
SJSU Students
CS157B-01
Hw 3 Experiments
Main sections: Summary, Purpose, Hypothesis, Procedure before Experiments, Experiments,
Overall Results, and Overall Conclusion.

Summary
Here is the summary section of the overall paper because the paper is too long and might be
difficult to navigate for grading purposes. We are using MySQL.
This summary section contains the following sections:

1. Results (includes the conclusion, overall plan check on all the joins, and table of all
experiments’ runtimes)

2. How to create the input tables
3. Transcripts of JOIN Query and EXPLAIN operation for each join (includes join

algorithm determination and some write-up)
4. Timing Tests for each Join w/o Index
5. Using Indices Effect

To find the beginning of the more detailed or full report version, please look up “Purpose”.

Results:
This is extracted from the “Overall Conclusion” and “Overall Results” sections. (Warning: this
part is long)
Highlights:

● Without the indexes, all joins have almost the same runtime.
● Index on B-value alone makes the runtime much slower for 2 reasons: first, having an

index eliminates the use of hash-join (building the hash table in memory if fit). Secondly,
the size of the index entry in this case is as big as the size of the data record. Reading
from the index table and then following the record pointer to load the data from the
original table for C-value would add extra overhead.

● Out of all the indexes, the composite index manages to improve the query time because
both B and C in the query conditions can be obtained directly from the index table.

My hypothesis is partially right. (Short version of hypothesis: I thought the runtime will be about
the same. I also thought indexing would overall improve the runtime of the queries when used.
For more detail, please look up the “Hypothesis” that is bolded and underlined)

Overall, based on the experiments, the runtime among the three joins is almost the same. The
bushy tree is a little slower than the left-deep join tree and right-deep join tree, but not far off.

However, indexing does not always mean improving query time. It depends on the condition
of the query as well as the attribute(s) being used in the index. For instance, indexing on B-value
only will reduce the query performance compared to the query performance without any index.
Meanwhile composite index on B and C helps improve the query performance.

Overall Plan Check:
Without indexes, the plan for each join query is the same. They all use where for one relation and
then use where and the hash-join algorithm for the rest.

With indexes, the plan for each join query is also the same. The plan often tends to use hash-join
for relations without indexes and index-based join for those with indexes.

Note: There is a possibility that the reason no nested loop was found throughout the experiments
is that the computer’s memory (16 GB 2133 MHz LPDDR3 Memory) is large enough to build a
hash for the entire table.

Experimentation Result Tables:
Below are tables representing the average runtime (in seconds) for the joins based on the
experiments.

Without Indexes:

Type of Join Average w/o Index Standard deviation w/o
Indexes

Left-deep Join 14.64 0.214009

Bushy 14.67 0.515636

Right-deep Join 14.562 0.223553

With Indexes Applied on all 5 Relations:

Indexing on…
→

B-value only C-value only B-value then C-value Composite Index
(B,C)

Type of Join AVG SD AVG SD AVG SD AVG SD

Left-deep 82.878 0.690895 14.508 0.244336 45.714 1.945133 7.596 0.287305

Bushy 86.272 4.487273 14.918 0.505149 45.706 1.796804 8.04 0.560393

Right-deep 91.666 4.880986 15.718 0.455956 46.146 0.528870 7.814 0.292

With Indexes Applied on 2 of 5 Relations:

Indexing on…
→

B-value only C-value only B-value then C-value Composite Index
(B,C)

Type of Join AVG SD AVG SD AVG SD AVG SD

Left-deep 15.794 0.645804 13.882 0.692168 44.58 3.279134 8.424 0.863101

Bushy 15.596 0.547087 13.684 0.860153 47.186 1.701686 8.238 0.777725

Right-deep 15.3 0.283267 14.376 1.130568 47.13 1.378826 7.742 0.256312

How to create the input tables:
For a clear and detailed step-by-step procedure with pictures, please look (or control/command f)
for the “Procedure before Experiments” section.

Generate 5 data files:
java DataGenerator 0 1000 5 10 R1data.txt
java DataGenerator 1000 1000 5 10 R2data.txt
java DataGenerator 2000 1000 5 10 R3data.txt
java DataGenerator 3000 1000 10 5 R4data.txt
java DataGenerator 4000 1000 10 5 R5data.txt

Create the 5 tables in MySQL database: R1(A,B,C), R2(D,B,C), R3(E,B,C), R4(F,B,C),
R5(G,B,C) Queries:
CREATE TABLE R1 (A INTEGER, B INTEGER, C INTEGER);
CREATE TABLE R2 (D INTEGER, B INTEGER, C INTEGER);
CREATE TABLE R3 (E INTEGER, B INTEGER, C INTEGER);
CREATE TABLE R4 (F INTEGER, B INTEGER, C INTEGER);
CREATE TABLE R5 (G INTEGER, B INTEGER, C INTEGER);

Bulk Load Queries:
SHOW GLOBAL VARIABLES LIKE ‘local_infile’;
SET GLOBAL local_infile=1;
//exit mysql and enter again with:
mysql --local_infile=1 -u <your username here> -p <your password here>

LOAD DATA LOCAL INFILE '/Users/Chicken/CS157b/Hw3/R1data.txt' INTO TABLE R1
FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n';

LOAD DATA LOCAL INFILE '/Users/Chicken/CS157b/Hw3/R2data.txt' INTO TABLE R2
FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n';
LOAD DATA LOCAL INFILE '/Users/Chicken/CS157b/Hw3/R3data.txt' INTO TABLE R3
FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n';
LOAD DATA LOCAL INFILE '/Users/Chicken/CS157b/Hw3/R4data.txt' INTO TABLE R4
FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n';
LOAD DATA LOCAL INFILE '/Users/Chicken/CS157b/Hw3/R5data.txt' INTO TABLE R5
FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n';

Transcripts of JOIN Query and EXPLAIN operation for each join:
● Left-deep:

SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS R3B, R3.C
AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM ((((R1
JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND R2.C =
R3.C) JOIN R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B AND
R4.C = R5.C AND R5.B = 1);

EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
((((R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND
R2.C = R3.C) JOIN R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B
AND R4.C = R5.C AND R5.B = 1);

// Determination of algorithm:
From the output of EXPLAIN, we can see in the “type” column that the DBMS marks it
“ALL.” We can also see in the “Extra” column that the DBMS just uses where in R1 and
then uses where and hash-join algorithm for the rest.
The “ALL” means that MySQL scans the whole table using no indexes to access/join the
table, so the DBMS access and scans through R1 filtering with the where condition. It
then accesses R2 with the join buffer and so forth.

● Bushy Tree:
SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS R3B, R3.C
AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM (R1 JOIN
R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B

AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B =
R3.B AND R2.C = R3.C;

EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON
R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C)
ON R2.B = R3.B AND R2.C = R3.C;

// Determination of algorithm:
From the output of EXPLAIN, we can see in the “type” column that the DBMS marks it
“ALL.” We can also see in the “Extra” column that the DBMS just uses where in R1 and
then uses where and hash-join algorithm for the rest.
The “ALL” means that MySQL scans the whole table using no indexes to access/join the
table, so the DBMS access and scans through R1 filtering with the where condition. It
then accesses R2 with the join buffer and so forth.

This is the same as the left-deep join tree without indexes.

● Right-deep:
SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS R3B, R3.C
AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM (R1 JOIN
(R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND R5.B = 1)
ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C) ON R1.B =
R2.B AND R1.C = R2.C);

EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN (R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND
R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C)

ON R1.B = R2.B AND R1.C = R2.C);

//Determination of algorithm:
From the output of EXPLAIN, we can see in the “type” column that the DBMS marks it
“ALL.” We can also see in the “Extra” column that the DBMS just uses where in R1 and
then uses where and hash-join algorithm for the rest.
The “ALL” means that MySQL scans the whole table using no indexes to access/join the
table, so the DBMS access and scans through R1 filtering with the where condition. It
then accesses R2 with the join buffer and so forth.
This is the same plan as the left-deep join tree and the bushy tree join without any index.

