
1. Team member:

SJSU Students

2.

Java

file:

The

top

of

your

program

will

have

those

constant

for

SQLite

local

host

+ final

static

String

SQLITE_URL

=

"jdbc:sqlite:";

3.

Running

SQLite

instruction:

In

case

the

local

environment

fails

to

work,

please

go

to

this

link

to

get

SQLite

jar

file

and

put

it

in

hw1

folder https://search.maven.org/artifact/org.xerial/sqlite-jdbc
JDBC

Version

: 3.40.0.0

Compiler

command: javac

-cp

sqlite-jdbc-3.40.0.0.jar:. TwoDimTreeManager.java

//

In

case

the

java

fail

to

find

related

file

in

the

package

Compiler

command: javac

TreePart.java

TwoDimNode.java TwoDimRecord.java

TwoDimTreeManager.java

Executing

command: java

-cp

sqlite-jdbc-3.40.0.0.jar:. TwoDimTreeManager

sqlite_database_name

name_of_instruction_file

4.

TwoDim

Tree

Logic:

I

include

this

part

since

there

might

be

multiple

ways

to

implement

the

tree.

4.1

Inserting:

The

key

value

of

the

inner

node

and

its

child

position

will

adjust

after

inserting

Example:

4.2 splitting method:
There is two method of splitting:

+ 1st method we only create one innernode for the split children, then attach the children and new
record to this node

+ 2nd method we create another tree level which then attach children to these node appropriately

https://search.maven.org/artifact/org.xerial/sqlite-jdbc

Method 1 Method 2

Pros +Easy to implement
+Save space due to have less
inner node

+ Tree height is often sorter, so
faster look up

Cons +Higher tree compared to
method 2, so look up less
efficient

+Harder to implement due to
more I/O and more leaf node
rewiring to inner nodes.
+More space for inner node

For my code: I chose method 1 for its simplicity

4.3 query key decision on each level:
The root key will be default by Y key and it values will be:
+ value1 = smallest y of all children’s y values
+ value2 = second smallest y of all children’s y values

When splitting the key will alternate with the previous node key if we can split by that key, so that we can
utilize and use all keys.

Example: the root key is Y, the next level is X, then the next level is query by Y. Also, the value of each
level is follow the logic above

4.4 printTree:
Tree will be print in breadth first search order

For example: Orangetree below

Command: p OrangeTree
OrangeTree
Internal Node Id:7 Parent Id:-1 query variable is Y; key values are: -1.7, 2.7; Child IDs are: 10, 12, 8
Record: 10 Parent Id:7 Label:orange2 (-3.5, -1.7)
Internal Node Id:12 Parent Id:7 query variable is X; key values are: -5.0, NaN; Child IDs are: 11, 9, -1
Record: 8 Parent Id:7 Label:orange0 (-3.5, 4.7)
Record: 11 Parent Id:12 Label:orange3 (-5.0, 0.7)
Record: 9 Parent Id:12 Label:orange1 (-3.5, 2.7)

