
Locking

CS157B
Chris Pollett
May 2, 2005.

Outline

• Lock Types
• Lock Scheduler Architecture

Lock Types

• Last day we talked about shared and exclusive
locks.

• Recall if Ti has performed xli(X) then no xlj(X) or
slj(X) can occur in the schedule without an
intervening ui(X). Further, if sli(X) appears in the
schedule, then there can be no xlj(X) where j and i
are different without an intervening ui(X).

• The two-phase condition for such locks is that no
sli(X) or xli(X) for a transaction Ti can be
preceded by an action ui(X).

Compatibility Matrix

• The information about what is legal to do
with shared and exclusive locks can be
listed in a matrix:

Y N

NN
Lock held S
in mode X

Lock Requested
S X

Upgrading Locks
• If a transaction T already has a shared lock on X, it can

request an exclusive lock.
• If no one else has a lock on X, then the request will be

granted.
• ui(X) releases all locks held on X. That is, if one has both a

shared and an exclusive lock on X.
• For example, the following schedule is possible: sl_1(A),

r1(A), sl2(A), r2(A), sl2(B), r2(B), sl1(B), r1(B), xl1(B)--
denied, u2(A), u2(B), xl1(B), w1(B), u1(A), u1(B).

• The ability to upgrade lock can cause deadlocks. For
example, sl1(A), sl2(A), xl1(A) --denied, xl2(A) -- denied .

Update Locks

• One way to avoid deadlocks is to introduce a new
type of lock - the update lock.

• We now no longer let a transaction get an
exclusive lock if they have a shared lock. One can
upgrade to an update lock, however.

• An update lock can be used to read and can be
upgraded to an exclusive lock, but only one
transaction at a time is allowed to hold an update
lock.

Lock held S

in mode X

 U

Update Lock Compatibility
Matrix

• Here’s what the matrix looks like:

Y N

NN

Lock Requested
S X U

N N N

N

Y

Increment Locks
• Many transactions operate on the database only by

incrementing or decrementing a value.
• For example, the number of seats on an airplane after one

ticket purchased goes down by one.
• Another example, is money transfers of a fixed dollar

amount (say $40).
• These kinds of operations commute with each other:

INC(X,40), INC(X,2) = INC(X,2), INC(X,40).
• Can introduce a new kind of operation: inc(X,a) --

increment X by a -- and a new lock called an increment
lock il(X).

Compatibility Matrix for
Increment Locks

• Here’s the associate matrix which
guarantees serializable database schedules

Lock held S

in mode X

 I

Y N

NN

Lock Requested
S X I

N N Y

N

N

Lock Scheduler Architecture

We next discuss the design of a simple lock
scheduler. The design principles we will follow
are:

1. Transactions themselves do not request locks. It is the
job of the scheduler to insert lock actions into the
stream of reads, writes, etc.

2. Transactions do not release locks. Rather, the
scheduler releases locks when the transaction
manager tells it that the transaction will commit or
abort.

A Two Part Scheduler
• We will split our scheduler into two parts:

1. The first part inserts locks into the stream of operations from the
transaction. Its main job is to determine the lock type.

2. The second part then checks the modified stream. If the
operation is a DB operation, then it executes it. If the operation
was a lock then it checks if the lock can be granted. If yes, the
lock table is modified. If no, then a request is noted in the lock
table, and the transaction must wait on all further actions until
the lock request is granted.

• When a transaction commits or aborts all of its locks are released.
• It is also the job of the second part of the scheduler to figure out

which of the waiting transactions should get a given lock.