Timing Tests for each Join w/o Index:
(For a more detailed look, please look up “Execute Query 5 times. Compute the Average and
Standard Deviation Result:”. There should be 4 search results including this section. The second
search result is for Left-deep. The third search result is Bushy tree and the fourth search result is
Right-deep.)

We are going to execute each join query 5 times. Then, we will compute the average and
standard deviation for each.
The 10 columns shown after the execution are as follows: R1B, R1C, R2B, R2C, R3B, R3C,
R4B, R4C, R5B, R5C.

● Left-deep
1. Execution 1 Time: 14.30 seconds

2. Execution 2 Time: 14.56 seconds

3. Execution 3 Time: 14.63 seconds

4. Execution 4 Time: 14.77 seconds

5. Execution 5 Time: 14.94 seconds

At this point, we have the 5 times from the 5 executions of the join query. We will
compute the average and standard deviation.
Average = (14.30 + 14.56 + 14.63 + 14.77 + 14.94) / 5 = 14.64 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 14.30 − 14.64 | |2 + 14.56 − 14.64 | |2 + 14.63 − 14.64 | |2 + 14.77 − 14.64 | |2 + 14.94 − 14.64 | |2

5

= = = 0.2140090.1156 + 0.0064 + 0.0001 + 0.0169 + 0.09
5

0.229
5

● Bushy tree
1. Execution Time 1: 15.01 seconds

2. Execution Time 2: 14.44 seconds

3. Execution Time 3: 15.51 seconds

4. Execution Time 4: 14.15 seconds

5. Execution Time 5: 14.24 seconds

At this point, we have the 5 times from the 5 executions of the join query. We will
compute the average and standard deviation.
Average = (15.01 + 14.44 + 15.51 + 14.15 + 14.24) / 5= 14.67 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 15.01 − 14.67 | |2 + 14.44 − 14.67 | |2 + 15.51 − 14.67 | |2 + 14.15 − 14.67 | |2 + 14.24 − 14.67 | |2

5

= = = 0.5156360.1156 + 0.0529 + 0.7056 + 0.2704 + 0.1849
5

1.3294
5

● Right-deep
1. Execution 1 Time: 14.39 seconds

2. Execution 2 Time: 14.29 seconds

3. Execution 3 Time: 14.73 seconds

4. Execution 4 Time: 14.90 seconds

5. Execution 5 Time: 14.50 seconds

At this point, we have the 5 times from the 5 executions of the join query. We will
compute the average and standard deviation.
Average = (14.39 + 14.29 + 14.73 + 14.90 + 14.50) / 5 = 14.562 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

=

 14.39 − 14.562 | |2 + 14.29 − 14.562 | |2 + 14.73 − 14.562 | |2 + 14.90 − 14.562 | |2 + 14.50 − 14.562 | |2

5

= = = 0.2235530.029584 + 0.073984 + 0.028224 + 0.114244 + 0.003844
5

1.05908
5

Using Indices Effect:
We will test whether using indexes will improve our timing in these join trees.

We will create indexes for attributes that are part of “JOIN ON” conditions. In this case, that
will be the attributes B and C.

There are 4 index experiments to try on the 5 relations:
1. Create index on B-value only
2. Create index on C-value only
3. Create index on B. Then create index on C
4. Create a composite index (B, C)

To view the executions and calculations done for each case for each join query, please look up
“Effect of Indices” where the 2nd search result is for Left-deep, 3rd search result is for Bushy
tree, and 4th search result is for Right-deep.

The effect results can be seen in the tables at the top of the paper under “Experimentation Result
Tables.”

Overall, adding indexes to relations does not always help the query run faster. Adding the
correct indexes (e.g. composite index of B and C) would help the query while indexes on B or C
alone may have a negative impact on query time. As seen in the B-value index-only section, that
attribute only made time slower. Having an index sometimes eliminates the use of hash-join
which may slow things down. In this case, table-scan with hash-join would perform better.

Without an index, DBMS just uses hash-join.

===
===

Purpose
To determine if any join operation (left-tree, right-tree, and bushy tree) is faster than the other
and if putting indexes improves the timing.

Hypothesis
Among the left-deep join tree, right-deep join tree, and bushy join tree, I think they are all about
the same speed. If there were any differences, they should be minimal. Indexing should greatly
improve timing.

We will do some experiments with 5 tables and the three join operations.

The laptop used for this has 16 GB 2133 MHz LPDDR3 Memory.

Procedure before Experiments
In order to do the experiments, we must have 5 tables (R1, R2, R3, R4, R5) to use. Each table
will need generated data. We will be using MySQL to create the tables.

1. Use DataGenerator.java to generate 5 text files of 3 columns of data.

Query used:
java DataGenerator 0 1000 5 10 R1data.txt
java DataGenerator 1000 1000 5 10 R2data.txt
java DataGenerator 2000 1000 5 10 R3data.txt
java DataGenerator 3000 1000 10 5 R4data.txt
java DataGenerator 4000 1000 10 5 R5data.txt

2. Create the 5 tables in MySQL database:
R1(A,B,C), R2(D,B,C), R3(E,B,C), R4(F,B,C), R5(G,B,C)

Query used:
CREATE TABLE R1 (A INTEGER, B INTEGER, C INTEGER);
CREATE TABLE R2 (D INTEGER, B INTEGER, C INTEGER);
CREATE TABLE R3 (E INTEGER, B INTEGER, C INTEGER);

CREATE TABLE R4 (F INTEGER, B INTEGER, C INTEGER);
CREATE TABLE R5 (G INTEGER, B INTEGER, C INTEGER);

Outcome:

3. Load the text files into the corresponding table. (Bulk Load)

To do that in MySQL, first, make sure the global variable ‘local_infile’ is “ON” not
“OFF.”

Query used:
show global variables like 'local_infile';

To turn it on, set the global variable to 1 with the following query in MySQL:
SET GLOBAL local_infile=1;

After that, exit MySQL. Open MySQL again with “--local_infile=1” after the keyword
“mysql.”
Query Used:
mysql --local_infile=1 -u <your username here> -p <your password here>

Once completed, execute the “load data” queries as seen below:

Query used:
LOAD DATA LOCAL INFILE '/Users/Chicken/CS157b/Hw3/R1data.txt' INTO TABLE
R1 FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n';

LOAD DATA LOCAL INFILE '/Users/Chicken/CS157b/Hw3/R2data.txt' INTO TABLE
R2 FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n';

LOAD DATA LOCAL INFILE '/Users/Chicken/CS157b/Hw3/R3data.txt' INTO TABLE
R3 FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n';

LOAD DATA LOCAL INFILE '/Users/Chicken/CS157b/Hw3/R4data.txt' INTO TABLE
R4 FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n';

LOAD DATA LOCAL INFILE '/Users/Chicken/CS157b/Hw3/R5data.txt' INTO TABLE
R5 FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n';

Now, we have 5 tables with data in them. It is time to proceed to Experiments.

Experiments
With the 5 tables, we will be considering a join with the following condition:
R1.B=R2.B and R1.C=R2.C and R2.B=R3.B and R2.C=R3.C and R3.B=R4.B and R3.C=R4.C
and R4.B=R5.B and R4.C=R5.C and R5.B=1 followed by a projection onto the columns B, C.

