
Normalization Algorithms

CS157A
Chris Pollett

Nov. 21, 2005.



Outline

• General Definitions of Normal Forms
• Boyce-Codd Normal Form
• Properties of Relational Decomposition



General Definitions of Normal
Forms

• The original definitions of normal forms we
gave last day were defined in terms of the
primary key.

• Today, we’ll briefly consider definitions
which are with respect to any key.



General Definition 2NF
• A relation schema R is in 2NF if every nonprime attribute A in R is not

partially dependent on any key of R.
• For example, suppose we had the table:

LOTS(PropertyID, CountyName, Number, Area, Price, TaxRate)
and we had the functional dependencies:
PropertyID --> CountyName, Number, Area, Price, TaxRate
CountyName, Number --> PropertyID, Area, Price, TaxRate
CountyName --> TaxRate
Area --> Price

• In this situation, TaxRate is nonprime and partially depends on the
candidate key CountryName, Number.

• To put this in 2NF, we would set up a new relation for each partial key
with its dependent attributes.



General Definition 3NF

• Recall a trivial dependency is a dependency of the
form X-->A where X ⊇ A .

• A relation schema R is in 3NF if whenever a
nontrivial FD X-->A holds in R, either (a) X is a
superkey of R or (b) A is a prime attribute of R.

• For instance, if we had split LOTS from the last
slide into:
LOTS1(PropertyID, CountyName, Number, Area, Price)
LOTS2(CountyName, TaxRate)
It would be in 2NF but not 3NF, because Area --> Price in LOTS1

but Area is not a superkey and Price is not prime.
• Conditions (a) and (b) guarantee both being in 2NF and

there being no transitive dependencies.



Boyce-Codd Normal Form
• The general definition of 3NF can be further simplified to give an even

stronger normal form:
• A relation schema R is in Boyce-Codd Normal Formal (BCNF) if

whenever a nontrivial FD X-->A holds in R, then X is a superkey of R.
• For example, suppose we put LOTS1 of the last slide into 3NF by

making two relation schemas:
LOTS1a(PropertyID, CountyName, Number, Area)
LOTS1b(Area, Price)

• Now suppose we added the FD Area -->CountyName, since maybe
from the plots size we can figure out which county we are in.

• Even with this new FD our decomposition is still in 3NF.
• However, it is not in BCNF.



Properties of Relational
Decomposition

• We are now about to describe algorithms for putting our
tables in normal forms.

• We assume we start with a universal relation which has all
the attributes of the DB we want to store.

• We assume we also have a list of FDs, F, for these
attributes.

• The goal is to decompose this universal relation R=(A1,…,
An) into relation schemas D = {R1,…, Rm} in some normal
form.

• We also want the decomposition to be attribute preserving:

• We also describe some other properties for the
decomposition on the next couple of slides.



• FDs contain important semantics of the data.
• It is useful that for each FD X-->Y our

decomposition either has a table Ri which contains
the attributes of X and Y or this dependency is
inferable from the other dependencies that do
appear.

• Let            denote those FDs in F+ all of whose
attributes lie in Ri.

•  D = {R1,…, Rm} is dependency preserving if:

Dependency Preservation



Lossless Join Property

• Another property we like our decompositions to
have is that we join all the tables together of our
decomposition we do not get any spurious tuples.

• Let r be a relation state for our universal relation
R. Formally, D = {R1,…, Rm} has the lossless join
property if it satisfies:



Testing for the Lossless Join
Property

Input: A universal relation R, a decomposition D = {R1,…, Rm} of R and a set F of FDs.
1. Create an initial matrix S with one row i for each relation Ri in D, and one column j

for each attribute Aj in R.
2. Set S(i,j) := bij for all matrix entries.
3. For each row i representing relation Ri

{for each column j with attribute Aj
{if (relation Ri includes attribute Aj) then set S(i,j) :=aj;};};

4. Repeat the following loop until a complete loop execution results in no change to S:
{for each FD X-->Y in F
{for all rows in S that have the same symbols in the columns corresponding to

attributes in X
{make the symbols in the columns that correspond to an attribute in Y be the
same in all these rows as follows: If any of the rows has an “a” symbol for the
column, set the other rows to that same “a” symbol. If no “a” symbol exists,
choose one of the “b” symbols and set the other rows to the same “b” symbol in
that column ;};};};

5. If a row is made up entirely of “a” symbols then the decomposition has the lossless
join property.



Example
• Suppose

R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS}
D= {R1, R2, R3 }
R1=EMP ={SSN, ENAME}
R2=PROJ={PNUMBER, PNAME, PLOCATION}
R3,=WORKS_ON={SSN, PNUMBER, HOURS}
F={SSN-->{ENAME}; PNUMBER-->{PNAME,PLOCATION}; {SSN,PNUMBER}-

->HOURS}

Initially, after step 3 get:
    SSN ENAME PNUMBER PNAME PLOCATION HOURS
R1 a1       a2            b13             b14            b15                b16
R2 b21    b22           a3                a4              a5                 b26
R3 a1      b32           a3                b34            b35               a6
after step 4 get:
    SSN ENAME PNUMBER PNAME PLOCATION HOURS
R1 a1       a2            b13             b14            b15                b16
R2 b21    b22           a3                a4              a5                 b26
R3 a1      a2             a3                a4              a5                 a6      So has lossless join property



Binary Test for LJP

• A decomposition D={R1, R2} of R has the
lossless join property with respect to F iff
– The FD (R1 ∩ R2) --> (R1 -R2) is in F+, or
– The FD (R1 ∩ R2) --> (R2 -R1) is in F+

• IF D has the lossless join property and D’ is
obtained from D by replacing an Ri with a
decomposition D’’ which has the LJP then
D’ has the lossless join property.


