
More Normalization Algorithms

CS157A
Chris Pollett

Nov. 28, 2005.

Outline

• 3NF Decomposition Algorithms
• BCNF Algorithms
• Multivalued Dependencies and 4NF

Dependency-Preserving
Decomposition into 3NF

Input: A universal relation R and a set of FDs F on the attributes of R
Output: D -- a decomposition of R
Algorithm:
1. Find a minimal cover G for F.
2. For each left hand side X of an FD in G add a new relation schema

Q in D with attributes {X ∪{A1} ∪{A2}… ∪{Ak}}, where X-->
A1,…, X-->Ak are the only FDs in G with X as the left hand side.
Make X the key of this schema.

3. Place any remaining attributes in a single relation to ensure the
attribute preservation property.

Notice Step 2 guarantees dependencies will be preserved. The reason why
the decomposition will be in 3NF is due to the use of a minimal
cover. (If X--> Z and Z-->A are in G then X-->A won’t be in G.)

Lossless Join Decomposition into
BCNF

Input: A universal relation R and a set of FDs F on the attributes of R
Output: D -- a decomposition of R
Algorithm:
Set D:={R};
While there is a relation schema Q in D that is not in BCNF
{

1. Choose a relation Q in D not in BCNF
2. Rind a FD X-->Y in Q that violates BCNF
3. Replace Q in D by the two relation schemas (Q-Y) and (X ∪Y)

}

Since relations only have finitely many attributes this algorithm terminates
with all the relations in BCNF. (3) ensures that our binary
decomposition test for LJP will be passed.

Dependency-Preserving Lossless
Join Decomposition into 3NF

Input: A universal relation R and a set of functional dependencies F on the
attributes of R.

Output: D -- a decomposition of R
Algorithm:
1. Find a minimal cover G for F.
2. For each left hand side X of an FD in G add a new relation schema Q in D

with attributes {X ∪{A1} ∪{A2}… ∪{Ak}}, where X--> A1,…, X-->Ak are
the only FDs in G with X as the left hand side. Make X the key of this
schema.

3. If none of the schemas in D contains a key of R, then create one more
relation schema that contains attributes which form a key of R.

Except for Step 3 this is like our earlier algorithm. The new step 3 still preserves
attributes because a key needs to have all attributes not in any FD in G.
Also, Step 3 in above ensures LJP.

Algorithm to Find a Key of R
In order to do Step 3 above we need an algorithm which can find a key for

R. Here is how to do this:
Input: A universal relation R and a set of FDs F on the attributes of R.
Output: K -- a key
Algorithm:
1. Set K:= R
2. For each attribute A in K

{
Check (K-A)+ == R.
If Yes set K := K-A;

}

Problems with Null Values and
Dangling Tuples

• Our decomposition algorithms don’t really address how to handle nulls
in our relation schemas.

• To see why this is hard consider our original COMPANY schema. It is
in BCNF. Suppose we have employees with null values for their DNO.
If we natural join EMPLOYEE with DEPARTMENT, these
employees disappear. On the other hand using left outer joins we get a
new fictitious department with null for all its attributes.

• Similarly, SUM and AVERAGE over columns with nulls must be
carefully considered.

• We might try to come up with a decomposition property which further
split EMPLOYEE into a table EMP1 which does not have DNO and a
table EMP2(SSN,DNO). If we do not store in EMP2 employees with a
NULL value for DNO then we have gotten rid of all NULLS

• Unfortunately, if we natural join EMP1 and EMP2 we might not get all
the rows we had in EMPLOYEE. The tuples which were lost were in
only one of the two relations (EMP1) of the decomposition. These are
called dangling tuples.

Discussion of Normalization
Algorithms

Some other issues which make it hard to totally rely on
decomposition algorithms are:

1. It is hard to know in advance all the FDs that apply to
the data.

2. The algorithms depend on certain nondeterministic
choices which we have forced by how we ordered our
FDs. For instance, there are usually many different
minimal covers. We calculate one based on our initial
ordering of our FDs. This might be suboptimal.

Notice also, we can’t in general decompose into BCNF and
preserve dependencies. (Lots example last day is an
example why not.)