We will be doing an experiment for each of the 3 types of joins: left-deep join tree, bushy tree,
and right-deep join tree. For each, we will:

● Express the join with the condition above as a SQL query
● Use DBMS “EXPLAIN” statement with the query and determine which join algorithms

were used
● Execute the join query 5 times. Then, compute the average and standard deviation
● Test and compare the times when using indexes

● A brief conclusion/observation

===
Experiment 1: Left-Deep Join Tree
Join SQL Query:
SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS R3B, R3.C AS
R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM ((((R1 JOIN R2 ON
R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND R2.C = R3.C) JOIN R4 ON
R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND R5.B =
1);

Using MySQL DBMS “EXPLAIN” statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS R3B,
R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM ((((R1 JOIN
R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND R2.C = R3.C) JOIN
R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND
R5.B = 1);

From the output of EXPLAIN, we can see in the “type” column that the DBMS marks it “ALL.”
We can also see in the “Extra” column that the DBMS just uses where in R1 and then uses where
and hash-join algorithm for the rest.
The “ALL” means that MySQL scans the whole table using no indexes to access/join the table,
so the DBMS access and scans through R1 filtering with the where condition. It then accesses R2
with the join buffer and so forth.

Execute Query 5 times. Compute the Average and Standard Deviation Result:
The 10 columns shown after the execution are as follows: R1B, R1C, R2B, R2C, R3B, R3C,
R4B, R4C, R5B, R5C.

1. Execution 1 Time: 14.30 seconds

2. Execution 2 Time: 14.56 seconds

3. Execution 3 Time: 14.63 seconds

4. Execution 4 Time: 14.77 seconds

5. Execution 5 Time: 14.94 seconds

At this point, we have the 5 times from the 5 executions of the join query. We will compute the
average and standard deviation.

Average = (14.30 + 14.56 + 14.63 + 14.77 + 14.94) / 5 = 14.64 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 14.30 − 14.64 | |2 + 14.56 − 14.64 | |2 + 14.63 − 14.64 | |2 + 14.77 − 14.64 | |2 + 14.94 − 14.64 | |2

5

= = = 0.2140090.1156 + 0.0064 + 0.0001 + 0.0169 + 0.09
5

0.229
5

Effect of Indices: Use Indexes and Compare:
We will test whether using indexes will improve our timing in left-deep join tree.
We will create indexes for attributes that are part of “JOIN ON” conditions. In this case, that
will be the attributes B and C.

There are 4 index experiments to try on the 5 relations:
1. Create index on B-value only
2. Create index on C-value only
3. Create index on B. Then create index on C
4. Create a composite index (B, C)

1. Experiment 1.1: Index on B-value only (no index on C-value)

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);
CREATE INDEX index_B_R3 ON R3 (B);
CREATE INDEX index_B_R4 ON R4 (B);
CREATE INDEX index_B_R5 ON R5 (B);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
((((R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND
R2.C = R3.C) JOIN R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B
AND R4.C = R5.C AND R5.B = 1);

From the output of EXPLAIN, we can see the index we just made under “possible_keys.”
Under “type,” it says “ref” and under the “ref” column it says “const” because our query
condition B = 1 is indeed a constant. We can see the “key” column actually being used.
We can also see in the “Extra” column that the DBMS uses the index to find B-value in
R5 and then uses where for the rest. DBMS seems to be using an index-join algorithm.

Execute Left-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 1 minute and 24.25 seconds (84.25 seconds)

2. Execution Time 2: 1 minute and 22.47 seconds (82.47 seconds)

3. Execution Time 3: 1 minute and 22.62 seconds (82.62 seconds)

4. Execution Time 4: 1 minute and 22.42 seconds (82.42 seconds)

5. Execution Time 5: 1 minute and 22.63 seconds (82.63 seconds)

Average = (84.25 + 82.47 + 82.62 + 82.42 + 82.63) / 5 = 82.878 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 84.25 − 82.878 | |2 + 82.47 − 82.878 | |2 + 82.62 − 82.878 | |2 + 82.42 − 82.878 | |2 + 82.63 − 82.878 | |2

5

= = = 0.6908951.882384 + 0.166464 + 0.066564 + 0.209764 + 0.061504
5

2.38668
5

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
((((R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND

R2.C = R3.C) JOIN R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B
AND R4.C = R5.C AND R5.B = 1);

From the output of EXPLAIN, we can see the index we just made under “possible_keys.”
Under “type,” it says “ref” for and under the “ref” column it says “const” for the
relations with the index, but those without the index have type “ALL” and ref “NULL”.
We can also see in the “Extra” column that the DBMS uses the index to find B-value in
R1 and where for R2. DBMS seems to use where and index-join algorithm for R1 and
R2, but uses where and hash-join algorithm for those who do not have an index.

Execute Left-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 15.97 seconds

2. Execution Time 2: 16.96 seconds

3. Execution Time 3: 15.31 seconds

4. Execution Time 4: 15.58 seconds

5. Execution Time 5: 15.15 seconds

Average = (15.97 + 16.96 + 15.31 + 15.58 + 15.15) / 5 = 15.794 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 15.97 − 15.794 | |2 + 16.96 − 15.794 | |2 + 15.31 − 15.794 | |2 + 15.58 − 15.794 | |2 + 15.15 − 15.794 | |2

5

= = = 0.6458040.030976 + 1.359556 + 0.234256 + 0.045796 + 0.414736
5

2.08532
5

2. Experiment 1.2: Index on C-value only

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);
CREATE INDEX index_C_R3 ON R3 (C);
CREATE INDEX index_C_R4 ON R4 (C);
CREATE INDEX index_C_R5 ON R5 (C);

Using DBMS EXPLAIN statement:

Query used:

EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
((((R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND
R2.C = R3.C) JOIN R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B
AND R4.C = R5.C AND R5.B = 1);

From the output of EXPLAIN, we can see the index we just made under “possible_keys.”
Under “type,” it says “ALL”. It is also clear it is not using this index because everything
in the “key” column is NULL. We can also see in the “Extra” column that the DBMS
uses where for the first relation R4 (not R1 or R5). Then, it uses where and hash-join for
the rest. The order the DBMS access the relations is somewhat different too. DBMS is
using a hash-join algorithm.

Execute Left-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 14.97 seconds

2. Execution Time 2: 14.35 seconds

3. Execution Time 3: 14.50 seconds

4. Execution Time 4: 14.45 seconds

5. Execution Time 5: 14.27 seconds

Average = (14.97 + 14.35 + 14.50 + 14.45 + 14.27) / 5 = 14.508 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 14.97 − 14.508 | |2 + 14.35 − 14.508 | |2 + 14.50 − 14.508 | |2 + 14.45 − 14.508 | |2 + 14.27 − 14.508 | |2

5

= = = 0.2443360.213444 + 0.024964 + 0.000064 + 0.003364 + 0.0566644
5

0.2985004
5

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
((((R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND
R2.C = R3.C) JOIN R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B
AND R4.C = R5.C AND R5.B = 1);

From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys.”
Under “type,” it says “ALL”. Again, it is also clear it is not using these indexes because
everything in the “key” column is NULL. We can also see in the “Extra” column that the
DBMS uses where for the first relation R3 (not R4). Then use where and hash-join for the
rest. There is a different order of access too. DBMS is still using a hash-join algorithm
regardless of our index.

Execute Left-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution 1 Time: 14.39 seconds

2. Execution 2 Time: 14.99 seconds

3. Execution 3 Time: 13.30 seconds

4. Execution 4 Time: 13.23 seconds

5. Execution 5 Time: 13.50

Average = (14.39 + 14.99 + 13.30 + 13.23 + 13.50) / 5 = 13.882 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 14.39 − 13.882 | |2 + 14.99 − 13.882 | |2 + 13.30 − 13.882 | |2 + 13.23 − 13.882 | |2 + 13.50 − 13.882 | |2

5

= = = 0.6921680.258064 + 1.227664 + 0.338724 + 0.425104 + 0.145924
5

2.39548
5

Observe how indexing on two relations with C-value is faster than indexing on all 5
relations with C-value. This is also faster than performing the join with no indexes.

