
Yet More SQL

CS157A
Chris Pollett

Oct. 19, 2005.



Outline

• NULLs and 3-valued Logic
• Nested Queries
• Joins
• Aggregate Functions in SQL
• GROUP BY and HAVING
• INSERT,DELETE, and UPDATE



NULLs and 3-valued Logic
• NULL has three potential meanings: An unknown value,

an unavailable or withheld value, and an attribute which is
not applicable.

• NULL in SQL does not distinguish between these three
different meanings.

• If comparisons <, =, etc are done with NULL the result is
FALSE.

• To check with an expression is something is/is not NULL,
you can use the syntax like:
WHERE SUPERSSN IS NULL;

or
 WHERE SUPERSSN IS NOT NULL:



Nested Queries
• Sometimes it is useful to be able to create results of a query by computing

intermediate query results first.
• Doing this suggests it would be useful to nest queries.
• Consider the query: List all the project numbers for projects that involve an

employee whose last name is ‘Smith’ where this ‘Smith’ is either a worker on
the project or is a manager of the department that controls the project
 SELECT DISTINCT PNUMBER FROM PROJECT

WHERE PNUMBER IN
(SELECT PNUMBER FROM PROJECT, DEPARTMENT, 

EMPLOYEE WHERE DNUM=DNUMBER AND
MGRSSN=SSN AND LNAME=‘SMITH’)

OR
(SELECT PNUMBER FROM WORKS_ON, 

EMPLOYEE WHERE ESSN=SSN AND LNAME=‘SMITH’)



More on Nested Queries
• If the nested query only returns one attribute of one row, then rather

than use ‘IN’ one can use ‘=’.
• If one wants to check if multiple columns come from the result of a

query one can do queries like:
SELECT DISTINCT ESSN

FROM WORKS_ON
WHERE (PNO, HOURS) in (SELECT PNO, HOURS FROM

WORKS_ON WHERE SSN=‘123456789’);
• Besides ‘IN’ one can also do checks like ‘op ANY’, ‘op SOME’, ‘op

ALL’, where op is one of >, >=, <=, <, <>.
SELECT LNAME, FNAME FROM EMPLOYEE

WHERE SALARY >ALL (SELECT SALARY FROM EMPLOYEE WHERE
DNO=5);

• It is legal to have several nestings of queries. To make this work, it is
convenient to be able to refer attributes of the outer query in the inner
query such as:
SELECT E.FNAME, E.LNAME FROM EMPLOYEE AS E WHERE E.SSN

IN ( SELECT ESSN FROM DEPENDENT WHERE
E.FNAME=DEPENDENT_NAME AND E.SEX=SEX);



Correlated Nested Queries

• Whenever a WHERE clause of a nested query references
some attribute of a relation declared in the outer query the
two queries are said to be correlated.

• The last query of the previous slide is a correlated query.
• Such queries, if they use = or IN to nest, can always be

expressed as a single block query. Fo example,
SELECT E.FNAME, E.LNAME FROM EMPLOYEE AS E,

DEPENDENT AS D WHERE E.SSN=D.ESSN AND
E.SEX=D.SEX AND E.FNAME=D.DEPENDENT_NAME;



EXISTS and UNIQUE in SQL

• SQL supports the keywords EXISTS and NOT EXISTS to
check whether or not the result of a correlated nested query
is empty.

• For example, suppose we want to list the names of
employees who have at least one dependent:
SELECT FNAME, LNAME FROM EMPLOYEE WHERE EXISTS

(SELECT * FROM DEPENDENT WHERE SSN=ESSN);

• In addition to EXISTS and NOT EXISTS there is a
keyword UNIQUE which returns true if there are no
duplicates in the result of a query.



Explicit Sets and Renaming of Attributes

• The ‘IN’ clause can also be used with explicitly
listed sets rather than nested queries:
SELECT DISTINCT ESSN FROM WORKS_ON

WHERE PNO IN (1,2,3);
• It is also sometimes useful to rename the output

columns of a query. This can be done using ‘AS’:
SELECT E.LNAME AS EMPLOYEE_NAME,

S.LNAME AS SUPERVISOR_NAME
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.SUPERSSN = S.SSN;



JOIN

• SQL supports the keywords: JOIN (aka INNER
JOIN), and OUTER JOIN.

• The keywords LEFT, RIGHT, and FULL may
precede OUTER JOIN.

• The keyword NATURAL can precede any of the
above.

• The basic syntax for a join looks like:
TABLE1 JOIN TABLE2 ON TABLE1.A=TABLE2.B;



Aggregate Functions in SQL
• The aggregates COUNT, SUM, MAX, MIN, AVG can appear in the

SELECT clause of an SQL query:
SELECT COUNT(SSN), SUM(SALARY), AVG(SALARY),

MAX(SALARY), MIN(SALARY), COUNT(DISTINCT
SALARY), COUNT(*) FROM EMPLOYEE;

• COUNT(*) is used to count number of tuples.
• Notice we can also use the keyword DISTINCT before an attribute.
• COUNT and other aggregates ignore NULLs.
• Aggregates can we used with nested queries:

SELECT LNAME, FNAME FROM EMPLOYEE WHERE
(SELECT COUNT(*) FROM DEPENDENT

WHERE SSN=ESSN) >= 2;



GROUP BY and HAVING
• To completely simulate  the relational algebra aggregates, we need to

be able to break down the aggregation by some attribute.
• This can be done using GROUP BY:

SELECT DNO, COUNT(*), AVG(SALARY)
FROM EMPLOYEE
GROUP BY DNO;

• It is also useful to be able to place conditions on the groups which are
output. This can be done with a HAVING clause:

SELECT PNUMBER, PNAME, COUNT(*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT(*) > 2 AND PNAME LIKE ‘R%’;



INSERT

• To insert a row into a database the basic syntax is
like:
INSERT INTO MY_TABLE VALUES (‘A’, ‘B’, ‘C’,

‘D’, ‘E’);
If one doesn’t want to specify all the columns or wants to

specify a permutation of the columns, but instead wants
to rely on default values:

INSERT INTO MY_TABLE(COL1, COL3, COL4)
VALUES (‘A’, ‘C’, ‘D’);



DELETE

• To delete a row in SQL the basic syntax is:
DELETE FROM MY_TABLE WHERE

SOME_CONDITION;
• For example,

DELETE FROM EMPLOYEE WHERE
SSN=‘123456789’;

• DELETE FROM EMPLOYEE;  would
delete all rows.



UPDATE

• To change the value of an existing row one
can use the UPDATE command:
UPDATE PROJECT
SET PLOCATION=‘Bellaire’, DNUM=5
WHERE PNUMBER=10;


