
Joins, Completing Plans, System
Failures

CS157B
Chris Pollett
Apr.6, 2005.

Outline

• Dynamic Programming for Join Order
• Completing the Physical-Query-Plan

Selection
• Types System Failures

Dynamic Programming for Join
Order

• Suppose we want to compute (R1 join R2 join … join Rn)
• We can build a table that contains:

– Each table Ri,as well as its size and number of values
for the join attribute

– For each subset of Ri_1… Ri _j of the tables of size j an
estimate of the total cost of performing the join of this
subset.

• The second kinds of entries are built from the best joins of
subsets j-1 tables by going through these entries and
joining one more table. Then check if this j-subset is
already in the table. If it is compare its currently listed cost
with the new way of joining. If the new way is smaller
than replace.

Completing the Physical-Query

• To finish up creating a query plan, we need
to consider the following issues:
– How to select algorithms to implement the

operations of the query plan not done as part of
some earlier step as in the dynamic
programming for join order

– Decide whether to materialize intermediate
results or pipeline them

– Notations for physical plan operators

Choosing a selection method
• What way should we use to evaluate σC(R)?
• Assuming there are no multidimensional attributes

we can, if possible:
– Choose an attribute in C, with an index, and which is

compared to a constant
– After using the index to find those things satisfying this

part of C, apply the rest of the condition to complete the
selection.

• If no such attribute exists need to do a table-scan
• In comparing costs want to choose most selective

single indexed attribute

 Choosing a Join Method

• Request a nested loop join, if one can hope that
the outer table can fit totally in memory (so maybe
don’t need to execute outer loop more than once).

• Use a sort-join when one or both tables is already
sorted on the join attribute. Or, if there are two or
more tables joined on the same attribute (as then
sort step can be amortized).

• If there is an index on the join attribute and the
results are expected to be small use an index join

• Fall back to nested loop join if none of the above
apply.

Pipelining Versus Materialization

• Naïve way to evaluate queries is to write
intermediate results back out to disk. This is
called materialization.

• Pipelining is a technique whereby we pass
the output of the subquery computed so far
to the next stage in the query evaluation. It
is typically implemented using iterators.

Notations for Physical Query
Plans

• Each node in logical query plan needs to be replaced by a physical operator.
• Operators for leave:

– TableScan(R)
– SortScan(R,L) - sort according to list L
– IndexScan(R,C) - look up index according to condition C
– IndexScan(R,A) - entire relation is retrieved via lookup on attribute A.

• Operators for Selection:
– Filter(C) -- filter child results according to C.
– Some select might be an IndexScan followed by a Filter

• Operator for Sorting:
– Sort(L) -- may occur anywhere interior to tree.

• Other operators
– Join(type, # of buffers) - for example type might be two pass hash-join,

and number of buffers might be 100

Ordering of Physical Operations

• Physical query plan is typically represented as a
tree. Data must flow up the tree.

• Since interiors node may not be ancestors or
descendents of each other in a bushy tree, we need
to figure out an order to evaluate subtrees of the
same height.

• To do this we evaluate subtrees from the bottom
up and evaluate subtrees of the same height from
left to right. (Preorder)

• Execute all nodes of each subtree using a network
of iterators.

System Failures

• Would like our DBMS to:
– protect data in the case of system failure.
– keep the database in a consistent state even if

multiple operations are being carried out at the
same time.

Possible Kind of Errors

• Errorneous Data Entry -- can try to prevent by
type checking

• Media Failures -can try to prevent by using a
RAID system or archiving data to tape

• Catastrophic failures -- fires. Can try to distribute
the database.

• System failures -- power loss or software errors
that cause a particular transaction to be lost. --
What we are going to focus for the next several
lectures

