than
n bytes we use a special pad character.
For example, if we have type CHAR(5), a

possible value `cat’ might be stored as: cat**

Representing Data Elements II

• Variable-Length Character Strings - Suppose
we had an attribute of type VARCHAR(n). Here n
must be less than 255. We could represent this in
several different ways:
– Length plus content. Allocate n+1 bytes. Use the first

byte for the length and the remaining bytes for the
content. If left over bytes ignore.

– Null-terminated string. Allocate n+1 bytes. Write
string followed by a \0. Anything after the \0 is ignored.

Representing Data Elements III

• Date and Time - These are usually stored as
a fixed length character string following
some format. For example, might use
format YYYY-MM-DD and have a value
like ‘2005-02-07’. Similarly, a time might
have a format like HH:MM:SS.FF (SQL2)
and have a value like ‘23:05:02.35’. The .35
is the fraction of a second.

Representing Data Elements IV

• Bits - The SQL2 type BIT(n) is used when one
wants sequences of n bits. To store this we pack
the bits into [n/8] (round up) consecutive bytes.
Unused bits in last byte are ignored. For example,
suppose we want to store a BIT(6) value 001100.
We might represent this with 00110000. Note
sometimes store a single bit as 00000000 or
11111111.

• Enumerated Types - {RED, GREEN, YELLOW}.
These can be represented using numbers 0, 1, 2
and store in an integer.

Fixed-Length Records

• Let’s look at how a MovieStar tuple from our
earlier CREATE TABLE would be stored:

• Note this may be inefficient to process by 32 or 64
bit processors. Sometimes reorganize records so
that each field divisible by 4 or 8 to help the
processor.

name address birthdate

0 30 286 287 297

gender

Record Headers

• Sometimes need to store addition info
besides the value of each field. This data
could be things like:

1. The record schema or a pointer to it.
2. The length of the record
3. Timestamp indicating when the data was last

modified or read.

Schema Info

• When a CREATE TABLE is done the database
stores:
– the attributes of the relation
– their types
– the order in which the attributes appear in the tuple
– any constraints on the attributes.

• This info is usually store in the catalog/dictionary
of the database. Each record then for a given
relation keeps a pointer to where in the dictionary
the information is stored.

Example with Header and
Optimized for 32 bit processing

name address birthdate

12 44 300 304 316

gender

 0

schema ref

length
timestamp

Header

Packing Fixed-Length Records
into Blocks

• A block might look like:

• The header above is called a block header and
might store: links to other blocks, role played by
this block in network of blocks, info about which
relation tuples in this block belong to, a directory
giving offsets to records in this block, a block ID,
and a timestamp for when this block was last
read/modified.

 Rec n … Rec 1 header