3. Experiment 1.3: Index on B. Then index on C.

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);
CREATE INDEX index_B_R3 ON R3 (B);
CREATE INDEX index_B_R4 ON R4 (B);
CREATE INDEX index_B_R5 ON R5 (B);

CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);
CREATE INDEX index_C_R3 ON R3 (C);
CREATE INDEX index_C_R4 ON R4 (C);
CREATE INDEX index_C_R5 ON R5 (C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM

((((R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND
R2.C = R3.C) JOIN R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B
AND R4.C = R5.C AND R5.B = 1);

From the output of EXPLAIN, we can see the index we just made under “possible_keys.”
Under “type,” it says “ref”. In the “key” column, DBMS is using the indexes we put out
and using it at certain columns. We can also see in the “Extra” column that the DBMS
uses where for all the relations. DBMS is using an index-join algorithm in this case.

Execute Left-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 44.18 seconds

2. Execution Time 2: 45.67 seconds

3. Execution Time 3: 45.77 seconds

4. Execution Time 4: 49.25 seconds

5. Execution Time 5: 43.70 seconds

Average = (44.18 + 45.67 + 45.77 + 49.25 + 43.70) / 5 = 45.714 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 44.18 − 45.714 | |2 + 45.67 − 45.714 | |2 + 45.77 − 45.714 | |2 + 49.25 − 45.714 | |2 + 43.70 − 45.714 | |2

5

= = = 1.9451332.353156 + 0.001936 + 0.003136 + 12.503296 + 4.056196
5

18.91772
5

The runtime of index B and then index C is still worse than the original runtime without
indexes. It is also worse than indexing on only C value. Compared to the runtime with an
index only on B-value, it is still much faster than indexing on B. 45.714 seconds is less
than 82.878.

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);

CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);

Using DBMS EXPLAIN statement:

Query used:

EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
((((R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND
R2.C = R3.C) JOIN R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B
AND R4.C = R5.C AND R5.B = 1);

From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys”
and “key” columns, so that means they are being used. Under “type,” it says “ref” and
“key” column is not null for those with the index, but those without the index have type
“ALL” and ref “NULL”. We can also see in the “Extra” column the usage of where and
hash-join. DBMS seems to be using an index-based join algorithm and hash-join
algorithm.

Execute Left-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 50.97 seconds

2. Execution Time 2: 44.03 seconds

3. Execution Time 3: 42.17 seconds

4. Execution Time 4: 43.55 seconds

5. Execution Time 5: 42.18 seconds

Average = (50.97 + 44.03 + 42.17 + 43.55 + 42.18) / 5 = 44.58 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 50.97 − 44.58 | |2 + 44.03 − 44.58 | |2 + 42.17 − 44.58 | |2 + 43.55 − 44.58 | |2 + 42.18 − 44.58 | |2

5

= = = 3.27913440.8321 + 0.3025 + 5.8081 + 1.0609 + 5.76
5

53.7637
5

The runtime of index B and then index C is, again, still worse than the original runtime
without indexes. It is also still worse than indexing on only C value. Compared to the
runtime with an index only on B-value, it is still much faster than indexing on B.
44.58 seconds is less than 82.878. Partially applying indexes on two relations is faster
than applying indexes on all the relations. 44.58 seconds < 45.714.

4. Experiment 1.4: Index on (B, C) i.e. composite index of B-value and C-value

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_BC_R1 ON R1 (B,C);
CREATE INDEX index_BC_R2 ON R2 (B,C);
CREATE INDEX index_BC_R3 ON R3 (B,C);
CREATE INDEX index_BC_R4 ON R4 (B,C);
CREATE INDEX index_BC_R5 ON R5 (B,C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
((((R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND
R2.C = R3.C) JOIN R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B
AND R4.C = R5.C AND R5.B = 1);

From the output of EXPLAIN, we can see the index we just made under “possible_keys”
and “key” columns. Under “type,” it says “ref”. We can also see in the “Extra” column
that the DBMS uses Where and index for the first relation R5 and keeps using the index
for the rest of the relations. DBMS is using an index-join algorithm.

Execute Left-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 7.33 seconds

2. Execution Time 2: 7.82 seconds

3. Execution Time 3: 7.65 seconds

4. Execution Time 4: 7.97 seconds

5. Execution Time 5: 7.21 seconds

Average = (7.33 + 7.82 + 7.65 + 7.97 + 7.21) / 5 = 7.596 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 7.33 − 7.596 | |2 + 7.82 − 7.596 | |2 + 7.65 − 7.596 | |2 + 7.97 − 7.596 | |2 + 7.21 − 7.596 | |2

5

= = = 0.2873050.070756 + 0.050176 + 0.002916 + 0.139876 + 0.148996
5

0.41272
5

The runtime of the index (B, C) on all relations had a good time speed. It is faster than
the original runtime, the runtime of B-values only index, the runtime of C-values only
index, and the runtime with index B and then index C.

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_BC_R1 ON R1 (B,C);
CREATE INDEX index_BC_R2 ON R2 (B,C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
((((R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN R3 ON R2.B = R3.B AND
R2.C = R3.C) JOIN R4 ON R3.B = R4.B AND R3.C = R4.C) JOIN R5 ON R4.B = R5.B
AND R4.C = R5.C AND R5.B = 1);

From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys”
and “key,” so that means they are being used. Under “type,” it says “ref” and “ALL”. We
can also see in the “Extra” column that the DBMS uses where for the first relation R3.
Then it uses a hash-join for relations that do not have an index. For those with indexes,
they are using indexes. DBMS is using hash-join and index-based join.

Execute Left-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 7.43 seconds

2. Execution Time 2: 8.11 seconds

3. Execution Time 3: 8.79 seconds

4. Execution Time 4: 9.91 seconds

5. Execution Time 5: 7.88 seconds

Average = (7.43 + 8.11 + 8.79 + 9.91 + 7.88) / 5 = 8.424 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 7.43 − 8.424 | |2 + 8.11 − 8.424 | |2 + 8.79 − 8.424 | |2 + 9.91 − 8.424 | |2 + 7.88 − 8.424 | |2

5

= = = 0.8631010.988036 + 0.098596 + 0.133956 + 2.208196 + 0.295936
5

3.72472
5

The runtime of the index (B, C) on two relations had a good time speed. It is faster than
the original runtime, the runtime of B-values only index, the runtime of C-values only
index, and the runtime with index B and then index C. However, it is not as fast as the
runtime for with (B, C) on all relations.

Experiment 1 Conclusion:
Adding indexes to relations does not always help the query run faster. Adding the correct
indexes (e.g. composite index of B and C) would help the query while indexes on B or C alone
may have a negative impact on query time. As seen in the B-value index-only section, that
attribute only made time slower. Having an index sometimes eliminates the use of hash-join
which may slow things down. In this case, table-scan with hash-join would perform better.

Without an index, DBMS just uses hash-join.

Average without Index: 14.64 seconds
SD: 0.214009
Average with Composite Index B,C): 7.596 seconds
SD: 0.287305

===
Experiment 2: Bushy Join Tree
Join SQL Query:
SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS R3B, R3.C AS
R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM (R1 JOIN R2 ON
R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C =
R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C =
R3.C;

Using MySQL DBMS “EXPLAIN” statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS R3B,
R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM (R1 JOIN
R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND

R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND
R2.C = R3.C;

From the output of EXPLAIN, we can see in the “type” column that the DBMS marks it “ALL.”
We can also see in the “Extra” column that the DBMS just uses where in R1 and then uses where
and hash-join algorithm for the rest.
The “ALL” means that MySQL scans the whole table using no indexes to access/join the table,
so the DBMS access and scans through R1 filtering with the where condition. It then accesses R2
with the join buffer and so forth.
This is the same as the left-deep join tree without indexes.

