'LEMENTS

inter

Hinter

k described in

well as block
ses for a single
1d we need for

of the physical

> stored records

ppose that block
ress for the host,
on an individual
stes would block

3.3. REPRESENTING BLOCK AND RECORD ADDRESSES 107

not part of the database, and therefore do not have their own logical addresses
in the map table. Assuming that physical addresses use the minimum possible
number of bytes for physical addresses (as calculated in Exercise 3.3.1), and
logical addresses likewise use the minimum possible number of bytes for logical

addresses, how many blocks of 4096 bytes does the map table for the disk
occupy?

*! Exercise 3.3.7: Suppose that we have 4096-byte blocks in which we store

records of 100 bytes. The block header consists of an offset table, as in Fig. 3.8,
using 2-byte pointers to records within the block. On an average day, two
records per block are inscrted, and one record is deleted. A deleted record must
have its pointer replaced by a “tombstone,” because there may be dangling
pointers to it. For specificity, assume the deletion on any day always occurs
before the insertions. If the block is initially empty, after how many days will
there be no room to insert any more records?

! Exercise 3.3.8: Repeat FExercise 3.3.7 on the assumption that each day there
is one deletion and 1.1 insertions on the average.

Exercise 3.3.9: Repecat Exercise 3.3.7 on the assumption that instead of delet-
ing records, they are moved to another block and must be given an 8-byte
forwarding address in their offset-table entry. Assure either:

!a) All offset-table entries are given the maximum number of bytes needed in
an entry.

'h) Offset-table entries are allowed to vary in length in such a way that all
entries can be found and interpreted properly.

* Exercise 3.3.10: Suppose that if we swizzle all pointers automatically, we
can perform the swizzling in half the time it would take to swizzle each one
separately. If the probability that a pointer in main memory will be followed at

least once is p, for what values of p is it more efficient to swizzle automatically
than on demand?

! Exercise 3.3.11: Generalize Exercise 3.3.10 to include the possibility that we
never swizzle pointers. Suppose that the important actions take the following

TA ELEMENTS

ce. If we use an
> block, then we
sed region in the

-space list in the
available regions
he block header
It is sufficient to
»gions themselves

in overflow block.
ck on its overflow
-he blocks of that
ely move records
tire chain can be

leletion, which we
ing blocks. There
int these pointers
1 the place of the

3.5. RECORD MODIFICATIONS 119

If we need to replace records by tombstones, it would be wise to have at the
very beginning of the record header a bit that serves as a tombstone; i.e., it is
0 if the record is not deleted, while 1 means that the record has been deleted.
Then, only this bit must remain where the record used to begin, and subsequent
bytes can be reused for another record, as suggested by Fig. 3.19.4 When we
follow a pointer to the deleted record, the first thing we see is the “tombstone”

bit telling us that the record was deleted. We then know not to look at the
following bytes.

) 0

=)

record 1 record 2

Figure 3.19: Record 1 can be replaced, but the tombstone remains; record 2
has no tombstone and can be seen by following a pointer to it

3.5.3 Update

When a fixed-length record is updated, there is no effect on the storage system,
because we know it can occupy exactly the same space it did before the update.
However, when a variable-length record is updated, we have all the problems
associated with both insertion and deletion, except that it is never necessary to
create a tombstone for the old version of the record.

If the updated record is longer than the old version, then we may need
to create more space on its block. This process may involve sliding records
or even the creation of an overflow block. If variable-length portions of the
record are stored on another block, as in Fig. 3.14, then we may need to move

elements around that block or create a new block for storing variable-length
£.11.. S~ 4 P - a

140 CHAPTER 4. INDEX STRUCTURES

10 10

40 — 15 _j\

50 —

70 — 40 []
A,

90 —

110 —\\‘ 50 |]

130 —\\‘ 60

150 —\\

70 _j

80

20 |]

Figure 4.14: Insertion into a file with a sparse index, using overflow blocks

of data block 1, not a block of the sequential file on its own. U

4.1.7 Exercises for Section 4.1

* PExercise 4.1.1: Suppose blocks hold either three records, or ten key-pointer
pairs. As a function of n, the number of records, how many blocks do we need
to hold a data file and:

a) A dense index?
b) A sparse index?

