Yet More SQL

CS157A
Chris Pollett
Oct. 19, 2005.

Outline

NULLSs and 3-valued Logic
Nested Queries

Joins

Aggregate Functions in SQL
GROUP BY and HAVING
INSERT,DELETE, and UPDATE

NULLSs and 3-valued Logic

NULL has three potential meanings: An unknown value,
an unavailable or withheld value, and an attribute which is
not applicable.

NULL in SQL does not distinguish between these three
different meanings.

If comparisons <, =, etc are done with NULL the result 1s
FALSE.

To check with an expression is something 1s/is not NULL,
you can use the syntax like:

WHERE SUPERSSN IS NULL;
or
WHERE SUPERSSN IS NOT NULL:

Nested Queries

Sometimes it is useful to be able to create results of a query by computing
intermediate query results first.

Doing this suggests it would be useful to nest queries.

Consider the query: List all the project numbers for projects that involve an
employee whose last name is ‘Smith’ where this ‘Smith’ is either a worker on
the project or is a manager of the department that controls the project

SELECT DISTINCT PNUMBER FROM PROJECT

WHERE PNUMBER IN

(SELECT PNUMBER FROM PROJECT, DEPARTMENT,
EMPLOYEE WHERE DNUM=DNUMBER AND

MGRSSN=SSN AND LNAME=‘SMITH”)

OR

(SELECT PNUMBER FROM WORKS_ON,
EMPLOYEE WHERE ESSN=SSN AND LNAME=‘SMITH”)

More on Nested Queries

If the nested query only returns one attribute of one row, then rather
than use ‘IN’ one can use ‘=’.

If one wants to check if multiple columns come from the result of a
query one can do queries like:
SELECT DISTINCT ESSN
FROM WORKS_ON
WHERE (PNO, HOURS) in (SELECT PNO, HOURS FROM
WORKS_ON WHERE SSN=123456789’);
Besides ‘IN’ one can also do checks like ‘op ANY’, ‘op SOME’, ‘op
ALL’, where op is one of >, >=, <=, <, <>.
SELECT LNAME, FNAME FROM EMPLOYEE
WHERE SALARY >ALL (SELECT SALARY FROM EMPLOYEE WHERE
DNO=5);
It is legal to have several nestings of queries. To make this work, it is
convenient to be able to refer attributes of the outer query in the inner
query such as:
SELECT E.FNAME, ELNAME FROM EMPLOYEE AS E WHERE E.SSN

IN (SELECT ESSN FROM DEPENDENT WHERE
E.FNAME=DEPENDENT_NAME AND E.SEX=SEX);

Correlated Nested Queries

Whenever a WHERE clause of a nested query references
some attribute of a relation declared in the outer query the
two queries are said to be correlated.

The last query of the previous slide is a correlated query.

Such queries, if they use = or IN to nest, can always be
expressed as a single block query. Fo example,

SELECT E.FNAME, E.LNAME FROM EMPLOYEE AS E,
DEPENDENT AS D WHERE E.SSN=D.ESSN AND
E.SEX=D.SEX AND E.FNAME=D.DEPENDENT_NAME;

EXISTS and UNIQUE 1n SQL

* SQL supports the keywords EXISTS and NOT EXISTS to
check whether or not the result of a correlated nested query
1s empty.

* For example, suppose we want to list the names of
employees who have at least one dependent:

SELECT FNAME, LNAME FROM EMPLOYEE WHERE EXISTS
(SELECT * FROM DEPENDENT WHERE SSN=ESSN);

e In addition to EXISTS and NOT EXISTS there is a
keyword UNIQUE which returns true if there are no
duplicates 1n the result of a query.

Explicit Sets and Renaming of Attributes

 The ‘IN’ clause can also be used with explicitly
listed sets rather than nested queries:
SELECT DISTINCT ESSN FROM WORKS_ON
WHERE PNO IN (1,2,3);
e It1s also sometimes useful to rename the output
columns of a query. This can be done using ‘AS’:
SELECT E.LNAME AS EMPLOYEE_NAME,
S.LNAME AS SUPERVISOR_NAME
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.SUPERSSN = S.SSN;

JOIN

SQL supports the keywords: JOIN (aka INNER
JOIN), and OUTER JOIN.

The keywords LEFT, RIGHT, and FULL may
precede OUTER JOIN.

The keyword NATURAL can precede any of the
above.

The basic syntax for a join looks like:
TABLE1 JOIN TABLE2 ON TABLE1.A=TABLE2.B;

Aggregate Functions in SQL

The aggregates COUNT, SUM, MAX, MIN, AVG can appear in the
SELECT clause of an SQL query:

SELECT COUNT(SSN), SUM(SALARY), AVG(SALARY),
MAX(SALARY), MIN(SALARY), COUNT(DISTINCT
SALARY), COUNT(¥) FROM EMPLOYEE;

COUNT(*) 1s used to count number of tuples.
Notice we can also use the keyword DISTINCT before an attribute.
COUNT and other aggregates ignore NULLSs.
Aggregates can we used with nested queries:
SELECT LNAME, FNAME FROM EMPLOYEE WHERE
(SELECT COUNT(*) FROM DEPENDENT
WHERE SSN=ESSN) >= 2;

GROUP BY and HAVING

To completely simulate the relational algebra aggregates, we need to
be able to break down the aggregation by some attribute.

This can be done using GROUP BY:
SELECT DNO, COUNT(*), AVG(SALARY)
FROM EMPLOYEE
GROUP BY DNO;
It is also useful to be able to place conditions on the groups which are
output. This can be done with a HAVING clause:
SELECT PNUMBER, PNAME, COUNT(*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME
HAVING COUNT((*) >2 AND PNAME LIKE ‘R%’;

INSERT

 To insert a row into a database the basic syntax is
like:
INSERT INTO MY_TABLE VALUES (‘A’, ‘B’, ‘C’,
D, E);
If one doesn’t want to specify all the columns or wants to

specily a permutation of the columns, but instead wants
to rely on default values:

INSERT INTO MY_TABLE(COLI1, COL3, COL4)
VALUES (‘A’, ‘C’, ‘D’);

DELETE

 To delete a row 1n SQL the basic syntax 1is:

DELETE FROM MY_TABLE WHERE
SOME_CONDITION;

* For example,

DELETE FROM EMPLOYEE WHERE
SSN=123456789’;

 DELETE FROM EMPLOYEE; would
delete all rows.

UPDATE

* To change the value of an existing row one
can use the UPDATE command:

UPDATE PROJECT
SET PLOCATION=‘Bellaire’, DNUM=5
WHERE PNUMBER=10;