Execute Query 5 times. Compute the Average and Standard Deviation Result:
The 10 columns shown after the execution are as follows: R1B, R1C, R2B, R2C, R3B, R3C,
R4B, R4C, R5B, R5C.

1. Execution Time 1: 15.01 seconds

2. Execution Time 2: 14.44 seconds

3. Execution Time 3: 15.51 seconds

4. Execution Time 4: 14.15 seconds

5. Execution Time 5: 14.24 seconds

At this point, we have the 5 times from the 5 executions of the join query. We will compute the
average and standard deviation.

Average = (15.01 + 14.44 + 15.51 + 14.15 + 14.24) / 5= 14.67 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 15.01 − 14.67 | |2 + 14.44 − 14.67 | |2 + 15.51 − 14.67 | |2 + 14.15 − 14.67 | |2 + 14.24 − 14.67 | |2

5

= = = 0.5156360.1156 + 0.0529 + 0.7056 + 0.2704 + 0.1849
5

1.3294
5

Effect of Indices: Use Indexes and Compare:
We will test whether using indexes will improve our timing in a bushy tree join tree.
We will create indexes for attributes that are part of “JOIN ON” conditions. In this case, that
will be the attributes B and C.

There are 4 index experiments to try on the 5 relations:
1. Create index on B-value only
2. Create index on C-value only
3. Create index on B. Then create index on C
4. Create a composite index (B, C)

1. Experiment 1.1: Index on B-value only (no index on C-value)

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);
CREATE INDEX index_B_R3 ON R3 (B);
CREATE INDEX index_B_R4 ON R4 (B);
CREATE INDEX index_B_R5 ON R5 (B);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON
R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C)
ON R2.B = R3.B AND R2.C = R3.C;

From the output of EXPLAIN, we can see the index we made under “possible_keys” and
“key,” so that means they are being used. Under “type,” it says “ref”. We can also see in
the “Extra” column that the DBMS uses where for the relations. DBMS is using
index-based join.

Execute Bushy Tree Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 1 minute and 34.10 seconds (94.10 seconds)

2. Execution Time 2: 1 minute and 28.33 seconds (88.33 seconds)

3. Execution Time 3: 1 minute and 24.29 seconds (84.29 seconds)

4. Execution Time 4: 1 minute and 22.31 seconds (82.31 seconds)

5. Execution Time 5: 1 minute and 22.33 seconds (82.33 seconds)

Average = (94.10 + 88.33 + 84.29 + 82.31 + 82.33) / 5 = 86.272 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 94.10 − 86.272 | |2 + 88.33 − 86.272 | |2 + 84.29 − 86.272 | |2 + 82.31 − 86.272 | |2 + 82.33 − 86.272 | |2

5

= = = 4.48727361.277584 + 4.235364 + 3.928324 + 15.697444 + 15.539364
5

100.67808
5

The time bushy tree average runtime is 86.272 seconds which is much slower than the
average runtime without indexes (14.67 seconds). Let’s try to see if lesser indices are
faster.

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM

(R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON
R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C)
ON R2.B = R3.B AND R2.C = R3.C;

From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys”
and “key,” so that means they are being used. Under “type,” it says “ref” and “ALL”. We
can also see in the “Extra” column that the DBMS uses where for the first relation R2 and
then uses hash-join for those without indexes. DBMS is using hash-join and
index-based join.

Execute Bushy Tree Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 14.74 seconds

2. Execution Time 2: 15.89 seconds

3. Execution Time 3: 15.38 seconds

4. Execution Time 4: 15.58 seconds

5. Execution Time 5: 16.39 seconds

Average = (14.74 + 15.89 + 15.38 + 15.58 + 16.39) / 5 = 15.596 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 14.74 − 15.596 | |2 + 15.89 − 15.596 | |2 + 15.38 − 15.596 | |2 + 15.58− 15.596 | |2 + 16.39 − 15.596 | |2

5

= = = 0.5470870.732736 + 0.086436 + 0.046656 + 0.000256 + 0.630436
5

1.49652
5

Notice how the time the average runtime (15.596 seconds) is faster than the one with the
B value index on all relations (86.272 seconds). However, it is not as fast as the one
without indexes.
Indexes are not useful here because of the overhead.

2. Experiment 1.2: Index on C-value only

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);
CREATE INDEX index_C_R3 ON R3 (C);
CREATE INDEX index_C_R4 ON R4 (C);
CREATE INDEX index_C_R5 ON R5 (C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM

(R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON
R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C)
ON R2.B = R3.B AND R2.C = R3.C;

From the output of EXPLAIN, we can see the indexes we made under “possible_keys,”
but “key” shows all NULL, so that means they are NOT being used. We can also see in
the “Extra” column that the DBMS uses where for the first relation R4. Then it uses a
hash-join for the rest. DBMS is using hash-join.

Execute Bushy Tree Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 14.73 seconds

2. Execution Time 2: 14.94 seconds

3. Execution Time 3: 14.80 seconds

4. Execution Time 4: 14.29 seconds

5. Execution Time 5: 15.83 seconds

Average = (14.73 + 14.94 + 14.80 + 14.29 + 15.83) / 5 = 14.918 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 14.73 − 14.918 | |2 + 14.94 − 14.918 | |2 + 14.80 − 14.918| |2 + 14.29 − 14.918 | |2 + 15.83 − 14.918 | |2

5

= = = 0.5051490.035344 + 0.000484 + 0.013924 + 0.394384 + 0.831744
5

1.27588
5

Observe how indexing on all relations with C-value is still slower than performing the
join with no indexes by about 0.3 seconds.

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON
R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C)
ON R2.B = R3.B AND R2.C = R3.C;

From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys.”
The indexes are not being used because “key,” doesn’t show them. We can also see in the
“Extra” column that the DBMS uses where for the first relation R3. Then it uses a
hash-join for relations that do not have an index. DBMS is using hash-join.

Execute Bushy Tree Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 13.06 seconds

2. Execution Time 2: 13.19 seconds

3. Execution Time 3: 12.75 seconds

4. Execution Time 4: 14.50 seconds

5. Execution Time 5: 14.92 seconds

Average = (13.06 + 13.19 + 12.75 + 14.50 + 14.92) / 5 = 13.684 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 13.06 − 13.684 | |2 + 13.19 − 13.684 | |2 + 12.75 − 13.684 | |2 + 14.50 − 13.684 | |2 + 14.92 − 13.684 | |2

5

= = = 0.8601530.389376 + 0.244036 + 0.872356 + 0.665856 + 1.527696
5

3.69932
5

Notice how this time is much faster than if we make all the relations have a C-value
index. This may indicate there is some overhead when we apply an attribute as the index
to all relations.

3. Experiment 1.3: Index on B. Then index on C.

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);
CREATE INDEX index_B_R3 ON R3 (B);
CREATE INDEX index_B_R4 ON R4 (B);
CREATE INDEX index_B_R5 ON R5 (B);

CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);
CREATE INDEX index_C_R3 ON R3 (C);
CREATE INDEX index_C_R4 ON R4 (C);
CREATE INDEX index_C_R5 ON R5 (C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON
R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C)
ON R2.B = R3.B AND R2.C = R3.C;

From the output of EXPLAIN, we can see the index we made under “possible_keys” and
“key,” so that means they are being used. Under “type,” it says “ref.” We can also see in
the “Extra” column that the DBMS uses where for all the relations. DBMS is using
index-based join.

Execute Bushy Tree Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 45.39 seconds

2. Execution Time 2: 43.60 seconds

3. Execution Time 3: 44.16 seconds

4. Execution Time 4: 48.51 seconds

5. Execution Time 5: 46.87 seconds

Average = (45.39 + 43.60 + 44.16 + 48.51 + 46.87) / 5 = 45.706 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 45.39 − 45.706 | |2 + 43.60 − 45.706 | |2 + 44.16 − 45.706 | |2 + 48.51 − 45.706 | |2 + 46.87 − 45.706 | |2

5

= = = 1.7968040.099856 + 4.435236 + 2.390116 + 7.862416 + 1.354896
5

16.14252
5

The runtime of index B and then index C is still much worse than the original runtime
without indexes. It is also worse than indexing on only C value. Compared to the runtime
with an index only on B-value, it is still much faster than indexing on B.