Exercise 4.1.2: Repeat Exercise 4.1.1 if blocks can hold up to 30 records or
200 key-pointer pairs, but neither data- nor index-blocks are allowed to be more
than 80% full.

! Exercise 4.1.3: Repeat Exercise 4.1.1 if we use as many levels of index as is
appropriate, until the final level of index has only one block.

4.1. INDE

*1! Exercise 4
pairs, as in
1/3 of all se
two records
index, but
of the recos
the averag:
search key
key K is k

! Exercise -

a) A de
with

b) Asp

c) A sp
Fig.

! Exercise
a relation
represent
What are

Exercise
with keys
29. Assur

* a) Adc

b) Slid
end

c¢) Inse
sar;

*! Exercise
by creati
currently
records d
overflow
given ke;
by the ir
record, v

. B-TREES 157

i s T

(z” \‘xr 13

7 23| 31|43

/1] (/11

113157 |10 13| 17| 19| | 23] 29 31|37| 41| | 43|47

-
-

ke Wk

Figure 4.23: A B+ tree

via the first pointer from those reachable via the second. That is, keys up to
. 19 could be found in the first subtree of the root, and keys 13 and up are in the
second subtree.

If we look at the first child of the root, with key 7, we again find two pointers,
one to keys less than 7 and the other to keys 7 and above. Note that the second
pointer in this node gets us only to keys 7 and 11, not to all keys > 7, such as
13 (although we could reach the larger keys by following the next-block pointers
in the leaves).

Finally, the second child of the root has all four pointer slots in use. The
first gets us to some of the keys less than 23, namely 13, 17, and 19. The second
pointer gets us to all keys K such that 23 < K < 31; the third pointer lets us
reach all keys K such that 31 < K < 43, and the fourth pointer gets us to some
of the keys > 43 (in this case, to all of them). O

4.3.2 Applications of B-trees

The B-tree is a powerful tool for building indexes. The sequence of pointers to
records at the leaves can play the role of any of the pointer sequences coming
out of an index file that we learned about in Sections 4.1 or 4.2. Here are some

examples:

1. The search key of the B-tree is the primary key for the data file, and the
index is dense. That is, there is one key-pointer pair in a leaf for every
record of the data file. The data file may or may not be sorted by primary
key.

R

i s

B-TREES 169

ercise 4.3.4: What are the minimum numbers of keys and pointers in B-
i) interior nodes and (44) leaves, when:

a) n=10; i.e.,, a block holds 10 keys and 11 pointers.
b) n=11; i.e., a block holds 11 keys and 12 pointers.

Pxercise 4.3.5: Execute the following operations on Fig. 4.23. Describe the
‘changes for operations that modify the tree.

a) Lookup the record with key 41.
b) Lookup the record with key 40.
¢) Lookup all records in the range 20 to 30.

d) Lookup all records with keys less than 30.

e) Lookup all records with keys greater than 30.
f) Insert a record with key 1.

g) Insert records with keys 14 through 16.

h) Delete the record with key 23.

i) Delete all the records with keys 23 and higher.

! Exercise 4.3.6: We mentioned that the leaf of Fig. 4.21 and the interior node
of Fig. 4.22 could never appear in the same B-tree. Explain why.

Exercise 4.3.7: When duplicate keys are allowed in a B-tree, there are some
necessary modifications to the algorithms for lookup, insertion, and deletion
that we described in this section. Give the changes for:

*a) Lookup.
b) Insertion.

¢) Deletion.

! Exercise 4.3.8: In Example 4.26 we suggested that it would be possible to
borrow keys from a nonsibling to the right (or left) if we used a more com-
plicated algorithm for maintaining keys at interior nodes. Describe a suitable
algorithm that rebalances by borrowing from adjacent nodes at a level, regard-
less of whether they are siblings of the node that has too many or too few
key-pointer pairs.

Exercise 4.3.9: If we use the 3-key, 4-pointer nodes of our examples in this
section, how many different B-trees are there when the data file has:

' STRUCTURES

or three keys and
50 that when we
“an interior node,
 pointers go with
inters to records
ys 4, 5, 6, and so
ur levels?

e. The leaf nodes
1at makes up the
hat will minimize
ristics:

approximated by
e seek and latency
the transfer time.
-, and it will take

o find the correct
ory is a+blog, m

| the disk seek and

nust be examined

ven record?

1s) decreases? For
optimum m value

e that are useful as
as a main-memory
that takes a search

44. HASH TABLES 171

key (which we may call the hash key) as an argument and computes from it an
integer in the range 0 to B — 1, where B is the number of buckets. A bucket
array, which is an array indexed from 0 to B — 1, holds the headers of B linked
lists, one for each bucket of the array. If a record has search key K, then we
store the record by linking it to the bucket list for the bucket numbered h(K),

where h is the hash function.

- 4.41 Secondary-Storage Hash Tables

A hash table that holds a very large aumber of records, so many that they must
be kept mainly in secondary storage, differs from the main-memory version in

‘small but important ways. First, the bucket array consists of blocks, rather than

pointers to the headers of lists. Records that are hashed by the hash function h
to a certain bucket are put in the block for that bucket. If a bucket overflows,
meaning that it cannot hold all the records that belong in that bucket, then a
chain of overflow blocks can be added to the bucket to hold more records.

We shall assume that the location of the first block for any bucket i can be
found given i. For example, there might be a main-memory array of pointers
to blocks, indexed by the bucket number. Another possibility is to put the first
block for each bucket in fixed, consecutive disk locations, so we can compute
the location of bucket i from the integer .

Example 4.28: Figure 4.30 shows a hash table. To keep our illustrations
manageable, we assume that a block can hold only two records, and that B = 4;
i.e., the hash function h returns values from 0 to 3. We show certain records
populating the hash table. Keys are letters a through f in Fig. 4.30. We assume
that h(d) = 0, h(c) = h(e) =1, h(b) = 2, and h(a) = h(f) = 3. Thus, the six
records are distributed into blocks as shown.]

d ||
0 __________

c u
O

b u
2 __________

a ||
3 __________

f

Figure 4.30: A hash table

Note that we show each block in Fig. 4.30 with a “nub” at the right end.

o

182 CHAPTER 4. INDEX STRUCTURES

i=2 0000 __|
00 f-—-==—----
n=4
r=6 0001 _|
01 p-===—-=-—---
0101
1010 J
10 f-——m=—=---
0111 _I
11 f=-======--

Figure 4.39: Adding a fourth bucket

must look in the bucket whose number is 11. Since that bucket number as a
binary integer is m = 3, and m > n, the bucket 11 does not exist. We redirect
to bucket 01 by changing the leading 1 to 0. However, bucket 01 has no record

whose key has hash value 1011, and therefore surely our desired record is not
in the hash table. 0O

4.4.9 Exercises for Section 4.4

Exercise 4.4.1: Show what happens to the buckets in Fig. 4.30 if the following
insertions and deletions occur:

1. Records g through j are inserted into buckets 0 through 3, respectively.

71. Records a and b are deleted.

194. Records k through n are inserted into buckets 0 through 3, respectively.

iv. Records ¢ and d are deleted.

Exercise 4.4.2: We did not discuss how deletions can be carried out in a linear
or extensible hash table. The mechanics of locating the record(s) to be deleted
should be obvious. What method would you suggest for executing the deletion?
In particular, what are the advantages and disadvantages of restructuring the
table if its smaller size after deletion allows for compression of certain blocks?

Exercise 4.4.3: The material of this section assumes that search keys are
unique. However, only small modifications are needed to allow the techniques
to work for search keys with duplicates. Describe the necessary changes to
insertion, deletion, and lookup algorithms, and suggest the major problems
that arise when there are duplicates in:

* a) A simple hash table.

44. H

b) A
c) A

! Exerc
possibl
h(i) =

*a))
b) I
c)

Exerc
the pr
ie., al
in the

Exera
exam]
that |
exam
to 0 ¢

*)

b)

* Exe
there
ing 1
Sug;
outs

1! Exe
thre
nui
use

10

som