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);

CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON
R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C)
ON R2.B = R3.B AND R2.C = R3.C;

From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys”
and “key,” so that means they are being used. Under “type,” it says “ref” and “ALL”. We
can also see in the “Extra” column that the DBMS uses where for the first relation R3.
Then it uses a hash-join for relations that do not have an index. For those with indexes,
they are using indexes. DBMS is using hash-join and index-based join.

Execute Bushy Tree Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 45.54 seconds

2. Execution Time 2: 46.31 seconds

3. Execution Time 3: 49.57 seconds

4. Execution Time 4: 48.83 seconds

5. Execution Time 5: 45.68 seconds

Average = (45.54 + 46.31 + 49.57 + 48.83 + 45.68) / 5 = 47.186 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 45.54 − 47.186 | |2 + 46.31 − 47.186 | |2 + 49.57 − 47.186 | |2 + 48.83 − 47.186 | |2 + 45.68 − 47.186 | |2

5

= = = 1.7016862.709316 + 1.115136 + 5.683456 + 2.702736 + 2.268036
5

14.47868
5

The runtime of index B and then index C is, again, still worse than the original runtime
without indexes. It is also still worse than indexing only C-value. Compared to the
runtime with an index only on B-value, it is still much faster than indexing on B.
Interestingly, applying this method of indexing on only 2 relations is slower than
applying it to all 5 relations.

4. Experiment 1.4: Index on (B, C) i.e. composite index of B-value and C-value

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_BC_R1 ON R1 (B,C);
CREATE INDEX index_BC_R2 ON R2 (B,C);
CREATE INDEX index_BC_R3 ON R3 (B,C);
CREATE INDEX index_BC_R4 ON R4 (B,C);
CREATE INDEX index_BC_R5 ON R5 (B,C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON
R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C)
ON R2.B = R3.B AND R2.C = R3.C;

From the output of EXPLAIN, we can see the index we made under “possible_keys” and
“key,” so that means they are being used. We can also see in the “Extra” column that the
DBMS uses indexes for all and where for just the first relation R5. DBMS is using
index-based join.

Execute Bushy Tree Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 7.55 seconds

2. Execution Time 2: 7.71 seconds

3. Execution Time 3: 8.42 seconds

4. Execution Time 4: 8.96 seconds

5. Execution Time 5: 7.56 seconds

Average = (7.55 + 7.71 + 8.42 + 8.96 + 7.56) / 5 = 8.04 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 7.55 − 8.04 | |2 + 7.71 − 8.04 | |2 + 8.42 − 8.04 | |2 + 8.96 − 8.04 | |2 + 7.56 − 8.04 | |2

5

= = = 0.5603930.2401 + 0.1089 + 0.1444 + 0.8464 + 0.2304
5

1.5702
5

The runtime of the index (B, C) on all relations had a quick runtime speed. It is faster
than the original runtime, the runtime of B-values only index, the runtime of C-values
only index, and the runtime with index B and then index C.

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_BC_R1 ON R1 (B,C);
CREATE INDEX index_BC_R2 ON R2 (B,C);

Using DBMS EXPLAIN statement:

Query used:

EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN R2 ON R1.B = R2.B AND R1.C = R2.C) JOIN (R3 JOIN (R4 JOIN R5 ON
R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C)
ON R2.B = R3.B AND R2.C = R3.C;

From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys”
and “key,” so that means they are being used. Under “type,” it says “ref” and “ALL”. We
can also see in the “Extra” column that the DBMS uses where for the first relation R3.
Then it uses a hash-join for relations that do not have an index. For those with indexes,
they are using indexes. DBMS is using hash-join and index-based join.

Execute Bushy Tree Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 7.57 seconds

2. Execution Time 2: 7.85 seconds

3. Execution Time 3: 7.46 seconds

4. Execution Time 4: 8.89 seconds

5. Execution Time 5: 9.42 seconds

Average = (7.57 + 7.85 + 7.46 + 8.89 + 9.42) / 5 = 8.238 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 7.57 − 8.238 | |2 + 7.85 − 8.238 | |2 + 7.46 − 8.238 | |2 + 8.89 − 8.238 | |2 + 9.42 − 8.238 | |2

5

= = = 0.7777250.446224 + 0.150544 + 0.605284 + 0.425104 + 1.397124
5

3.02428
5

The runtime of the index (B, C) on two relations still has a fast runtime speed in general.
It is faster than the original runtime, the runtime of B-values only index, the runtime of
C-values only index, and the runtime with index B and then index C. It seems that in this
case, it is a bit faster than the runtime for applying index (B,C) on all 5 relations.

Experiment 2 Conclusion:
Similar to Experiment 1, having indexes does not necessarily mean it will run faster than
relations that do not have indexes. Indexing on a composite of B and C is faster.

Without an index, DBMS just uses hash-join.

Average without Index: 14.67 seconds
SD: 0.515636
Average with Composite Index B,C): 8.04 seconds
SD: 0.560393

===
Experiment 3: Right-Deep Join Tree
Join SQL Query:
SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS R3B, R3.C AS
R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM (R1 JOIN (R2 JOIN
(R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON R3.B = R4.B
AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C) ON R1.B = R2.B AND R1.C =
R2.C);

Using MySQL DBMS “EXPLAIN” STATEMENT:

Query used:

EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS R3B,
R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM (R1 JOIN
(R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND R5.B = 1) ON
R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C) ON R1.B = R2.B AND
R1.C = R2.C);

From the output of EXPLAIN, we can see in the “type” column that the DBMS marks it “ALL.”
We can also see in the “Extra” column that the DBMS just uses where in R1 and then uses where
and hash-join algorithm for the rest.
The “ALL” means that MySQL scans the whole table using no indexes to access/join the table,
so the DBMS access and scans through R1 filtering with the where condition. It then accesses R2
with the join buffer and so forth.
This is the same plan as the left-deep join tree and the bushy tree join without any index.

Execute Query 5 times. Compute the Average and Standard Deviation Result:
The 10 columns shown after the execution are as follows: R1B, R1C, R2B, R2C, R3B, R3C,
R4B, R4C, R5B, R5C.

1. Execution 1 Time: 14.39 seconds

2. Execution 2 Time: 14.29 seconds

3. Execution 3 Time: 14.73 seconds

4. Execution 4 Time: 14.90 seconds

5. Execution 5 Time: 14.50 seconds

At this point, we have the 5 times from the 5 executions of the join query. We will compute the
average and standard deviation.

Average = (14.39 + 14.29 + 14.73 + 14.90 + 14.50) / 5 = 14.562 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 14.39 − 14.562 | |2 + 14.29 − 14.562 | |2 + 14.73 − 14.562 | |2 + 14.90 − 14.562 | |2 + 14.50 − 14.562 | |2

5

= = = 0.2235530.029584 + 0.073984 + 0.028224 + 0.114244 + 0.003844
5

1.05908
5

Effect of Indices: Use Indexes and Compare:
We will test whether using indexes will improve our timing in right-deep join tree.
We will create indexes for attributes that are part of “JOIN ON” conditions. In this case, that
will be the attributes B and C.

There are 4 index experiments to try on the 5 relations:
1. Create index on B-value only
2. Create index on C-value only
3. Create index on B. Then create index on C
4. Create a composite index (B, C)

1. Experiment 1.1: Index on B-value only (no index on C-value)

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);
CREATE INDEX index_B_R3 ON R3 (B);
CREATE INDEX index_B_R4 ON R4 (B);
CREATE INDEX index_B_R5 ON R5 (B);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN (R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND
R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C)
ON R1.B = R2.B AND R1.C = R2.C);

From the output of EXPLAIN, we can see the indexes we made under “possible_keys”
and “key,” so that means they are being used. Under “type,” it says “ref”. We can also
see in the “Extra” column that the DBMS mostly used where. DBMS uses index-based
join.

Execute Right-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 1 minute and 36.24 seconds (96.24 seconds)

2. Execution Time 2: 1 minute and 27.49 seconds (87.49 seconds)

3. Execution Time 3: 1 minute and 38.45 seconds (98.45 seconds)

4. Execution Time 4: 1 minute and 30.19 seconds (90.19 seconds)

5. Execution Time 5: 1 minute and 25.96 seconds (85.96 seconds)

Average = (96.24 + 87.49 + 98.45 + 90.19 + 85.96) / 5 = 91.666 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 96.24 − 91.666 | |2 + 87.49 − 91.666 | |2 + 98.45 − 91.666 | |2 + 90.19 − 91.666 | |2 + 85.96 − 91.666 | |2

5

= = = 4.88098620.921476 + 17.438976 + 46.022656 + 2.178576 + 32.558436
5

119.12012
5

The average runtime is 91.666 seconds which is much slower than the average time
without indexes (14.562 seconds). Let’s try to see if lesser indices are faster.

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN (R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND
R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C)
ON R1.B = R2.B AND R1.C = R2.C);

From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys”
and “key,” so that means they are being used. Under “type,” it says “ref” and “ALL”. We
can also see in the “Extra” column that the DBMS uses where for the second relation it
reached. Then it uses a hash-join for relations that do not have an index. For those with
indexes, they are using indexes. DBMS is using hash-join and index-based join.

Execute Right-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 14.94 seconds

2. Execution Time 2: 15.01 seconds

3. Execution Time 3: 15.55 seconds

4. Execution Time 4: 15.35 seconds

5. Execution Time 5: 15.65 seconds

Average = (14.94 + 15.01 + 15.55 + 15.35 + 15.65) / 5 = 15.3 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 14.94 − 15.3 | |2 + 15.01 − 15.3 | |2 + 15.55 − 15.3 | |2 + 15.35 − 15.3| |2 + 15.65 − 15.3 | |2

5

= = = 0.2832670.1296 + 0.0841 + 0.0625 + 0.0025 + 0.1225
5

0.4012
5

Notice how the average runtime (15.3 seconds) is faster than the one with the B value
index on all relations. However, it is still not as fast as the one without indexes.
Indexes are not useful here because of the overhead.

2. Experiment 1.2: Index on C-value only
Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);
CREATE INDEX index_C_R3 ON R3 (C);
CREATE INDEX index_C_R4 ON R4 (C);
CREATE INDEX index_C_R5 ON R5 (C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN (R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND
R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C)
ON R1.B = R2.B AND R1.C = R2.C);

From the output of EXPLAIN, we can see the index we made under “possible_keys.”
They are NOT being used because “key” column is all NULL. We can also see in the
“Extra” column that the DBMS uses where for the first relation R4. Then it uses a
hash-join for relations that do not have an index. For those with indexes, they are using
indexes. DBMS is using hash-join only.

Execute Right-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 15.18 seconds

2. Execution Time 2: 15.14 seconds

3. Execution Time 3: 16.07 seconds

4. Execution Time 4: 16.11 seconds

5. Execution Time 5: 16.09 seconds

Average = (15.18 + 15.14 + 16.07 + 16.11 + 16.09) / 5 = 15.718 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 15.18 − 15.718 | |2 + 15.14 − 15.718 | |2 + 16.07 − 15.718 | |2 + 16.11 − 15.718 | |2 + 16.09 − 15.718 | |2

5

= = = 0.4559560.289444 + 0.334084 + 0.123904 + 0.153664 + 0.138384
5

1.03948
5

Notice how having a C index for all 5 relations is different from having a B index for all
5 relations in a right-deep join tree. It is much faster than indexing on B-value.

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN (R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND

R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C)
ON R1.B = R2.B AND R1.C = R2.C);

From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys.”
They are not shown under “key,” so that means they are NOT being used. We can also
see in the “Extra” column that the DBMS uses where for the first relation it accessed.
Then it uses a hash-join for the rest of the relations. DBMS is using hash-join and
index-based join.

Execute Right-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 13.36 seconds

2. Execution Time 2: 13.25 seconds

3. Execution Time 3: 13.83 seconds

4. Execution Time 4: 15.42 seconds

5. Execution Time 5: 16.02 seconds

Average = (13.36 + 13.25 + 13.83 + 15.42 + 16.02) / 5 = 14.376 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 13.36 − 14.376 | |2 + 13.25 − 14.376 | |2 + 13.83 − 14.376 | |2 + 15.42 − 14.376 | |2 + 16.02 − 14.376 | |2

5

= = = 1.1305681.032256 + 1.267876 + 0.298116 + 1.089936 + 2.702736
5

6.39092
5

Observe how indexing on two relations with C-value is faster than indexing on all 5
relations with C-value. This is also faster than performing the join with no indexes.

3. Experiment 1.3: Index on B. Then index on C.

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);
CREATE INDEX index_B_R3 ON R3 (B);
CREATE INDEX index_B_R4 ON R4 (B);
CREATE INDEX index_B_R5 ON R5 (B);

CREATE INDEX index_C_R1 ON R1 (C);
CREATE INDEX index_C_R2 ON R2 (C);
CREATE INDEX index_C_R3 ON R3 (C);
CREATE INDEX index_C_R4 ON R4 (C);

CREATE INDEX index_C_R5 ON R5 (C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN (R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND
R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C)
ON R1.B = R2.B AND R1.C = R2.C);

From the output of EXPLAIN, we can see the index we made under “possible_keys” and
“key,” so that means they are being used. Under “type,” it says “ref”. We can also see in
the “Extra” column that the DBMS uses where for the all relation it accessed. DBMS is
using index-based join.

Execute Right-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 45.91 seconds

2. Execution Time 2: 45.74 seconds

3. Execution Time 3: 46.25 seconds

4. Execution Time 4: 45.70 seconds

5. Execution Time 5: 47.13 seconds

Average = (45.91 + 45.74 + 46.25 + 45.70 + 47.13) / 5 = 46.146 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 45.91 − 46.146 | |2 + 45.74 − 46.146 | |2 + 46.25 − 46.146 | |2 + 45.70 − 46.146 | |2 + 47.13 − 46.146 | |2

5

= = = 0.5288700.055696 + 0.164836 + 0.010816 + 0.198916 + 0.968256
5

1.39852
5

The runtime of index B and then index C is still worse than the original runtime without
indexes. It is still faster than the runtime with B-value index only.

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_B_R1 ON R1 (B);
CREATE INDEX index_B_R2 ON R2 (B);

CREATE INDEX index_C_R1 ON R1 (C);

CREATE INDEX index_C_R2 ON R2 (C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN (R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND
R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C)
ON R1.B = R2.B AND R1.C = R2.C);
From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys”
and “key,” so that means they are being used. Under “type,” it says “ref” and “ALL”. We
can also see in the “Extra” column that the DBMS uses where for the first relation R3.
Then it uses a hash-join for relations that do not have an index. For those with indexes,
they are using indexes. DBMS is using hash-join and index-based join.

Execute Right-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 45.25 seconds

2. Execution Time 2: 49.35 seconds

3. Execution Time 3: 46.75 seconds

4. Execution Time 4: 46.48 seconds

5. Execution Time 5: 47.82 seconds

Average = (45.25 + 49.35 + 46.75 + 46.48 + 47.82) / 5 = 47.13 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 45.25 − 47.13 | |2 + 49.35 − 47.13 | |2 + 46.75 − 47.13 | |2 + 46.48 − 47.13 | |2 + 47.82 − 47.13 | |2

5

= = = 1.3788263.5344 + 4.9284 + 0.1444 + 0.4225 + 0.4761
5

9.5058
5

The runtime of index B and then index C is still worse than the original runtime without
indexes. It is also still worse than indexing on only C value. Compared to the runtime
with an index only on B-value, it is still much faster than indexing on B.
Partially applying this index case (B and then C) on two relations is slower than applying
indexes on all the relations in this case.

4. Experiment 1.4: Index on (B, C) i.e. composite index of B-value and C-value

Case 1: Create the index on all 5 relations
Create Index:

Query used:
CREATE INDEX index_BC_R1 ON R1 (B,C);
CREATE INDEX index_BC_R2 ON R2 (B,C);
CREATE INDEX index_BC_R3 ON R3 (B,C);
CREATE INDEX index_BC_R4 ON R4 (B,C);

CREATE INDEX index_BC_R5 ON R5 (B,C);

Using DBMS EXPLAIN statement:

Query used:
EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN (R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND
R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C)
ON R1.B = R2.B AND R1.C = R2.C);

From the output of EXPLAIN, we can see the index we made under “possible_keys” and
“key,” so that means they are being used. Under “type,” it says “ref.” We can also see in
the “Extra” column that the DBMS uses where and index for the first relation and then
used index for the rest of the relations. DBMS is using index-based join.

Execute Right-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 7.51 seconds

2. Execution Time 2: 7.82 seconds

3. Execution Time 3: 7.64 seconds

4. Execution Time 4: 8.36 seconds

5. Execution Time 5: 7.74 seconds

Average = (7.51 + 7.82 + 7.64 + 8.36 + 7.74) / 5 = 7.814 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 7.51 − 7.814 | |2 + 7.82 − 7.814 | |2 + 7.64 − 7.814 | |2 + 8.36 − 7.814 | |2 + 7.74 − 7.814 | |2

5

= = = 0.2920.092416 + 0.000036 + 0.030276 + 0.298116 + 0.005476
5

0.42632
5

The runtime of the index (B, C) on all relations had a good time speed. It is faster than
the original runtime, the runtime of B-values only index, the runtime of C-values only
index, and the runtime with index B and then index C.

Case 2: Create the index on 2 relations only
Create Index:

Query used:
CREATE INDEX index_BC_R1 ON R1 (B,C);
CREATE INDEX index_BC_R2 ON R2 (B,C);

Using DBMS EXPLAIN statement:

Query used:

EXPLAIN SELECT R1.B AS R1B, R1.C R1C, R2.B AS R2B, R2.C AS R2C, R3.B AS
R3B, R3.C AS R3C, R4.B AS R4B, R4.C AS R4C, R5.B AS R5B, R5.C AS R5C FROM
(R1 JOIN (R2 JOIN (R3 JOIN (R4 JOIN R5 ON R4.B = R5.B AND R4.C = R5.C AND
R5.B = 1) ON R3.B = R4.B AND R3.C = R4.C) ON R2.B = R3.B AND R2.C = R3.C)
ON R1.B = R2.B AND R1.C = R2.C);

From the output of EXPLAIN, we can see the 2 indexes we made under “possible_keys”
and “key,” so that means they are being used. We can also see in the “Extra” column that
the DBMS uses where for the first relation R3. Then it uses a hash-join for relations that
do not have an index. For those with indexes, they are using indexes. DBMS is using
hash-join and index-based join.

Execute Right-deep Join Query 5 times. Compute the Average and Standard Deviation:
1. Execution Time 1: 7.59 seconds

2. Execution Time 2: 7.63 seconds

3. Execution Time 3: 7.99 seconds

4. Execution Time 4: 8.09 seconds

5. Execution Time 5: 7.41 seconds

Average = (7.59 + 7.63 + 7.99 + 8.09 + 7.41) / 5 = 7.742 seconds

Standard deviation = Σ 𝑥 − µ | |2

𝑁

= 7.59 − 7.742 | |2 + 7.63 − 7.742 | |2 + 7.99 − 7.742 | |2 + 8.09 − 7.742 | |2 + 7.41 − 7.742 | |2

5

= = = 0.2563120.023104 + 0.012544 + 0.061504 + 0.121104 + 0.110224
5

0.32848
5

The runtime of the index (B, C) on two relations also has a good time speed. It is faster
than the original runtime, the runtime of B-values only index, the runtime of C-values
only index, and the runtime with index B and then index C. It is a little faster than the
runtime for with (B, C) on all relations.

Experiment 3 Conclusion:
Similar to Experiments 1 and 2, having indexes does not necessarily mean it will run faster than
relations that do not have indexes. Indexing on a composite of B and C is faster.

Without an index, DBMS just uses hash-join.

Average without Index: 14.562 seconds
SD: 0.223553
Average with Composite Index B,C): 7.814 seconds
SD: 0.292

===

Overall Results
Below are tables representing the average runtime (in seconds) for the joins based on the
experiments.

Without Indexes:

Type of Join Average w/o Index Standard deviation w/o
Indexes

Left-deep Join 14.64 0.214009

Bushy 14.67 0.515636

Right-deep Join 14.562 0.223553

With Indexes Applied on all 5 Relations:

Indexing on…
→

B-value only C-value only B-value then C-value Composite Index
(B,C)

Type of Join AVG SD AVG SD AVG SD AVG SD

Left-deep 82.878 0.690895 14.508 0.244336 45.714 1.945133 7.596 0.287305

Bushy 86.272 4.487273 14.918 0.505149 45.706 1.796804 8.04 0.560393

Right-deep 91.666 4.880986 15.718 0.455956 46.146 0.528870 7.814 0.292

With Indexes Applied on 2 of 5 Relations:

Indexing on…
→

B-value only C-value only B-value then C-value Composite Index
(B,C)

Type of Join AVG SD AVG SD AVG SD AVG SD

Left-deep 15.794 0.645804 13.882 0.692168 44.58 3.279134 8.424 0.863101

Bushy 15.596 0.547087 13.684 0.860153 47.186 1.701686 8.238 0.777725

Right-deep 15.3 0.283267 14.376 1.130568 47.13 1.378826 7.742 0.256312

Overall Conclusion
Highlights:

● Without the indexes, all joins have almost the same runtime.
● Index on B-value alone makes the runtime much slower for 2 reasons: first, having an

index eliminates the use of hash-join (building the hash table in memory if fit). Secondly,
the size of the index entry in this case is as big as the size of the data record. Reading
from the index table and then following the record pointer to load the data from the
original table for C-value would add extra overhead.

● Out of all the indexes, the composite index manages to improve the query time because
both B and C in the query conditions can be obtained directly from the index table.

My hypothesis is partially right. (Short version of hypothesis: I thought the runtime will be about
the same. I also thought indexing would, overall, improve the runtime of the queries.
For more detail, please look up the “Hypothesis” that is bolded and underlined)

Overall, based on the experiments, the runtime among the three joins is almost the same. The
bushy tree is a little slower than the left-deep join tree and right-deep join tree, but not far off.

However, indexing does not always mean improving query time. It depends on the condition of
the query as well as the attribute(s) being used in the index. For instance, indexing on B-value
only will reduce the query performance compared to the query performance without any index.
Meanwhile composite index on B and C helps improve the query performance.

Overall Plan Check:
Without indexes, the plan for each join query is the same. They all use where for one relation and
then use where and the hash-join algorithm for the rest.

With indexes, the plan for each join query is also the same. The plan often tends to use hash-join
for relations without indexes and index-based join for those with indexes.

Note: There is a possibility that the reason no nested loop was found throughout the experiments
is that the computer’s memory (16 GB 2133 MHz LPDDR3 Memory) is large enough to build a
hash for the entire table.

